""" This module provides functionality to generate currency rate charts based on historical data retrieved from the database. """ from datetime import datetime from matplotlib import pyplot as plt from scipy.interpolate import make_interp_spline import numpy as np from function.gen_unique_name import generate_unique_name from database.server import create_pool async def create_chart( from_currency: str, conv_currency: str, start_date: str, end_date: str ) -> (str, None): """ Generates a line chart of currency rates for a given date range. The chart shows the exchange rate trend between `from_currency` and `conv_currency` within the specified `start_date` and `end_date` range. The generated chart is saved as a PNG file, and the function returns the file name. If data is invalid or insufficient, the function returns `None`. Args: from_currency (str): The base currency (e.g., "USD"). conv_currency (str): The target currency (e.g., "EUR"). start_date (str): The start date in the format 'YYYY-MM-DD'. end_date (str): The end date in the format 'YYYY-MM-DD'. Returns: str | None: The name of the saved chart file, or `None` if the operation fails. """ pool = await create_pool() if not validate_date(start_date) or not validate_date(end_date): return None start_date_obj = datetime.strptime(start_date, '%Y-%m-%d').date() end_date_obj = datetime.strptime(end_date, '%Y-%m-%d').date() async with pool.acquire() as conn: data = await conn.fetch( 'SELECT date, rate FROM currency ' 'WHERE (date BETWEEN $1 AND $2) ' + 'AND from_currency = $3 AND conv_currency = $4 ORDER BY date', start_date_obj, end_date_obj, from_currency.upper(), conv_currency.upper() ) if not data or len(data) <= 1: return None date, rate = [], [] for row in data: date.append(row[0]) rate.append(row[1]) spline = make_interp_spline(range(len(date)), rate, k=2) x = np.arange(len(date)) newx_2 = np.linspace(0, len(date) - 1, 200) newy_2 = spline(newx_2) fig, ax = plt.subplots(figsize=(15, 6)) for label in (ax.get_xticklabels() + ax.get_yticklabels()): label.set_fontsize(10) ax.set_xticks(np.linspace(0, len(date) - 1, 10)) ax.set_xticklabels( [ date[int(i)].strftime('%Y-%m-%d') for i in np.linspace(0, len(date) - 1, 10).astype(int) ] ) name = await generate_unique_name( f'{from_currency.upper()}_{conv_currency.upper()}', datetime.now() ) if rate[0] < rate[-1]: plt.plot(newx_2, newy_2, color='green') elif rate[0] > rate[-1]: plt.plot(newx_2, newy_2, color='red', marker='o') else: plt.plot(newx_2, newy_2, color='grey') plt.savefig(f'../charts/{name}.png') fig.clear() return name def validate_date(date_str: str) -> bool: """ Validates whether the provided string is a valid date in the format 'YYYY-MM-DD'. Args: date_str (str): The date string to validate. Returns: bool: `True` if the string is a valid date, `False` otherwise. """ try: datetime.strptime(date_str, '%Y-%m-%d') return True except ValueError: return False