mirror of
https://github.com/SagerNet/sing-quic.git
synced 2025-04-03 20:07:39 +03:00
Update BBR congestion control
This commit is contained in:
parent
5ab1c0ea5e
commit
1ea488a342
27 changed files with 2484 additions and 33 deletions
3
congestion_meta1/README.md
Normal file
3
congestion_meta1/README.md
Normal file
|
@ -0,0 +1,3 @@
|
|||
# congestion
|
||||
|
||||
mod from https://github.com/MetaCubeX/Clash.Meta/tree/53f9e1ee7104473da2b4ff5da29965563084482d/transport/tuic/congestion
|
25
congestion_meta1/bandwidth.go
Normal file
25
congestion_meta1/bandwidth.go
Normal file
|
@ -0,0 +1,25 @@
|
|||
package congestion
|
||||
|
||||
import (
|
||||
"math"
|
||||
"time"
|
||||
|
||||
"github.com/sagernet/quic-go/congestion"
|
||||
)
|
||||
|
||||
// Bandwidth of a connection
|
||||
type Bandwidth uint64
|
||||
|
||||
const infBandwidth Bandwidth = math.MaxUint64
|
||||
|
||||
const (
|
||||
// BitsPerSecond is 1 bit per second
|
||||
BitsPerSecond Bandwidth = 1
|
||||
// BytesPerSecond is 1 byte per second
|
||||
BytesPerSecond = 8 * BitsPerSecond
|
||||
)
|
||||
|
||||
// BandwidthFromDelta calculates the bandwidth from a number of bytes and a time delta
|
||||
func BandwidthFromDelta(bytes congestion.ByteCount, delta time.Duration) Bandwidth {
|
||||
return Bandwidth(bytes) * Bandwidth(time.Second) / Bandwidth(delta) * BytesPerSecond
|
||||
}
|
374
congestion_meta1/bandwidth_sampler.go
Normal file
374
congestion_meta1/bandwidth_sampler.go
Normal file
|
@ -0,0 +1,374 @@
|
|||
package congestion
|
||||
|
||||
import (
|
||||
"math"
|
||||
"time"
|
||||
|
||||
"github.com/sagernet/quic-go/congestion"
|
||||
)
|
||||
|
||||
var InfiniteBandwidth = Bandwidth(math.MaxUint64)
|
||||
|
||||
// SendTimeState is a subset of ConnectionStateOnSentPacket which is returned
|
||||
// to the caller when the packet is acked or lost.
|
||||
type SendTimeState struct {
|
||||
// Whether other states in this object is valid.
|
||||
isValid bool
|
||||
// Whether the sender is app limited at the time the packet was sent.
|
||||
// App limited bandwidth sample might be artificially low because the sender
|
||||
// did not have enough data to send in order to saturate the link.
|
||||
isAppLimited bool
|
||||
// Total number of sent bytes at the time the packet was sent.
|
||||
// Includes the packet itself.
|
||||
totalBytesSent congestion.ByteCount
|
||||
// Total number of acked bytes at the time the packet was sent.
|
||||
totalBytesAcked congestion.ByteCount
|
||||
// Total number of lost bytes at the time the packet was sent.
|
||||
totalBytesLost congestion.ByteCount
|
||||
}
|
||||
|
||||
// ConnectionStateOnSentPacket represents the information about a sent packet
|
||||
// and the state of the connection at the moment the packet was sent,
|
||||
// specifically the information about the most recently acknowledged packet at
|
||||
// that moment.
|
||||
type ConnectionStateOnSentPacket struct {
|
||||
packetNumber congestion.PacketNumber
|
||||
// Time at which the packet is sent.
|
||||
sendTime time.Time
|
||||
// Size of the packet.
|
||||
size congestion.ByteCount
|
||||
// The value of |totalBytesSentAtLastAckedPacket| at the time the
|
||||
// packet was sent.
|
||||
totalBytesSentAtLastAckedPacket congestion.ByteCount
|
||||
// The value of |lastAckedPacketSentTime| at the time the packet was
|
||||
// sent.
|
||||
lastAckedPacketSentTime time.Time
|
||||
// The value of |lastAckedPacketAckTime| at the time the packet was
|
||||
// sent.
|
||||
lastAckedPacketAckTime time.Time
|
||||
// Send time states that are returned to the congestion controller when the
|
||||
// packet is acked or lost.
|
||||
sendTimeState SendTimeState
|
||||
}
|
||||
|
||||
// BandwidthSample
|
||||
type BandwidthSample struct {
|
||||
// The bandwidth at that particular sample. Zero if no valid bandwidth sample
|
||||
// is available.
|
||||
bandwidth Bandwidth
|
||||
// The RTT measurement at this particular sample. Zero if no RTT sample is
|
||||
// available. Does not correct for delayed ack time.
|
||||
rtt time.Duration
|
||||
// States captured when the packet was sent.
|
||||
stateAtSend SendTimeState
|
||||
}
|
||||
|
||||
func NewBandwidthSample() *BandwidthSample {
|
||||
return &BandwidthSample{
|
||||
// FIXME: the default value of original code is zero.
|
||||
rtt: InfiniteRTT,
|
||||
}
|
||||
}
|
||||
|
||||
// BandwidthSampler keeps track of sent and acknowledged packets and outputs a
|
||||
// bandwidth sample for every packet acknowledged. The samples are taken for
|
||||
// individual packets, and are not filtered; the consumer has to filter the
|
||||
// bandwidth samples itself. In certain cases, the sampler will locally severely
|
||||
// underestimate the bandwidth, hence a maximum filter with a size of at least
|
||||
// one RTT is recommended.
|
||||
//
|
||||
// This class bases its samples on the slope of two curves: the number of bytes
|
||||
// sent over time, and the number of bytes acknowledged as received over time.
|
||||
// It produces a sample of both slopes for every packet that gets acknowledged,
|
||||
// based on a slope between two points on each of the corresponding curves. Note
|
||||
// that due to the packet loss, the number of bytes on each curve might get
|
||||
// further and further away from each other, meaning that it is not feasible to
|
||||
// compare byte values coming from different curves with each other.
|
||||
//
|
||||
// The obvious points for measuring slope sample are the ones corresponding to
|
||||
// the packet that was just acknowledged. Let us denote them as S_1 (point at
|
||||
// which the current packet was sent) and A_1 (point at which the current packet
|
||||
// was acknowledged). However, taking a slope requires two points on each line,
|
||||
// so estimating bandwidth requires picking a packet in the past with respect to
|
||||
// which the slope is measured.
|
||||
//
|
||||
// For that purpose, BandwidthSampler always keeps track of the most recently
|
||||
// acknowledged packet, and records it together with every outgoing packet.
|
||||
// When a packet gets acknowledged (A_1), it has not only information about when
|
||||
// it itself was sent (S_1), but also the information about the latest
|
||||
// acknowledged packet right before it was sent (S_0 and A_0).
|
||||
//
|
||||
// Based on that data, send and ack rate are estimated as:
|
||||
//
|
||||
// send_rate = (bytes(S_1) - bytes(S_0)) / (time(S_1) - time(S_0))
|
||||
// ack_rate = (bytes(A_1) - bytes(A_0)) / (time(A_1) - time(A_0))
|
||||
//
|
||||
// Here, the ack rate is intuitively the rate we want to treat as bandwidth.
|
||||
// However, in certain cases (e.g. ack compression) the ack rate at a point may
|
||||
// end up higher than the rate at which the data was originally sent, which is
|
||||
// not indicative of the real bandwidth. Hence, we use the send rate as an upper
|
||||
// bound, and the sample value is
|
||||
//
|
||||
// rate_sample = min(send_rate, ack_rate)
|
||||
//
|
||||
// An important edge case handled by the sampler is tracking the app-limited
|
||||
// samples. There are multiple meaning of "app-limited" used interchangeably,
|
||||
// hence it is important to understand and to be able to distinguish between
|
||||
// them.
|
||||
//
|
||||
// Meaning 1: connection state. The connection is said to be app-limited when
|
||||
// there is no outstanding data to send. This means that certain bandwidth
|
||||
// samples in the future would not be an accurate indication of the link
|
||||
// capacity, and it is important to inform consumer about that. Whenever
|
||||
// connection becomes app-limited, the sampler is notified via OnAppLimited()
|
||||
// method.
|
||||
//
|
||||
// Meaning 2: a phase in the bandwidth sampler. As soon as the bandwidth
|
||||
// sampler becomes notified about the connection being app-limited, it enters
|
||||
// app-limited phase. In that phase, all *sent* packets are marked as
|
||||
// app-limited. Note that the connection itself does not have to be
|
||||
// app-limited during the app-limited phase, and in fact it will not be
|
||||
// (otherwise how would it send packets?). The boolean flag below indicates
|
||||
// whether the sampler is in that phase.
|
||||
//
|
||||
// Meaning 3: a flag on the sent packet and on the sample. If a sent packet is
|
||||
// sent during the app-limited phase, the resulting sample related to the
|
||||
// packet will be marked as app-limited.
|
||||
//
|
||||
// With the terminology issue out of the way, let us consider the question of
|
||||
// what kind of situation it addresses.
|
||||
//
|
||||
// Consider a scenario where we first send packets 1 to 20 at a regular
|
||||
// bandwidth, and then immediately run out of data. After a few seconds, we send
|
||||
// packets 21 to 60, and only receive ack for 21 between sending packets 40 and
|
||||
// 41. In this case, when we sample bandwidth for packets 21 to 40, the S_0/A_0
|
||||
// we use to compute the slope is going to be packet 20, a few seconds apart
|
||||
// from the current packet, hence the resulting estimate would be extremely low
|
||||
// and not indicative of anything. Only at packet 41 the S_0/A_0 will become 21,
|
||||
// meaning that the bandwidth sample would exclude the quiescence.
|
||||
//
|
||||
// Based on the analysis of that scenario, we implement the following rule: once
|
||||
// OnAppLimited() is called, all sent packets will produce app-limited samples
|
||||
// up until an ack for a packet that was sent after OnAppLimited() was called.
|
||||
// Note that while the scenario above is not the only scenario when the
|
||||
// connection is app-limited, the approach works in other cases too.
|
||||
type BandwidthSampler struct {
|
||||
// The total number of congestion controlled bytes sent during the connection.
|
||||
totalBytesSent congestion.ByteCount
|
||||
// The total number of congestion controlled bytes which were acknowledged.
|
||||
totalBytesAcked congestion.ByteCount
|
||||
// The total number of congestion controlled bytes which were lost.
|
||||
totalBytesLost congestion.ByteCount
|
||||
// The value of |totalBytesSent| at the time the last acknowledged packet
|
||||
// was sent. Valid only when |lastAckedPacketSentTime| is valid.
|
||||
totalBytesSentAtLastAckedPacket congestion.ByteCount
|
||||
// The time at which the last acknowledged packet was sent. Set to
|
||||
// QuicTime::Zero() if no valid timestamp is available.
|
||||
lastAckedPacketSentTime time.Time
|
||||
// The time at which the most recent packet was acknowledged.
|
||||
lastAckedPacketAckTime time.Time
|
||||
// The most recently sent packet.
|
||||
lastSendPacket congestion.PacketNumber
|
||||
// Indicates whether the bandwidth sampler is currently in an app-limited
|
||||
// phase.
|
||||
isAppLimited bool
|
||||
// The packet that will be acknowledged after this one will cause the sampler
|
||||
// to exit the app-limited phase.
|
||||
endOfAppLimitedPhase congestion.PacketNumber
|
||||
// Record of the connection state at the point where each packet in flight was
|
||||
// sent, indexed by the packet number.
|
||||
connectionStats *ConnectionStates
|
||||
}
|
||||
|
||||
func NewBandwidthSampler() *BandwidthSampler {
|
||||
return &BandwidthSampler{
|
||||
connectionStats: &ConnectionStates{
|
||||
stats: make(map[congestion.PacketNumber]*ConnectionStateOnSentPacket),
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
// OnPacketSent Inputs the sent packet information into the sampler. Assumes that all
|
||||
// packets are sent in order. The information about the packet will not be
|
||||
// released from the sampler until it the packet is either acknowledged or
|
||||
// declared lost.
|
||||
func (s *BandwidthSampler) OnPacketSent(sentTime time.Time, lastSentPacket congestion.PacketNumber, sentBytes, bytesInFlight congestion.ByteCount, hasRetransmittableData bool) {
|
||||
s.lastSendPacket = lastSentPacket
|
||||
|
||||
if !hasRetransmittableData {
|
||||
return
|
||||
}
|
||||
|
||||
s.totalBytesSent += sentBytes
|
||||
|
||||
// If there are no packets in flight, the time at which the new transmission
|
||||
// opens can be treated as the A_0 point for the purpose of bandwidth
|
||||
// sampling. This underestimates bandwidth to some extent, and produces some
|
||||
// artificially low samples for most packets in flight, but it provides with
|
||||
// samples at important points where we would not have them otherwise, most
|
||||
// importantly at the beginning of the connection.
|
||||
if bytesInFlight == 0 {
|
||||
s.lastAckedPacketAckTime = sentTime
|
||||
s.totalBytesSentAtLastAckedPacket = s.totalBytesSent
|
||||
|
||||
// In this situation ack compression is not a concern, set send rate to
|
||||
// effectively infinite.
|
||||
s.lastAckedPacketSentTime = sentTime
|
||||
}
|
||||
|
||||
s.connectionStats.Insert(lastSentPacket, sentTime, sentBytes, s)
|
||||
}
|
||||
|
||||
// OnPacketAcked Notifies the sampler that the |lastAckedPacket| is acknowledged. Returns a
|
||||
// bandwidth sample. If no bandwidth sample is available,
|
||||
// QuicBandwidth::Zero() is returned.
|
||||
func (s *BandwidthSampler) OnPacketAcked(ackTime time.Time, lastAckedPacket congestion.PacketNumber) *BandwidthSample {
|
||||
sentPacketState := s.connectionStats.Get(lastAckedPacket)
|
||||
if sentPacketState == nil {
|
||||
return NewBandwidthSample()
|
||||
}
|
||||
|
||||
sample := s.onPacketAckedInner(ackTime, lastAckedPacket, sentPacketState)
|
||||
s.connectionStats.Remove(lastAckedPacket)
|
||||
|
||||
return sample
|
||||
}
|
||||
|
||||
// onPacketAckedInner Handles the actual bandwidth calculations, whereas the outer method handles
|
||||
// retrieving and removing |sentPacket|.
|
||||
func (s *BandwidthSampler) onPacketAckedInner(ackTime time.Time, lastAckedPacket congestion.PacketNumber, sentPacket *ConnectionStateOnSentPacket) *BandwidthSample {
|
||||
s.totalBytesAcked += sentPacket.size
|
||||
|
||||
s.totalBytesSentAtLastAckedPacket = sentPacket.sendTimeState.totalBytesSent
|
||||
s.lastAckedPacketSentTime = sentPacket.sendTime
|
||||
s.lastAckedPacketAckTime = ackTime
|
||||
|
||||
// Exit app-limited phase once a packet that was sent while the connection is
|
||||
// not app-limited is acknowledged.
|
||||
if s.isAppLimited && lastAckedPacket > s.endOfAppLimitedPhase {
|
||||
s.isAppLimited = false
|
||||
}
|
||||
|
||||
// There might have been no packets acknowledged at the moment when the
|
||||
// current packet was sent. In that case, there is no bandwidth sample to
|
||||
// make.
|
||||
if sentPacket.lastAckedPacketSentTime.IsZero() {
|
||||
return NewBandwidthSample()
|
||||
}
|
||||
|
||||
// Infinite rate indicates that the sampler is supposed to discard the
|
||||
// current send rate sample and use only the ack rate.
|
||||
sendRate := InfiniteBandwidth
|
||||
if sentPacket.sendTime.After(sentPacket.lastAckedPacketSentTime) {
|
||||
sendRate = BandwidthFromDelta(sentPacket.sendTimeState.totalBytesSent-sentPacket.totalBytesSentAtLastAckedPacket, sentPacket.sendTime.Sub(sentPacket.lastAckedPacketSentTime))
|
||||
}
|
||||
|
||||
// During the slope calculation, ensure that ack time of the current packet is
|
||||
// always larger than the time of the previous packet, otherwise division by
|
||||
// zero or integer underflow can occur.
|
||||
if !ackTime.After(sentPacket.lastAckedPacketAckTime) {
|
||||
// TODO(wub): Compare this code count before and after fixing clock jitter
|
||||
// issue.
|
||||
// if sentPacket.lastAckedPacketAckTime.Equal(sentPacket.sendTime) {
|
||||
// This is the 1st packet after quiescense.
|
||||
// QUIC_CODE_COUNT_N(quic_prev_ack_time_larger_than_current_ack_time, 1, 2);
|
||||
// } else {
|
||||
// QUIC_CODE_COUNT_N(quic_prev_ack_time_larger_than_current_ack_time, 2, 2);
|
||||
// }
|
||||
|
||||
return NewBandwidthSample()
|
||||
}
|
||||
|
||||
ackRate := BandwidthFromDelta(s.totalBytesAcked-sentPacket.sendTimeState.totalBytesAcked,
|
||||
ackTime.Sub(sentPacket.lastAckedPacketAckTime))
|
||||
|
||||
// Note: this sample does not account for delayed acknowledgement time. This
|
||||
// means that the RTT measurements here can be artificially high, especially
|
||||
// on low bandwidth connections.
|
||||
sample := &BandwidthSample{
|
||||
bandwidth: minBandwidth(sendRate, ackRate),
|
||||
rtt: ackTime.Sub(sentPacket.sendTime),
|
||||
}
|
||||
|
||||
SentPacketToSendTimeState(sentPacket, &sample.stateAtSend)
|
||||
return sample
|
||||
}
|
||||
|
||||
// OnCongestionEvent Informs the sampler that a packet is considered lost and it should no
|
||||
// longer keep track of it.
|
||||
func (s *BandwidthSampler) OnCongestionEvent(packetNumber congestion.PacketNumber) SendTimeState {
|
||||
ok, sentPacket := s.connectionStats.Remove(packetNumber)
|
||||
sendTimeState := SendTimeState{
|
||||
isValid: ok,
|
||||
}
|
||||
if sentPacket != nil {
|
||||
s.totalBytesLost += sentPacket.size
|
||||
SentPacketToSendTimeState(sentPacket, &sendTimeState)
|
||||
}
|
||||
|
||||
return sendTimeState
|
||||
}
|
||||
|
||||
// OnAppLimited Informs the sampler that the connection is currently app-limited, causing
|
||||
// the sampler to enter the app-limited phase. The phase will expire by
|
||||
// itself.
|
||||
func (s *BandwidthSampler) OnAppLimited() {
|
||||
s.isAppLimited = true
|
||||
s.endOfAppLimitedPhase = s.lastSendPacket
|
||||
}
|
||||
|
||||
// SentPacketToSendTimeState Copy a subset of the (private) ConnectionStateOnSentPacket to the (public)
|
||||
// SendTimeState. Always set send_time_state->is_valid to true.
|
||||
func SentPacketToSendTimeState(sentPacket *ConnectionStateOnSentPacket, sendTimeState *SendTimeState) {
|
||||
sendTimeState.isAppLimited = sentPacket.sendTimeState.isAppLimited
|
||||
sendTimeState.totalBytesSent = sentPacket.sendTimeState.totalBytesSent
|
||||
sendTimeState.totalBytesAcked = sentPacket.sendTimeState.totalBytesAcked
|
||||
sendTimeState.totalBytesLost = sentPacket.sendTimeState.totalBytesLost
|
||||
sendTimeState.isValid = true
|
||||
}
|
||||
|
||||
// ConnectionStates Record of the connection state at the point where each packet in flight was
|
||||
// sent, indexed by the packet number.
|
||||
// FIXME: using LinkedList replace map to fast remove all the packets lower than the specified packet number.
|
||||
type ConnectionStates struct {
|
||||
stats map[congestion.PacketNumber]*ConnectionStateOnSentPacket
|
||||
}
|
||||
|
||||
func (s *ConnectionStates) Insert(packetNumber congestion.PacketNumber, sentTime time.Time, bytes congestion.ByteCount, sampler *BandwidthSampler) bool {
|
||||
if _, ok := s.stats[packetNumber]; ok {
|
||||
return false
|
||||
}
|
||||
|
||||
s.stats[packetNumber] = NewConnectionStateOnSentPacket(packetNumber, sentTime, bytes, sampler)
|
||||
return true
|
||||
}
|
||||
|
||||
func (s *ConnectionStates) Get(packetNumber congestion.PacketNumber) *ConnectionStateOnSentPacket {
|
||||
return s.stats[packetNumber]
|
||||
}
|
||||
|
||||
func (s *ConnectionStates) Remove(packetNumber congestion.PacketNumber) (bool, *ConnectionStateOnSentPacket) {
|
||||
state, ok := s.stats[packetNumber]
|
||||
if ok {
|
||||
delete(s.stats, packetNumber)
|
||||
}
|
||||
return ok, state
|
||||
}
|
||||
|
||||
func NewConnectionStateOnSentPacket(packetNumber congestion.PacketNumber, sentTime time.Time, bytes congestion.ByteCount, sampler *BandwidthSampler) *ConnectionStateOnSentPacket {
|
||||
return &ConnectionStateOnSentPacket{
|
||||
packetNumber: packetNumber,
|
||||
sendTime: sentTime,
|
||||
size: bytes,
|
||||
lastAckedPacketSentTime: sampler.lastAckedPacketSentTime,
|
||||
lastAckedPacketAckTime: sampler.lastAckedPacketAckTime,
|
||||
totalBytesSentAtLastAckedPacket: sampler.totalBytesSentAtLastAckedPacket,
|
||||
sendTimeState: SendTimeState{
|
||||
isValid: true,
|
||||
isAppLimited: sampler.isAppLimited,
|
||||
totalBytesSent: sampler.totalBytesSent,
|
||||
totalBytesAcked: sampler.totalBytesAcked,
|
||||
totalBytesLost: sampler.totalBytesLost,
|
||||
},
|
||||
}
|
||||
}
|
1000
congestion_meta1/bbr_sender.go
Normal file
1000
congestion_meta1/bbr_sender.go
Normal file
File diff suppressed because it is too large
Load diff
20
congestion_meta1/clock.go
Normal file
20
congestion_meta1/clock.go
Normal file
|
@ -0,0 +1,20 @@
|
|||
package congestion
|
||||
|
||||
import "time"
|
||||
|
||||
// A Clock returns the current time
|
||||
type Clock interface {
|
||||
Now() time.Time
|
||||
}
|
||||
|
||||
// DefaultClock implements the Clock interface using the Go stdlib clock.
|
||||
type DefaultClock struct {
|
||||
TimeFunc func() time.Time
|
||||
}
|
||||
|
||||
var _ Clock = DefaultClock{}
|
||||
|
||||
// Now gets the current time
|
||||
func (c DefaultClock) Now() time.Time {
|
||||
return c.TimeFunc()
|
||||
}
|
213
congestion_meta1/cubic.go
Normal file
213
congestion_meta1/cubic.go
Normal file
|
@ -0,0 +1,213 @@
|
|||
package congestion
|
||||
|
||||
import (
|
||||
"math"
|
||||
"time"
|
||||
|
||||
"github.com/sagernet/quic-go/congestion"
|
||||
)
|
||||
|
||||
// This cubic implementation is based on the one found in Chromiums's QUIC
|
||||
// implementation, in the files net/quic/congestion_control/cubic.{hh,cc}.
|
||||
|
||||
// Constants based on TCP defaults.
|
||||
// The following constants are in 2^10 fractions of a second instead of ms to
|
||||
// allow a 10 shift right to divide.
|
||||
|
||||
// 1024*1024^3 (first 1024 is from 0.100^3)
|
||||
// where 0.100 is 100 ms which is the scaling round trip time.
|
||||
const (
|
||||
cubeScale = 40
|
||||
cubeCongestionWindowScale = 410
|
||||
cubeFactor congestion.ByteCount = 1 << cubeScale / cubeCongestionWindowScale / maxDatagramSize
|
||||
// TODO: when re-enabling cubic, make sure to use the actual packet size here
|
||||
maxDatagramSize = congestion.ByteCount(InitialPacketSizeIPv4)
|
||||
)
|
||||
|
||||
const defaultNumConnections = 1
|
||||
|
||||
// Default Cubic backoff factor
|
||||
const beta float32 = 0.7
|
||||
|
||||
// Additional backoff factor when loss occurs in the concave part of the Cubic
|
||||
// curve. This additional backoff factor is expected to give up bandwidth to
|
||||
// new concurrent flows and speed up convergence.
|
||||
const betaLastMax float32 = 0.85
|
||||
|
||||
// Cubic implements the cubic algorithm from TCP
|
||||
type Cubic struct {
|
||||
clock Clock
|
||||
|
||||
// Number of connections to simulate.
|
||||
numConnections int
|
||||
|
||||
// Time when this cycle started, after last loss event.
|
||||
epoch time.Time
|
||||
|
||||
// Max congestion window used just before last loss event.
|
||||
// Note: to improve fairness to other streams an additional back off is
|
||||
// applied to this value if the new value is below our latest value.
|
||||
lastMaxCongestionWindow congestion.ByteCount
|
||||
|
||||
// Number of acked bytes since the cycle started (epoch).
|
||||
ackedBytesCount congestion.ByteCount
|
||||
|
||||
// TCP Reno equivalent congestion window in packets.
|
||||
estimatedTCPcongestionWindow congestion.ByteCount
|
||||
|
||||
// Origin point of cubic function.
|
||||
originPointCongestionWindow congestion.ByteCount
|
||||
|
||||
// Time to origin point of cubic function in 2^10 fractions of a second.
|
||||
timeToOriginPoint uint32
|
||||
|
||||
// Last congestion window in packets computed by cubic function.
|
||||
lastTargetCongestionWindow congestion.ByteCount
|
||||
}
|
||||
|
||||
// NewCubic returns a new Cubic instance
|
||||
func NewCubic(clock Clock) *Cubic {
|
||||
c := &Cubic{
|
||||
clock: clock,
|
||||
numConnections: defaultNumConnections,
|
||||
}
|
||||
c.Reset()
|
||||
return c
|
||||
}
|
||||
|
||||
// Reset is called after a timeout to reset the cubic state
|
||||
func (c *Cubic) Reset() {
|
||||
c.epoch = time.Time{}
|
||||
c.lastMaxCongestionWindow = 0
|
||||
c.ackedBytesCount = 0
|
||||
c.estimatedTCPcongestionWindow = 0
|
||||
c.originPointCongestionWindow = 0
|
||||
c.timeToOriginPoint = 0
|
||||
c.lastTargetCongestionWindow = 0
|
||||
}
|
||||
|
||||
func (c *Cubic) alpha() float32 {
|
||||
// TCPFriendly alpha is described in Section 3.3 of the CUBIC paper. Note that
|
||||
// beta here is a cwnd multiplier, and is equal to 1-beta from the paper.
|
||||
// We derive the equivalent alpha for an N-connection emulation as:
|
||||
b := c.beta()
|
||||
return 3 * float32(c.numConnections) * float32(c.numConnections) * (1 - b) / (1 + b)
|
||||
}
|
||||
|
||||
func (c *Cubic) beta() float32 {
|
||||
// kNConnectionBeta is the backoff factor after loss for our N-connection
|
||||
// emulation, which emulates the effective backoff of an ensemble of N
|
||||
// TCP-Reno connections on a single loss event. The effective multiplier is
|
||||
// computed as:
|
||||
return (float32(c.numConnections) - 1 + beta) / float32(c.numConnections)
|
||||
}
|
||||
|
||||
func (c *Cubic) betaLastMax() float32 {
|
||||
// betaLastMax is the additional backoff factor after loss for our
|
||||
// N-connection emulation, which emulates the additional backoff of
|
||||
// an ensemble of N TCP-Reno connections on a single loss event. The
|
||||
// effective multiplier is computed as:
|
||||
return (float32(c.numConnections) - 1 + betaLastMax) / float32(c.numConnections)
|
||||
}
|
||||
|
||||
// OnApplicationLimited is called on ack arrival when sender is unable to use
|
||||
// the available congestion window. Resets Cubic state during quiescence.
|
||||
func (c *Cubic) OnApplicationLimited() {
|
||||
// When sender is not using the available congestion window, the window does
|
||||
// not grow. But to be RTT-independent, Cubic assumes that the sender has been
|
||||
// using the entire window during the time since the beginning of the current
|
||||
// "epoch" (the end of the last loss recovery period). Since
|
||||
// application-limited periods break this assumption, we reset the epoch when
|
||||
// in such a period. This reset effectively freezes congestion window growth
|
||||
// through application-limited periods and allows Cubic growth to continue
|
||||
// when the entire window is being used.
|
||||
c.epoch = time.Time{}
|
||||
}
|
||||
|
||||
// CongestionWindowAfterPacketLoss computes a new congestion window to use after
|
||||
// a loss event. Returns the new congestion window in packets. The new
|
||||
// congestion window is a multiplicative decrease of our current window.
|
||||
func (c *Cubic) CongestionWindowAfterPacketLoss(currentCongestionWindow congestion.ByteCount) congestion.ByteCount {
|
||||
if currentCongestionWindow+maxDatagramSize < c.lastMaxCongestionWindow {
|
||||
// We never reached the old max, so assume we are competing with another
|
||||
// flow. Use our extra back off factor to allow the other flow to go up.
|
||||
c.lastMaxCongestionWindow = congestion.ByteCount(c.betaLastMax() * float32(currentCongestionWindow))
|
||||
} else {
|
||||
c.lastMaxCongestionWindow = currentCongestionWindow
|
||||
}
|
||||
c.epoch = time.Time{} // Reset time.
|
||||
return congestion.ByteCount(float32(currentCongestionWindow) * c.beta())
|
||||
}
|
||||
|
||||
// CongestionWindowAfterAck computes a new congestion window to use after a received ACK.
|
||||
// Returns the new congestion window in packets. The new congestion window
|
||||
// follows a cubic function that depends on the time passed since last
|
||||
// packet loss.
|
||||
func (c *Cubic) CongestionWindowAfterAck(
|
||||
ackedBytes congestion.ByteCount,
|
||||
currentCongestionWindow congestion.ByteCount,
|
||||
delayMin time.Duration,
|
||||
eventTime time.Time,
|
||||
) congestion.ByteCount {
|
||||
c.ackedBytesCount += ackedBytes
|
||||
|
||||
if c.epoch.IsZero() {
|
||||
// First ACK after a loss event.
|
||||
c.epoch = eventTime // Start of epoch.
|
||||
c.ackedBytesCount = ackedBytes // Reset count.
|
||||
// Reset estimated_tcp_congestion_window_ to be in sync with cubic.
|
||||
c.estimatedTCPcongestionWindow = currentCongestionWindow
|
||||
if c.lastMaxCongestionWindow <= currentCongestionWindow {
|
||||
c.timeToOriginPoint = 0
|
||||
c.originPointCongestionWindow = currentCongestionWindow
|
||||
} else {
|
||||
c.timeToOriginPoint = uint32(math.Cbrt(float64(cubeFactor * (c.lastMaxCongestionWindow - currentCongestionWindow))))
|
||||
c.originPointCongestionWindow = c.lastMaxCongestionWindow
|
||||
}
|
||||
}
|
||||
|
||||
// Change the time unit from microseconds to 2^10 fractions per second. Take
|
||||
// the round trip time in account. This is done to allow us to use shift as a
|
||||
// divide operator.
|
||||
elapsedTime := int64(eventTime.Add(delayMin).Sub(c.epoch)/time.Microsecond) << 10 / (1000 * 1000)
|
||||
|
||||
// Right-shifts of negative, signed numbers have implementation-dependent
|
||||
// behavior, so force the offset to be positive, as is done in the kernel.
|
||||
offset := int64(c.timeToOriginPoint) - elapsedTime
|
||||
if offset < 0 {
|
||||
offset = -offset
|
||||
}
|
||||
|
||||
deltaCongestionWindow := congestion.ByteCount(cubeCongestionWindowScale*offset*offset*offset) * maxDatagramSize >> cubeScale
|
||||
var targetCongestionWindow congestion.ByteCount
|
||||
if elapsedTime > int64(c.timeToOriginPoint) {
|
||||
targetCongestionWindow = c.originPointCongestionWindow + deltaCongestionWindow
|
||||
} else {
|
||||
targetCongestionWindow = c.originPointCongestionWindow - deltaCongestionWindow
|
||||
}
|
||||
// Limit the CWND increase to half the acked bytes.
|
||||
targetCongestionWindow = Min(targetCongestionWindow, currentCongestionWindow+c.ackedBytesCount/2)
|
||||
|
||||
// Increase the window by approximately Alpha * 1 MSS of bytes every
|
||||
// time we ack an estimated tcp window of bytes. For small
|
||||
// congestion windows (less than 25), the formula below will
|
||||
// increase slightly slower than linearly per estimated tcp window
|
||||
// of bytes.
|
||||
c.estimatedTCPcongestionWindow += congestion.ByteCount(float32(c.ackedBytesCount) * c.alpha() * float32(maxDatagramSize) / float32(c.estimatedTCPcongestionWindow))
|
||||
c.ackedBytesCount = 0
|
||||
|
||||
// We have a new cubic congestion window.
|
||||
c.lastTargetCongestionWindow = targetCongestionWindow
|
||||
|
||||
// Compute target congestion_window based on cubic target and estimated TCP
|
||||
// congestion_window, use highest (fastest).
|
||||
if targetCongestionWindow < c.estimatedTCPcongestionWindow {
|
||||
targetCongestionWindow = c.estimatedTCPcongestionWindow
|
||||
}
|
||||
return targetCongestionWindow
|
||||
}
|
||||
|
||||
// SetNumConnections sets the number of emulated connections
|
||||
func (c *Cubic) SetNumConnections(n int) {
|
||||
c.numConnections = n
|
||||
}
|
318
congestion_meta1/cubic_sender.go
Normal file
318
congestion_meta1/cubic_sender.go
Normal file
|
@ -0,0 +1,318 @@
|
|||
package congestion
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"time"
|
||||
|
||||
"github.com/sagernet/quic-go/congestion"
|
||||
"github.com/sagernet/quic-go/logging"
|
||||
)
|
||||
|
||||
const (
|
||||
maxBurstPackets = 3
|
||||
renoBeta = 0.7 // Reno backoff factor.
|
||||
minCongestionWindowPackets = 2
|
||||
initialCongestionWindow = 32
|
||||
)
|
||||
|
||||
const (
|
||||
InvalidPacketNumber congestion.PacketNumber = -1
|
||||
MaxCongestionWindowPackets = 20000
|
||||
MaxByteCount = congestion.ByteCount(1<<62 - 1)
|
||||
)
|
||||
|
||||
type cubicSender struct {
|
||||
hybridSlowStart HybridSlowStart
|
||||
rttStats congestion.RTTStatsProvider
|
||||
cubic *Cubic
|
||||
pacer *pacer
|
||||
clock Clock
|
||||
|
||||
reno bool
|
||||
|
||||
// Track the largest packet that has been sent.
|
||||
largestSentPacketNumber congestion.PacketNumber
|
||||
|
||||
// Track the largest packet that has been acked.
|
||||
largestAckedPacketNumber congestion.PacketNumber
|
||||
|
||||
// Track the largest packet number outstanding when a CWND cutback occurs.
|
||||
largestSentAtLastCutback congestion.PacketNumber
|
||||
|
||||
// Whether the last loss event caused us to exit slowstart.
|
||||
// Used for stats collection of slowstartPacketsLost
|
||||
lastCutbackExitedSlowstart bool
|
||||
|
||||
// Congestion window in bytes.
|
||||
congestionWindow congestion.ByteCount
|
||||
|
||||
// Slow start congestion window in bytes, aka ssthresh.
|
||||
slowStartThreshold congestion.ByteCount
|
||||
|
||||
// ACK counter for the Reno implementation.
|
||||
numAckedPackets uint64
|
||||
|
||||
initialCongestionWindow congestion.ByteCount
|
||||
initialMaxCongestionWindow congestion.ByteCount
|
||||
|
||||
maxDatagramSize congestion.ByteCount
|
||||
|
||||
lastState logging.CongestionState
|
||||
tracer *logging.ConnectionTracer
|
||||
}
|
||||
|
||||
var _ congestion.CongestionControl = &cubicSender{}
|
||||
|
||||
// NewCubicSender makes a new cubic sender
|
||||
func NewCubicSender(
|
||||
clock Clock,
|
||||
initialMaxDatagramSize congestion.ByteCount,
|
||||
reno bool,
|
||||
tracer *logging.ConnectionTracer,
|
||||
) *cubicSender {
|
||||
return newCubicSender(
|
||||
clock,
|
||||
reno,
|
||||
initialMaxDatagramSize,
|
||||
initialCongestionWindow*initialMaxDatagramSize,
|
||||
MaxCongestionWindowPackets*initialMaxDatagramSize,
|
||||
tracer,
|
||||
)
|
||||
}
|
||||
|
||||
func newCubicSender(
|
||||
clock Clock,
|
||||
reno bool,
|
||||
initialMaxDatagramSize,
|
||||
initialCongestionWindow,
|
||||
initialMaxCongestionWindow congestion.ByteCount,
|
||||
tracer *logging.ConnectionTracer,
|
||||
) *cubicSender {
|
||||
c := &cubicSender{
|
||||
largestSentPacketNumber: InvalidPacketNumber,
|
||||
largestAckedPacketNumber: InvalidPacketNumber,
|
||||
largestSentAtLastCutback: InvalidPacketNumber,
|
||||
initialCongestionWindow: initialCongestionWindow,
|
||||
initialMaxCongestionWindow: initialMaxCongestionWindow,
|
||||
congestionWindow: initialCongestionWindow,
|
||||
slowStartThreshold: MaxByteCount,
|
||||
cubic: NewCubic(clock),
|
||||
clock: clock,
|
||||
reno: reno,
|
||||
tracer: tracer,
|
||||
maxDatagramSize: initialMaxDatagramSize,
|
||||
}
|
||||
c.pacer = newPacer(c.BandwidthEstimate)
|
||||
if c.tracer != nil {
|
||||
c.lastState = logging.CongestionStateSlowStart
|
||||
c.tracer.UpdatedCongestionState(logging.CongestionStateSlowStart)
|
||||
}
|
||||
return c
|
||||
}
|
||||
|
||||
func (c *cubicSender) SetRTTStatsProvider(provider congestion.RTTStatsProvider) {
|
||||
c.rttStats = provider
|
||||
}
|
||||
|
||||
// TimeUntilSend returns when the next packet should be sent.
|
||||
func (c *cubicSender) TimeUntilSend(_ congestion.ByteCount) time.Time {
|
||||
return c.pacer.TimeUntilSend()
|
||||
}
|
||||
|
||||
func (c *cubicSender) HasPacingBudget(now time.Time) bool {
|
||||
return c.pacer.Budget(now) >= c.maxDatagramSize
|
||||
}
|
||||
|
||||
func (c *cubicSender) maxCongestionWindow() congestion.ByteCount {
|
||||
return c.maxDatagramSize * MaxCongestionWindowPackets
|
||||
}
|
||||
|
||||
func (c *cubicSender) minCongestionWindow() congestion.ByteCount {
|
||||
return c.maxDatagramSize * minCongestionWindowPackets
|
||||
}
|
||||
|
||||
func (c *cubicSender) OnPacketSent(
|
||||
sentTime time.Time,
|
||||
_ congestion.ByteCount,
|
||||
packetNumber congestion.PacketNumber,
|
||||
bytes congestion.ByteCount,
|
||||
isRetransmittable bool,
|
||||
) {
|
||||
c.pacer.SentPacket(sentTime, bytes)
|
||||
if !isRetransmittable {
|
||||
return
|
||||
}
|
||||
c.largestSentPacketNumber = packetNumber
|
||||
c.hybridSlowStart.OnPacketSent(packetNumber)
|
||||
}
|
||||
|
||||
func (c *cubicSender) CanSend(bytesInFlight congestion.ByteCount) bool {
|
||||
return bytesInFlight < c.GetCongestionWindow()
|
||||
}
|
||||
|
||||
func (c *cubicSender) InRecovery() bool {
|
||||
return c.largestAckedPacketNumber != InvalidPacketNumber && c.largestAckedPacketNumber <= c.largestSentAtLastCutback
|
||||
}
|
||||
|
||||
func (c *cubicSender) InSlowStart() bool {
|
||||
return c.GetCongestionWindow() < c.slowStartThreshold
|
||||
}
|
||||
|
||||
func (c *cubicSender) GetCongestionWindow() congestion.ByteCount {
|
||||
return c.congestionWindow
|
||||
}
|
||||
|
||||
func (c *cubicSender) MaybeExitSlowStart() {
|
||||
if c.InSlowStart() &&
|
||||
c.hybridSlowStart.ShouldExitSlowStart(c.rttStats.LatestRTT(), c.rttStats.MinRTT(), c.GetCongestionWindow()/c.maxDatagramSize) {
|
||||
// exit slow start
|
||||
c.slowStartThreshold = c.congestionWindow
|
||||
c.maybeTraceStateChange(logging.CongestionStateCongestionAvoidance)
|
||||
}
|
||||
}
|
||||
|
||||
func (c *cubicSender) OnPacketAcked(
|
||||
ackedPacketNumber congestion.PacketNumber,
|
||||
ackedBytes congestion.ByteCount,
|
||||
priorInFlight congestion.ByteCount,
|
||||
eventTime time.Time,
|
||||
) {
|
||||
c.largestAckedPacketNumber = Max(ackedPacketNumber, c.largestAckedPacketNumber)
|
||||
if c.InRecovery() {
|
||||
return
|
||||
}
|
||||
c.maybeIncreaseCwnd(ackedPacketNumber, ackedBytes, priorInFlight, eventTime)
|
||||
if c.InSlowStart() {
|
||||
c.hybridSlowStart.OnPacketAcked(ackedPacketNumber)
|
||||
}
|
||||
}
|
||||
|
||||
func (c *cubicSender) OnCongestionEvent(packetNumber congestion.PacketNumber, lostBytes, priorInFlight congestion.ByteCount) {
|
||||
// TCP NewReno (RFC6582) says that once a loss occurs, any losses in packets
|
||||
// already sent should be treated as a single loss event, since it's expected.
|
||||
if packetNumber <= c.largestSentAtLastCutback {
|
||||
return
|
||||
}
|
||||
c.lastCutbackExitedSlowstart = c.InSlowStart()
|
||||
c.maybeTraceStateChange(logging.CongestionStateRecovery)
|
||||
|
||||
if c.reno {
|
||||
c.congestionWindow = congestion.ByteCount(float64(c.congestionWindow) * renoBeta)
|
||||
} else {
|
||||
c.congestionWindow = c.cubic.CongestionWindowAfterPacketLoss(c.congestionWindow)
|
||||
}
|
||||
if minCwnd := c.minCongestionWindow(); c.congestionWindow < minCwnd {
|
||||
c.congestionWindow = minCwnd
|
||||
}
|
||||
c.slowStartThreshold = c.congestionWindow
|
||||
c.largestSentAtLastCutback = c.largestSentPacketNumber
|
||||
// reset packet count from congestion avoidance mode. We start
|
||||
// counting again when we're out of recovery.
|
||||
c.numAckedPackets = 0
|
||||
}
|
||||
|
||||
// Called when we receive an ack. Normal TCP tracks how many packets one ack
|
||||
// represents, but quic has a separate ack for each packet.
|
||||
func (c *cubicSender) maybeIncreaseCwnd(
|
||||
_ congestion.PacketNumber,
|
||||
ackedBytes congestion.ByteCount,
|
||||
priorInFlight congestion.ByteCount,
|
||||
eventTime time.Time,
|
||||
) {
|
||||
// Do not increase the congestion window unless the sender is close to using
|
||||
// the current window.
|
||||
if !c.isCwndLimited(priorInFlight) {
|
||||
c.cubic.OnApplicationLimited()
|
||||
c.maybeTraceStateChange(logging.CongestionStateApplicationLimited)
|
||||
return
|
||||
}
|
||||
if c.congestionWindow >= c.maxCongestionWindow() {
|
||||
return
|
||||
}
|
||||
if c.InSlowStart() {
|
||||
// TCP slow start, exponential growth, increase by one for each ACK.
|
||||
c.congestionWindow += c.maxDatagramSize
|
||||
c.maybeTraceStateChange(logging.CongestionStateSlowStart)
|
||||
return
|
||||
}
|
||||
// Congestion avoidance
|
||||
c.maybeTraceStateChange(logging.CongestionStateCongestionAvoidance)
|
||||
if c.reno {
|
||||
// Classic Reno congestion avoidance.
|
||||
c.numAckedPackets++
|
||||
if c.numAckedPackets >= uint64(c.congestionWindow/c.maxDatagramSize) {
|
||||
c.congestionWindow += c.maxDatagramSize
|
||||
c.numAckedPackets = 0
|
||||
}
|
||||
} else {
|
||||
c.congestionWindow = Min(c.maxCongestionWindow(), c.cubic.CongestionWindowAfterAck(ackedBytes, c.congestionWindow, c.rttStats.MinRTT(), eventTime))
|
||||
}
|
||||
}
|
||||
|
||||
func (c *cubicSender) isCwndLimited(bytesInFlight congestion.ByteCount) bool {
|
||||
congestionWindow := c.GetCongestionWindow()
|
||||
if bytesInFlight >= congestionWindow {
|
||||
return true
|
||||
}
|
||||
availableBytes := congestionWindow - bytesInFlight
|
||||
slowStartLimited := c.InSlowStart() && bytesInFlight > congestionWindow/2
|
||||
return slowStartLimited || availableBytes <= maxBurstPackets*c.maxDatagramSize
|
||||
}
|
||||
|
||||
// BandwidthEstimate returns the current bandwidth estimate
|
||||
func (c *cubicSender) BandwidthEstimate() Bandwidth {
|
||||
if c.rttStats == nil {
|
||||
return infBandwidth
|
||||
}
|
||||
srtt := c.rttStats.SmoothedRTT()
|
||||
if srtt == 0 {
|
||||
// If we haven't measured an rtt, the bandwidth estimate is unknown.
|
||||
return infBandwidth
|
||||
}
|
||||
return BandwidthFromDelta(c.GetCongestionWindow(), srtt)
|
||||
}
|
||||
|
||||
// OnRetransmissionTimeout is called on an retransmission timeout
|
||||
func (c *cubicSender) OnRetransmissionTimeout(packetsRetransmitted bool) {
|
||||
c.largestSentAtLastCutback = InvalidPacketNumber
|
||||
if !packetsRetransmitted {
|
||||
return
|
||||
}
|
||||
c.hybridSlowStart.Restart()
|
||||
c.cubic.Reset()
|
||||
c.slowStartThreshold = c.congestionWindow / 2
|
||||
c.congestionWindow = c.minCongestionWindow()
|
||||
}
|
||||
|
||||
// OnConnectionMigration is called when the connection is migrated (?)
|
||||
func (c *cubicSender) OnConnectionMigration() {
|
||||
c.hybridSlowStart.Restart()
|
||||
c.largestSentPacketNumber = InvalidPacketNumber
|
||||
c.largestAckedPacketNumber = InvalidPacketNumber
|
||||
c.largestSentAtLastCutback = InvalidPacketNumber
|
||||
c.lastCutbackExitedSlowstart = false
|
||||
c.cubic.Reset()
|
||||
c.numAckedPackets = 0
|
||||
c.congestionWindow = c.initialCongestionWindow
|
||||
c.slowStartThreshold = c.initialMaxCongestionWindow
|
||||
}
|
||||
|
||||
func (c *cubicSender) maybeTraceStateChange(new logging.CongestionState) {
|
||||
if c.tracer == nil || new == c.lastState {
|
||||
return
|
||||
}
|
||||
c.tracer.UpdatedCongestionState(new)
|
||||
c.lastState = new
|
||||
}
|
||||
|
||||
func (c *cubicSender) SetMaxDatagramSize(s congestion.ByteCount) {
|
||||
if s < c.maxDatagramSize {
|
||||
panic(fmt.Sprintf("congestion BUG: decreased max datagram size from %d to %d", c.maxDatagramSize, s))
|
||||
}
|
||||
cwndIsMinCwnd := c.congestionWindow == c.minCongestionWindow()
|
||||
c.maxDatagramSize = s
|
||||
if cwndIsMinCwnd {
|
||||
c.congestionWindow = c.minCongestionWindow()
|
||||
}
|
||||
c.pacer.SetMaxDatagramSize(s)
|
||||
}
|
112
congestion_meta1/hybrid_slow_start.go
Normal file
112
congestion_meta1/hybrid_slow_start.go
Normal file
|
@ -0,0 +1,112 @@
|
|||
package congestion
|
||||
|
||||
import (
|
||||
"time"
|
||||
|
||||
"github.com/sagernet/quic-go/congestion"
|
||||
)
|
||||
|
||||
// Note(pwestin): the magic clamping numbers come from the original code in
|
||||
// tcp_cubic.c.
|
||||
const hybridStartLowWindow = congestion.ByteCount(16)
|
||||
|
||||
// Number of delay samples for detecting the increase of delay.
|
||||
const hybridStartMinSamples = uint32(8)
|
||||
|
||||
// Exit slow start if the min rtt has increased by more than 1/8th.
|
||||
const hybridStartDelayFactorExp = 3 // 2^3 = 8
|
||||
// The original paper specifies 2 and 8ms, but those have changed over time.
|
||||
const (
|
||||
hybridStartDelayMinThresholdUs = int64(4000)
|
||||
hybridStartDelayMaxThresholdUs = int64(16000)
|
||||
)
|
||||
|
||||
// HybridSlowStart implements the TCP hybrid slow start algorithm
|
||||
type HybridSlowStart struct {
|
||||
endPacketNumber congestion.PacketNumber
|
||||
lastSentPacketNumber congestion.PacketNumber
|
||||
started bool
|
||||
currentMinRTT time.Duration
|
||||
rttSampleCount uint32
|
||||
hystartFound bool
|
||||
}
|
||||
|
||||
// StartReceiveRound is called for the start of each receive round (burst) in the slow start phase.
|
||||
func (s *HybridSlowStart) StartReceiveRound(lastSent congestion.PacketNumber) {
|
||||
s.endPacketNumber = lastSent
|
||||
s.currentMinRTT = 0
|
||||
s.rttSampleCount = 0
|
||||
s.started = true
|
||||
}
|
||||
|
||||
// IsEndOfRound returns true if this ack is the last packet number of our current slow start round.
|
||||
func (s *HybridSlowStart) IsEndOfRound(ack congestion.PacketNumber) bool {
|
||||
return s.endPacketNumber < ack
|
||||
}
|
||||
|
||||
// ShouldExitSlowStart should be called on every new ack frame, since a new
|
||||
// RTT measurement can be made then.
|
||||
// rtt: the RTT for this ack packet.
|
||||
// minRTT: is the lowest delay (RTT) we have seen during the session.
|
||||
// congestionWindow: the congestion window in packets.
|
||||
func (s *HybridSlowStart) ShouldExitSlowStart(latestRTT time.Duration, minRTT time.Duration, congestionWindow congestion.ByteCount) bool {
|
||||
if !s.started {
|
||||
// Time to start the hybrid slow start.
|
||||
s.StartReceiveRound(s.lastSentPacketNumber)
|
||||
}
|
||||
if s.hystartFound {
|
||||
return true
|
||||
}
|
||||
// Second detection parameter - delay increase detection.
|
||||
// Compare the minimum delay (s.currentMinRTT) of the current
|
||||
// burst of packets relative to the minimum delay during the session.
|
||||
// Note: we only look at the first few(8) packets in each burst, since we
|
||||
// only want to compare the lowest RTT of the burst relative to previous
|
||||
// bursts.
|
||||
s.rttSampleCount++
|
||||
if s.rttSampleCount <= hybridStartMinSamples {
|
||||
if s.currentMinRTT == 0 || s.currentMinRTT > latestRTT {
|
||||
s.currentMinRTT = latestRTT
|
||||
}
|
||||
}
|
||||
// We only need to check this once per round.
|
||||
if s.rttSampleCount == hybridStartMinSamples {
|
||||
// Divide minRTT by 8 to get a rtt increase threshold for exiting.
|
||||
minRTTincreaseThresholdUs := int64(minRTT / time.Microsecond >> hybridStartDelayFactorExp)
|
||||
// Ensure the rtt threshold is never less than 2ms or more than 16ms.
|
||||
minRTTincreaseThresholdUs = Min(minRTTincreaseThresholdUs, hybridStartDelayMaxThresholdUs)
|
||||
minRTTincreaseThreshold := time.Duration(Max(minRTTincreaseThresholdUs, hybridStartDelayMinThresholdUs)) * time.Microsecond
|
||||
|
||||
if s.currentMinRTT > (minRTT + minRTTincreaseThreshold) {
|
||||
s.hystartFound = true
|
||||
}
|
||||
}
|
||||
// Exit from slow start if the cwnd is greater than 16 and
|
||||
// increasing delay is found.
|
||||
return congestionWindow >= hybridStartLowWindow && s.hystartFound
|
||||
}
|
||||
|
||||
// OnPacketSent is called when a packet was sent
|
||||
func (s *HybridSlowStart) OnPacketSent(packetNumber congestion.PacketNumber) {
|
||||
s.lastSentPacketNumber = packetNumber
|
||||
}
|
||||
|
||||
// OnPacketAcked gets invoked after ShouldExitSlowStart, so it's best to end
|
||||
// the round when the final packet of the burst is received and start it on
|
||||
// the next incoming ack.
|
||||
func (s *HybridSlowStart) OnPacketAcked(ackedPacketNumber congestion.PacketNumber) {
|
||||
if s.IsEndOfRound(ackedPacketNumber) {
|
||||
s.started = false
|
||||
}
|
||||
}
|
||||
|
||||
// Started returns true if started
|
||||
func (s *HybridSlowStart) Started() bool {
|
||||
return s.started
|
||||
}
|
||||
|
||||
// Restart the slow start phase
|
||||
func (s *HybridSlowStart) Restart() {
|
||||
s.started = false
|
||||
s.hystartFound = false
|
||||
}
|
72
congestion_meta1/minmax.go
Normal file
72
congestion_meta1/minmax.go
Normal file
|
@ -0,0 +1,72 @@
|
|||
package congestion
|
||||
|
||||
import (
|
||||
"math"
|
||||
"time"
|
||||
|
||||
"golang.org/x/exp/constraints"
|
||||
)
|
||||
|
||||
// InfDuration is a duration of infinite length
|
||||
const InfDuration = time.Duration(math.MaxInt64)
|
||||
|
||||
func Max[T constraints.Ordered](a, b T) T {
|
||||
if a < b {
|
||||
return b
|
||||
}
|
||||
return a
|
||||
}
|
||||
|
||||
func Min[T constraints.Ordered](a, b T) T {
|
||||
if a < b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
// MinNonZeroDuration return the minimum duration that's not zero.
|
||||
func MinNonZeroDuration(a, b time.Duration) time.Duration {
|
||||
if a == 0 {
|
||||
return b
|
||||
}
|
||||
if b == 0 {
|
||||
return a
|
||||
}
|
||||
return Min(a, b)
|
||||
}
|
||||
|
||||
// AbsDuration returns the absolute value of a time duration
|
||||
func AbsDuration(d time.Duration) time.Duration {
|
||||
if d >= 0 {
|
||||
return d
|
||||
}
|
||||
return -d
|
||||
}
|
||||
|
||||
// MinTime returns the earlier time
|
||||
func MinTime(a, b time.Time) time.Time {
|
||||
if a.After(b) {
|
||||
return b
|
||||
}
|
||||
return a
|
||||
}
|
||||
|
||||
// MinNonZeroTime returns the earlist time that is not time.Time{}
|
||||
// If both a and b are time.Time{}, it returns time.Time{}
|
||||
func MinNonZeroTime(a, b time.Time) time.Time {
|
||||
if a.IsZero() {
|
||||
return b
|
||||
}
|
||||
if b.IsZero() {
|
||||
return a
|
||||
}
|
||||
return MinTime(a, b)
|
||||
}
|
||||
|
||||
// MaxTime returns the later time
|
||||
func MaxTime(a, b time.Time) time.Time {
|
||||
if a.After(b) {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
81
congestion_meta1/pacer.go
Normal file
81
congestion_meta1/pacer.go
Normal file
|
@ -0,0 +1,81 @@
|
|||
package congestion
|
||||
|
||||
import (
|
||||
"math"
|
||||
"time"
|
||||
|
||||
"github.com/sagernet/quic-go/congestion"
|
||||
)
|
||||
|
||||
const (
|
||||
initialMaxDatagramSize = congestion.ByteCount(1252)
|
||||
MinPacingDelay = time.Millisecond
|
||||
TimerGranularity = time.Millisecond
|
||||
maxBurstSizePackets = 10
|
||||
)
|
||||
|
||||
// The pacer implements a token bucket pacing algorithm.
|
||||
type pacer struct {
|
||||
budgetAtLastSent congestion.ByteCount
|
||||
maxDatagramSize congestion.ByteCount
|
||||
lastSentTime time.Time
|
||||
getAdjustedBandwidth func() uint64 // in bytes/s
|
||||
}
|
||||
|
||||
func newPacer(getBandwidth func() Bandwidth) *pacer {
|
||||
p := &pacer{
|
||||
maxDatagramSize: initialMaxDatagramSize,
|
||||
getAdjustedBandwidth: func() uint64 {
|
||||
// Bandwidth is in bits/s. We need the value in bytes/s.
|
||||
bw := uint64(getBandwidth() / BytesPerSecond)
|
||||
// Use a slightly higher value than the actual measured bandwidth.
|
||||
// RTT variations then won't result in under-utilization of the congestion window.
|
||||
// Ultimately, this will result in sending packets as acknowledgments are received rather than when timers fire,
|
||||
// provided the congestion window is fully utilized and acknowledgments arrive at regular intervals.
|
||||
return bw * 5 / 4
|
||||
},
|
||||
}
|
||||
p.budgetAtLastSent = p.maxBurstSize()
|
||||
return p
|
||||
}
|
||||
|
||||
func (p *pacer) SentPacket(sendTime time.Time, size congestion.ByteCount) {
|
||||
budget := p.Budget(sendTime)
|
||||
if size > budget {
|
||||
p.budgetAtLastSent = 0
|
||||
} else {
|
||||
p.budgetAtLastSent = budget - size
|
||||
}
|
||||
p.lastSentTime = sendTime
|
||||
}
|
||||
|
||||
func (p *pacer) Budget(now time.Time) congestion.ByteCount {
|
||||
if p.lastSentTime.IsZero() {
|
||||
return p.maxBurstSize()
|
||||
}
|
||||
budget := p.budgetAtLastSent + (congestion.ByteCount(p.getAdjustedBandwidth())*congestion.ByteCount(now.Sub(p.lastSentTime).Nanoseconds()))/1e9
|
||||
return Min(p.maxBurstSize(), budget)
|
||||
}
|
||||
|
||||
func (p *pacer) maxBurstSize() congestion.ByteCount {
|
||||
return Max(
|
||||
congestion.ByteCount(uint64((MinPacingDelay+TimerGranularity).Nanoseconds())*p.getAdjustedBandwidth())/1e9,
|
||||
maxBurstSizePackets*p.maxDatagramSize,
|
||||
)
|
||||
}
|
||||
|
||||
// TimeUntilSend returns when the next packet should be sent.
|
||||
// It returns the zero value of time.Time if a packet can be sent immediately.
|
||||
func (p *pacer) TimeUntilSend() time.Time {
|
||||
if p.budgetAtLastSent >= p.maxDatagramSize {
|
||||
return time.Time{}
|
||||
}
|
||||
return p.lastSentTime.Add(Max(
|
||||
MinPacingDelay,
|
||||
time.Duration(math.Ceil(float64(p.maxDatagramSize-p.budgetAtLastSent)*1e9/float64(p.getAdjustedBandwidth())))*time.Nanosecond,
|
||||
))
|
||||
}
|
||||
|
||||
func (p *pacer) SetMaxDatagramSize(s congestion.ByteCount) {
|
||||
p.maxDatagramSize = s
|
||||
}
|
132
congestion_meta1/windowed_filter.go
Normal file
132
congestion_meta1/windowed_filter.go
Normal file
|
@ -0,0 +1,132 @@
|
|||
package congestion
|
||||
|
||||
// WindowedFilter Use the following to construct a windowed filter object of type T.
|
||||
// For example, a min filter using QuicTime as the time type:
|
||||
//
|
||||
// WindowedFilter<T, MinFilter<T>, QuicTime, QuicTime::Delta> ObjectName;
|
||||
//
|
||||
// A max filter using 64-bit integers as the time type:
|
||||
//
|
||||
// WindowedFilter<T, MaxFilter<T>, uint64_t, int64_t> ObjectName;
|
||||
//
|
||||
// Specifically, this template takes four arguments:
|
||||
// 1. T -- type of the measurement that is being filtered.
|
||||
// 2. Compare -- MinFilter<T> or MaxFilter<T>, depending on the type of filter
|
||||
// desired.
|
||||
// 3. TimeT -- the type used to represent timestamps.
|
||||
// 4. TimeDeltaT -- the type used to represent continuous time intervals between
|
||||
// two timestamps. Has to be the type of (a - b) if both |a| and |b| are
|
||||
// of type TimeT.
|
||||
type WindowedFilter struct {
|
||||
// Time length of window.
|
||||
windowLength int64
|
||||
estimates []Sample
|
||||
comparator func(int64, int64) bool
|
||||
}
|
||||
|
||||
type Sample struct {
|
||||
sample int64
|
||||
time int64
|
||||
}
|
||||
|
||||
// Compares two values and returns true if the first is greater than or equal
|
||||
// to the second.
|
||||
func MaxFilter(a, b int64) bool {
|
||||
return a >= b
|
||||
}
|
||||
|
||||
// Compares two values and returns true if the first is less than or equal
|
||||
// to the second.
|
||||
func MinFilter(a, b int64) bool {
|
||||
return a <= b
|
||||
}
|
||||
|
||||
func NewWindowedFilter(windowLength int64, comparator func(int64, int64) bool) *WindowedFilter {
|
||||
return &WindowedFilter{
|
||||
windowLength: windowLength,
|
||||
estimates: make([]Sample, 3),
|
||||
comparator: comparator,
|
||||
}
|
||||
}
|
||||
|
||||
// Changes the window length. Does not update any current samples.
|
||||
func (f *WindowedFilter) SetWindowLength(windowLength int64) {
|
||||
f.windowLength = windowLength
|
||||
}
|
||||
|
||||
func (f *WindowedFilter) GetBest() int64 {
|
||||
return f.estimates[0].sample
|
||||
}
|
||||
|
||||
func (f *WindowedFilter) GetSecondBest() int64 {
|
||||
return f.estimates[1].sample
|
||||
}
|
||||
|
||||
func (f *WindowedFilter) GetThirdBest() int64 {
|
||||
return f.estimates[2].sample
|
||||
}
|
||||
|
||||
func (f *WindowedFilter) Update(sample int64, time int64) {
|
||||
if f.estimates[0].time == 0 || f.comparator(sample, f.estimates[0].sample) || (time-f.estimates[2].time) > f.windowLength {
|
||||
f.Reset(sample, time)
|
||||
return
|
||||
}
|
||||
|
||||
if f.comparator(sample, f.estimates[1].sample) {
|
||||
f.estimates[1].sample = sample
|
||||
f.estimates[1].time = time
|
||||
f.estimates[2].sample = sample
|
||||
f.estimates[2].time = time
|
||||
} else if f.comparator(sample, f.estimates[2].sample) {
|
||||
f.estimates[2].sample = sample
|
||||
f.estimates[2].time = time
|
||||
}
|
||||
|
||||
// Expire and update estimates as necessary.
|
||||
if time-f.estimates[0].time > f.windowLength {
|
||||
// The best estimate hasn't been updated for an entire window, so promote
|
||||
// second and third best estimates.
|
||||
f.estimates[0].sample = f.estimates[1].sample
|
||||
f.estimates[0].time = f.estimates[1].time
|
||||
f.estimates[1].sample = f.estimates[2].sample
|
||||
f.estimates[1].time = f.estimates[2].time
|
||||
f.estimates[2].sample = sample
|
||||
f.estimates[2].time = time
|
||||
// Need to iterate one more time. Check if the new best estimate is
|
||||
// outside the window as well, since it may also have been recorded a
|
||||
// long time ago. Don't need to iterate once more since we cover that
|
||||
// case at the beginning of the method.
|
||||
if time-f.estimates[0].time > f.windowLength {
|
||||
f.estimates[0].sample = f.estimates[1].sample
|
||||
f.estimates[0].time = f.estimates[1].time
|
||||
f.estimates[1].sample = f.estimates[2].sample
|
||||
f.estimates[1].time = f.estimates[2].time
|
||||
}
|
||||
return
|
||||
}
|
||||
if f.estimates[1].sample == f.estimates[0].sample && time-f.estimates[1].time > f.windowLength>>2 {
|
||||
// A quarter of the window has passed without a better sample, so the
|
||||
// second-best estimate is taken from the second quarter of the window.
|
||||
f.estimates[1].sample = sample
|
||||
f.estimates[1].time = time
|
||||
f.estimates[2].sample = sample
|
||||
f.estimates[2].time = time
|
||||
return
|
||||
}
|
||||
|
||||
if f.estimates[2].sample == f.estimates[1].sample && time-f.estimates[2].time > f.windowLength>>1 {
|
||||
// We've passed a half of the window without a better estimate, so take
|
||||
// a third-best estimate from the second half of the window.
|
||||
f.estimates[2].sample = sample
|
||||
f.estimates[2].time = time
|
||||
}
|
||||
}
|
||||
|
||||
func (f *WindowedFilter) Reset(newSample int64, newTime int64) {
|
||||
f.estimates[0].sample = newSample
|
||||
f.estimates[0].time = newTime
|
||||
f.estimates[1].sample = newSample
|
||||
f.estimates[1].time = newTime
|
||||
f.estimates[2].sample = newSample
|
||||
f.estimates[2].time = newTime
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue