mirror of
https://github.com/SagerNet/sing-tun.git
synced 2025-04-05 04:47:41 +03:00
Compare commits
5 commits
dev
...
v0.6.0-alp
Author | SHA1 | Date | |
---|---|---|---|
|
2d7e17267d | ||
|
765a91f152 | ||
|
8355396af6 | ||
|
55a70eb1ef | ||
|
cacaf7a69b |
30 changed files with 3855 additions and 907 deletions
4
go.mod
4
go.mod
|
@ -6,10 +6,10 @@ require (
|
|||
github.com/go-ole/go-ole v1.3.0
|
||||
github.com/google/btree v1.1.3
|
||||
github.com/sagernet/fswatch v0.1.1
|
||||
github.com/sagernet/gvisor v0.0.0-20241021032506-a4324256e4a3
|
||||
github.com/sagernet/gvisor v0.0.0-20241123041152-536d05261cff
|
||||
github.com/sagernet/netlink v0.0.0-20240612041022-b9a21c07ac6a
|
||||
github.com/sagernet/nftables v0.3.0-beta.4
|
||||
github.com/sagernet/sing v0.6.0-alpha.11
|
||||
github.com/sagernet/sing v0.6.0-alpha.18
|
||||
go4.org/netipx v0.0.0-20231129151722-fdeea329fbba
|
||||
golang.org/x/exp v0.0.0-20240613232115-7f521ea00fb8
|
||||
golang.org/x/net v0.26.0
|
||||
|
|
8
go.sum
8
go.sum
|
@ -16,14 +16,14 @@ github.com/mdlayher/socket v0.4.1/go.mod h1:cAqeGjoufqdxWkD7DkpyS+wcefOtmu5OQ8Ku
|
|||
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
|
||||
github.com/sagernet/fswatch v0.1.1 h1:YqID+93B7VRfqIH3PArW/XpJv5H4OLEVWDfProGoRQs=
|
||||
github.com/sagernet/fswatch v0.1.1/go.mod h1:nz85laH0mkQqJfaOrqPpkwtU1znMFNVTpT/5oRsVz/o=
|
||||
github.com/sagernet/gvisor v0.0.0-20241021032506-a4324256e4a3 h1:RxEz7LhPNiF/gX/Hg+OXr5lqsM9iVAgmaK1L1vzlDRM=
|
||||
github.com/sagernet/gvisor v0.0.0-20241021032506-a4324256e4a3/go.mod h1:ehZwnT2UpmOWAHFL48XdBhnd4Qu4hN2O3Ji0us3ZHMw=
|
||||
github.com/sagernet/gvisor v0.0.0-20241123041152-536d05261cff h1:mlohw3360Wg1BNGook/UHnISXhUx4Gd/3tVLs5T0nSs=
|
||||
github.com/sagernet/gvisor v0.0.0-20241123041152-536d05261cff/go.mod h1:ehZwnT2UpmOWAHFL48XdBhnd4Qu4hN2O3Ji0us3ZHMw=
|
||||
github.com/sagernet/netlink v0.0.0-20240612041022-b9a21c07ac6a h1:ObwtHN2VpqE0ZNjr6sGeT00J8uU7JF4cNUdb44/Duis=
|
||||
github.com/sagernet/netlink v0.0.0-20240612041022-b9a21c07ac6a/go.mod h1:xLnfdiJbSp8rNqYEdIW/6eDO4mVoogml14Bh2hSiFpM=
|
||||
github.com/sagernet/nftables v0.3.0-beta.4 h1:kbULlAwAC3jvdGAC1P5Fa3GSxVwQJibNenDW2zaXr8I=
|
||||
github.com/sagernet/nftables v0.3.0-beta.4/go.mod h1:OQXAjvjNGGFxaTgVCSTRIhYB5/llyVDeapVoENYBDS8=
|
||||
github.com/sagernet/sing v0.6.0-alpha.11 h1:ZcZlA0/vdDeiipAbjK73x9VabGJ/RRcAJgWhOo/OoBk=
|
||||
github.com/sagernet/sing v0.6.0-alpha.11/go.mod h1:ARkL0gM13/Iv5VCZmci/NuoOlePoIsW0m7BWfln/Hak=
|
||||
github.com/sagernet/sing v0.6.0-alpha.18 h1:ih4CurU8KvbhfagYjSqVrE2LR0oBSXSZTNH2sAGPGiM=
|
||||
github.com/sagernet/sing v0.6.0-alpha.18/go.mod h1:ARkL0gM13/Iv5VCZmci/NuoOlePoIsW0m7BWfln/Hak=
|
||||
github.com/stretchr/testify v1.9.0 h1:HtqpIVDClZ4nwg75+f6Lvsy/wHu+3BoSGCbBAcpTsTg=
|
||||
github.com/vishvananda/netns v0.0.4 h1:Oeaw1EM2JMxD51g9uhtC0D7erkIjgmj8+JZc26m1YX8=
|
||||
github.com/vishvananda/netns v0.0.4/go.mod h1:SpkAiCQRtJ6TvvxPnOSyH3BMl6unz3xZlaprSwhNNJM=
|
||||
|
|
33
internal/checksum_test/sum_bench_test.go
Normal file
33
internal/checksum_test/sum_bench_test.go
Normal file
|
@ -0,0 +1,33 @@
|
|||
package checksum_test
|
||||
|
||||
import (
|
||||
"crypto/rand"
|
||||
"testing"
|
||||
|
||||
"github.com/sagernet/sing-tun/internal/gtcpip/checksum"
|
||||
"github.com/sagernet/sing-tun/internal/tschecksum"
|
||||
)
|
||||
|
||||
func BenchmarkTsChecksum(b *testing.B) {
|
||||
packet := make([][]byte, 1000)
|
||||
for i := 0; i < 1000; i++ {
|
||||
packet[i] = make([]byte, 1500)
|
||||
rand.Read(packet[i])
|
||||
}
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
tschecksum.Checksum(packet[i%1000], 0)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkGChecksum(b *testing.B) {
|
||||
packet := make([][]byte, 1000)
|
||||
for i := 0; i < 1000; i++ {
|
||||
packet[i] = make([]byte, 1500)
|
||||
rand.Read(packet[i])
|
||||
}
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
checksum.Checksum(packet[i%1000], 0)
|
||||
}
|
||||
}
|
|
@ -30,34 +30,6 @@ func Put(b []byte, xsum uint16) {
|
|||
binary.BigEndian.PutUint16(b, xsum)
|
||||
}
|
||||
|
||||
// Checksum calculates the checksum (as defined in RFC 1071) of the bytes in the
|
||||
// given byte array. This function uses an optimized version of the checksum
|
||||
// algorithm.
|
||||
//
|
||||
// The initial checksum must have been computed on an even number of bytes.
|
||||
func Checksum(buf []byte, initial uint16) uint16 {
|
||||
s, _ := calculateChecksum(buf, false, initial)
|
||||
return s
|
||||
}
|
||||
|
||||
// Checksumer calculates checksum defined in RFC 1071.
|
||||
type Checksumer struct {
|
||||
sum uint16
|
||||
odd bool
|
||||
}
|
||||
|
||||
// Add adds b to checksum.
|
||||
func (c *Checksumer) Add(b []byte) {
|
||||
if len(b) > 0 {
|
||||
c.sum, c.odd = calculateChecksum(b, c.odd, c.sum)
|
||||
}
|
||||
}
|
||||
|
||||
// Checksum returns the latest checksum value.
|
||||
func (c *Checksumer) Checksum() uint16 {
|
||||
return c.sum
|
||||
}
|
||||
|
||||
// Combine combines the two uint16 to form their checksum. This is done
|
||||
// by adding them and the carry.
|
||||
//
|
||||
|
|
13
internal/gtcpip/checksum/checksum_default.go
Normal file
13
internal/gtcpip/checksum/checksum_default.go
Normal file
|
@ -0,0 +1,13 @@
|
|||
//go:build !amd64
|
||||
|
||||
package checksum
|
||||
|
||||
// Checksum calculates the checksum (as defined in RFC 1071) of the bytes in the
|
||||
// given byte array. This function uses an optimized version of the checksum
|
||||
// algorithm.
|
||||
//
|
||||
// The initial checksum must have been computed on an even number of bytes.
|
||||
func Checksum(buf []byte, initial uint16) uint16 {
|
||||
s, _ := calculateChecksum(buf, false, initial)
|
||||
return s
|
||||
}
|
9
internal/gtcpip/checksum/checksum_ts.go
Normal file
9
internal/gtcpip/checksum/checksum_ts.go
Normal file
|
@ -0,0 +1,9 @@
|
|||
//go:build amd64
|
||||
|
||||
package checksum
|
||||
|
||||
import "github.com/sagernet/sing-tun/internal/tschecksum"
|
||||
|
||||
func Checksum(buf []byte, initial uint16) uint16 {
|
||||
return tschecksum.Checksum(buf, initial)
|
||||
}
|
|
@ -1,3 +1,5 @@
|
|||
//go:build !amd64
|
||||
|
||||
// Copyright 2023 The gVisor Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
|
136
internal/gtcpip/header/interfaces.go
Normal file
136
internal/gtcpip/header/interfaces.go
Normal file
|
@ -0,0 +1,136 @@
|
|||
// Copyright 2018 The gVisor Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package header
|
||||
|
||||
import (
|
||||
"net/netip"
|
||||
|
||||
tcpip "github.com/sagernet/sing-tun/internal/gtcpip"
|
||||
)
|
||||
|
||||
const (
|
||||
// MaxIPPacketSize is the maximum supported IP packet size, excluding
|
||||
// jumbograms. The maximum IPv4 packet size is 64k-1 (total size must fit
|
||||
// in 16 bits). For IPv6, the payload max size (excluding jumbograms) is
|
||||
// 64k-1 (also needs to fit in 16 bits). So we use 64k - 1 + 2 * m, where
|
||||
// m is the minimum IPv6 header size; we leave room for some potential
|
||||
// IP options.
|
||||
MaxIPPacketSize = 0xffff + 2*IPv6MinimumSize
|
||||
)
|
||||
|
||||
// Transport offers generic methods to query and/or update the fields of the
|
||||
// header of a transport protocol buffer.
|
||||
type Transport interface {
|
||||
// SourcePort returns the value of the "source port" field.
|
||||
SourcePort() uint16
|
||||
|
||||
// Destination returns the value of the "destination port" field.
|
||||
DestinationPort() uint16
|
||||
|
||||
// Checksum returns the value of the "checksum" field.
|
||||
Checksum() uint16
|
||||
|
||||
// SetSourcePort sets the value of the "source port" field.
|
||||
SetSourcePort(uint16)
|
||||
|
||||
// SetDestinationPort sets the value of the "destination port" field.
|
||||
SetDestinationPort(uint16)
|
||||
|
||||
// SetChecksum sets the value of the "checksum" field.
|
||||
SetChecksum(uint16)
|
||||
|
||||
// Payload returns the data carried in the transport buffer.
|
||||
Payload() []byte
|
||||
}
|
||||
|
||||
// ChecksummableTransport is a Transport that supports checksumming.
|
||||
type ChecksummableTransport interface {
|
||||
Transport
|
||||
|
||||
// SetSourcePortWithChecksumUpdate sets the source port and updates
|
||||
// the checksum.
|
||||
//
|
||||
// The receiver's checksum must be a fully calculated checksum.
|
||||
SetSourcePortWithChecksumUpdate(port uint16)
|
||||
|
||||
// SetDestinationPortWithChecksumUpdate sets the destination port and updates
|
||||
// the checksum.
|
||||
//
|
||||
// The receiver's checksum must be a fully calculated checksum.
|
||||
SetDestinationPortWithChecksumUpdate(port uint16)
|
||||
|
||||
// UpdateChecksumPseudoHeaderAddress updates the checksum to reflect an
|
||||
// updated address in the pseudo header.
|
||||
//
|
||||
// If fullChecksum is true, the receiver's checksum field is assumed to hold a
|
||||
// fully calculated checksum. Otherwise, it is assumed to hold a partially
|
||||
// calculated checksum which only reflects the pseudo header.
|
||||
UpdateChecksumPseudoHeaderAddress(old, new tcpip.Address, fullChecksum bool)
|
||||
}
|
||||
|
||||
// Network offers generic methods to query and/or update the fields of the
|
||||
// header of a network protocol buffer.
|
||||
type Network interface {
|
||||
// SourceAddress returns the value of the "source address" field.
|
||||
SourceAddress() tcpip.Address
|
||||
|
||||
// DestinationAddress returns the value of the "destination address"
|
||||
// field.
|
||||
DestinationAddress() tcpip.Address
|
||||
|
||||
DestinationAddr() netip.Addr
|
||||
|
||||
// Checksum returns the value of the "checksum" field.
|
||||
Checksum() uint16
|
||||
|
||||
// SetSourceAddress sets the value of the "source address" field.
|
||||
SetSourceAddress(tcpip.Address)
|
||||
|
||||
// SetDestinationAddress sets the value of the "destination address"
|
||||
// field.
|
||||
SetDestinationAddress(tcpip.Address)
|
||||
|
||||
SetDestinationAddr(addr netip.Addr)
|
||||
|
||||
// SetChecksum sets the value of the "checksum" field.
|
||||
SetChecksum(uint16)
|
||||
|
||||
// TransportProtocol returns the number of the transport protocol
|
||||
// stored in the payload.
|
||||
TransportProtocol() tcpip.TransportProtocolNumber
|
||||
|
||||
// Payload returns a byte slice containing the payload of the network
|
||||
// packet.
|
||||
Payload() []byte
|
||||
|
||||
// TOS returns the values of the "type of service" and "flow label" fields.
|
||||
TOS() (uint8, uint32)
|
||||
|
||||
// SetTOS sets the values of the "type of service" and "flow label" fields.
|
||||
SetTOS(t uint8, l uint32)
|
||||
}
|
||||
|
||||
// ChecksummableNetwork is a Network that supports checksumming.
|
||||
type ChecksummableNetwork interface {
|
||||
Network
|
||||
|
||||
// SetSourceAddressAndChecksum sets the source address and updates the
|
||||
// checksum to reflect the new address.
|
||||
SetSourceAddressWithChecksumUpdate(tcpip.Address)
|
||||
|
||||
// SetDestinationAddressAndChecksum sets the destination address and
|
||||
// updates the checksum to reflect the new address.
|
||||
SetDestinationAddressWithChecksumUpdate(tcpip.Address)
|
||||
}
|
712
internal/tschecksum/checksum.go
Normal file
712
internal/tschecksum/checksum.go
Normal file
|
@ -0,0 +1,712 @@
|
|||
package tschecksum
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"math/bits"
|
||||
"strconv"
|
||||
|
||||
"golang.org/x/sys/cpu"
|
||||
)
|
||||
|
||||
// checksumGeneric64 is a reference implementation of checksum using 64 bit
|
||||
// arithmetic for use in testing or when an architecture-specific implementation
|
||||
// is not available.
|
||||
func checksumGeneric64(b []byte, initial uint16) uint16 {
|
||||
var ac uint64
|
||||
var carry uint64
|
||||
|
||||
if cpu.IsBigEndian {
|
||||
ac = uint64(initial)
|
||||
} else {
|
||||
ac = uint64(bits.ReverseBytes16(initial))
|
||||
}
|
||||
|
||||
for len(b) >= 128 {
|
||||
if cpu.IsBigEndian {
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[:8]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[8:16]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[16:24]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[24:32]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[32:40]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[40:48]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[48:56]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[56:64]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[64:72]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[72:80]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[80:88]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[88:96]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[96:104]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[104:112]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[112:120]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[120:128]), carry)
|
||||
} else {
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[:8]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[8:16]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[16:24]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[24:32]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[32:40]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[40:48]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[48:56]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[56:64]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[64:72]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[72:80]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[80:88]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[88:96]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[96:104]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[104:112]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[112:120]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[120:128]), carry)
|
||||
}
|
||||
b = b[128:]
|
||||
}
|
||||
if len(b) >= 64 {
|
||||
if cpu.IsBigEndian {
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[:8]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[8:16]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[16:24]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[24:32]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[32:40]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[40:48]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[48:56]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[56:64]), carry)
|
||||
} else {
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[:8]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[8:16]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[16:24]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[24:32]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[32:40]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[40:48]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[48:56]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[56:64]), carry)
|
||||
}
|
||||
b = b[64:]
|
||||
}
|
||||
if len(b) >= 32 {
|
||||
if cpu.IsBigEndian {
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[:8]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[8:16]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[16:24]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[24:32]), carry)
|
||||
} else {
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[:8]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[8:16]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[16:24]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[24:32]), carry)
|
||||
}
|
||||
b = b[32:]
|
||||
}
|
||||
if len(b) >= 16 {
|
||||
if cpu.IsBigEndian {
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[:8]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b[8:16]), carry)
|
||||
} else {
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[:8]), carry)
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b[8:16]), carry)
|
||||
}
|
||||
b = b[16:]
|
||||
}
|
||||
if len(b) >= 8 {
|
||||
if cpu.IsBigEndian {
|
||||
ac, carry = bits.Add64(ac, binary.BigEndian.Uint64(b), carry)
|
||||
} else {
|
||||
ac, carry = bits.Add64(ac, binary.LittleEndian.Uint64(b), carry)
|
||||
}
|
||||
b = b[8:]
|
||||
}
|
||||
if len(b) >= 4 {
|
||||
if cpu.IsBigEndian {
|
||||
ac, carry = bits.Add64(ac, uint64(binary.BigEndian.Uint32(b)), carry)
|
||||
} else {
|
||||
ac, carry = bits.Add64(ac, uint64(binary.LittleEndian.Uint32(b)), carry)
|
||||
}
|
||||
b = b[4:]
|
||||
}
|
||||
if len(b) >= 2 {
|
||||
if cpu.IsBigEndian {
|
||||
ac, carry = bits.Add64(ac, uint64(binary.BigEndian.Uint16(b)), carry)
|
||||
} else {
|
||||
ac, carry = bits.Add64(ac, uint64(binary.LittleEndian.Uint16(b)), carry)
|
||||
}
|
||||
b = b[2:]
|
||||
}
|
||||
if len(b) >= 1 {
|
||||
if cpu.IsBigEndian {
|
||||
ac, carry = bits.Add64(ac, uint64(b[0])<<8, carry)
|
||||
} else {
|
||||
ac, carry = bits.Add64(ac, uint64(b[0]), carry)
|
||||
}
|
||||
}
|
||||
|
||||
folded := ipChecksumFold64(ac, carry)
|
||||
if !cpu.IsBigEndian {
|
||||
folded = bits.ReverseBytes16(folded)
|
||||
}
|
||||
return folded
|
||||
}
|
||||
|
||||
// checksumGeneric32 is a reference implementation of checksum using 32 bit
|
||||
// arithmetic for use in testing or when an architecture-specific implementation
|
||||
// is not available.
|
||||
func checksumGeneric32(b []byte, initial uint16) uint16 {
|
||||
var ac uint32
|
||||
var carry uint32
|
||||
|
||||
if cpu.IsBigEndian {
|
||||
ac = uint32(initial)
|
||||
} else {
|
||||
ac = uint32(bits.ReverseBytes16(initial))
|
||||
}
|
||||
|
||||
for len(b) >= 64 {
|
||||
if cpu.IsBigEndian {
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[:8]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[4:8]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[8:12]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[12:16]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[16:20]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[20:24]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[24:28]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[28:32]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[32:36]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[36:40]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[40:44]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[44:48]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[48:52]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[52:56]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[56:60]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[60:64]), carry)
|
||||
} else {
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[:8]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[4:8]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[8:12]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[12:16]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[16:20]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[20:24]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[24:28]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[28:32]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[32:36]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[36:40]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[40:44]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[44:48]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[48:52]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[52:56]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[56:60]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[60:64]), carry)
|
||||
}
|
||||
b = b[64:]
|
||||
}
|
||||
if len(b) >= 32 {
|
||||
if cpu.IsBigEndian {
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[:4]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[4:8]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[8:12]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[12:16]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[16:20]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[20:24]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[24:28]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[28:32]), carry)
|
||||
} else {
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[:4]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[4:8]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[8:12]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[12:16]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[16:20]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[20:24]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[24:28]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[28:32]), carry)
|
||||
}
|
||||
b = b[32:]
|
||||
}
|
||||
if len(b) >= 16 {
|
||||
if cpu.IsBigEndian {
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[:4]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[4:8]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[8:12]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[12:16]), carry)
|
||||
} else {
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[:4]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[4:8]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[8:12]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[12:16]), carry)
|
||||
}
|
||||
b = b[16:]
|
||||
}
|
||||
if len(b) >= 8 {
|
||||
if cpu.IsBigEndian {
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[:4]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b[4:8]), carry)
|
||||
} else {
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[:4]), carry)
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b[4:8]), carry)
|
||||
}
|
||||
b = b[8:]
|
||||
}
|
||||
if len(b) >= 4 {
|
||||
if cpu.IsBigEndian {
|
||||
ac, carry = bits.Add32(ac, binary.BigEndian.Uint32(b), carry)
|
||||
} else {
|
||||
ac, carry = bits.Add32(ac, binary.LittleEndian.Uint32(b), carry)
|
||||
}
|
||||
b = b[4:]
|
||||
}
|
||||
if len(b) >= 2 {
|
||||
if cpu.IsBigEndian {
|
||||
ac, carry = bits.Add32(ac, uint32(binary.BigEndian.Uint16(b)), carry)
|
||||
} else {
|
||||
ac, carry = bits.Add32(ac, uint32(binary.LittleEndian.Uint16(b)), carry)
|
||||
}
|
||||
b = b[2:]
|
||||
}
|
||||
if len(b) >= 1 {
|
||||
if cpu.IsBigEndian {
|
||||
ac, carry = bits.Add32(ac, uint32(b[0])<<8, carry)
|
||||
} else {
|
||||
ac, carry = bits.Add32(ac, uint32(b[0]), carry)
|
||||
}
|
||||
}
|
||||
|
||||
folded := ipChecksumFold32(ac, carry)
|
||||
if !cpu.IsBigEndian {
|
||||
folded = bits.ReverseBytes16(folded)
|
||||
}
|
||||
return folded
|
||||
}
|
||||
|
||||
// checksumGeneric32Alternate is an alternate reference implementation of
|
||||
// checksum using 32 bit arithmetic for use in testing or when an
|
||||
// architecture-specific implementation is not available.
|
||||
func checksumGeneric32Alternate(b []byte, initial uint16) uint16 {
|
||||
var ac uint32
|
||||
|
||||
if cpu.IsBigEndian {
|
||||
ac = uint32(initial)
|
||||
} else {
|
||||
ac = uint32(bits.ReverseBytes16(initial))
|
||||
}
|
||||
|
||||
for len(b) >= 64 {
|
||||
if cpu.IsBigEndian {
|
||||
ac += uint32(binary.BigEndian.Uint16(b[:2]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[2:4]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[4:6]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[6:8]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[8:10]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[10:12]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[12:14]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[14:16]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[16:18]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[18:20]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[20:22]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[22:24]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[24:26]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[26:28]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[28:30]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[30:32]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[32:34]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[34:36]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[36:38]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[38:40]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[40:42]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[42:44]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[44:46]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[46:48]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[48:50]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[50:52]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[52:54]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[54:56]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[56:58]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[58:60]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[60:62]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[62:64]))
|
||||
} else {
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[:2]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[2:4]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[4:6]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[6:8]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[8:10]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[10:12]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[12:14]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[14:16]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[16:18]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[18:20]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[20:22]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[22:24]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[24:26]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[26:28]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[28:30]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[30:32]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[32:34]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[34:36]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[36:38]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[38:40]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[40:42]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[42:44]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[44:46]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[46:48]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[48:50]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[50:52]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[52:54]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[54:56]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[56:58]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[58:60]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[60:62]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[62:64]))
|
||||
}
|
||||
b = b[64:]
|
||||
}
|
||||
if len(b) >= 32 {
|
||||
if cpu.IsBigEndian {
|
||||
ac += uint32(binary.BigEndian.Uint16(b[:2]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[2:4]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[4:6]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[6:8]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[8:10]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[10:12]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[12:14]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[14:16]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[16:18]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[18:20]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[20:22]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[22:24]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[24:26]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[26:28]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[28:30]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[30:32]))
|
||||
} else {
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[:2]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[2:4]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[4:6]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[6:8]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[8:10]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[10:12]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[12:14]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[14:16]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[16:18]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[18:20]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[20:22]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[22:24]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[24:26]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[26:28]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[28:30]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[30:32]))
|
||||
}
|
||||
b = b[32:]
|
||||
}
|
||||
if len(b) >= 16 {
|
||||
if cpu.IsBigEndian {
|
||||
ac += uint32(binary.BigEndian.Uint16(b[:2]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[2:4]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[4:6]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[6:8]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[8:10]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[10:12]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[12:14]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[14:16]))
|
||||
} else {
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[:2]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[2:4]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[4:6]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[6:8]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[8:10]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[10:12]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[12:14]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[14:16]))
|
||||
}
|
||||
b = b[16:]
|
||||
}
|
||||
if len(b) >= 8 {
|
||||
if cpu.IsBigEndian {
|
||||
ac += uint32(binary.BigEndian.Uint16(b[:2]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[2:4]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[4:6]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[6:8]))
|
||||
} else {
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[:2]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[2:4]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[4:6]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[6:8]))
|
||||
}
|
||||
b = b[8:]
|
||||
}
|
||||
if len(b) >= 4 {
|
||||
if cpu.IsBigEndian {
|
||||
ac += uint32(binary.BigEndian.Uint16(b[:2]))
|
||||
ac += uint32(binary.BigEndian.Uint16(b[2:4]))
|
||||
} else {
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[:2]))
|
||||
ac += uint32(binary.LittleEndian.Uint16(b[2:4]))
|
||||
}
|
||||
b = b[4:]
|
||||
}
|
||||
if len(b) >= 2 {
|
||||
if cpu.IsBigEndian {
|
||||
ac += uint32(binary.BigEndian.Uint16(b))
|
||||
} else {
|
||||
ac += uint32(binary.LittleEndian.Uint16(b))
|
||||
}
|
||||
b = b[2:]
|
||||
}
|
||||
if len(b) >= 1 {
|
||||
if cpu.IsBigEndian {
|
||||
ac += uint32(b[0]) << 8
|
||||
} else {
|
||||
ac += uint32(b[0])
|
||||
}
|
||||
}
|
||||
|
||||
folded := ipChecksumFold32(ac, 0)
|
||||
if !cpu.IsBigEndian {
|
||||
folded = bits.ReverseBytes16(folded)
|
||||
}
|
||||
return folded
|
||||
}
|
||||
|
||||
// checksumGeneric64Alternate is an alternate reference implementation of
|
||||
// checksum using 64 bit arithmetic for use in testing or when an
|
||||
// architecture-specific implementation is not available.
|
||||
func checksumGeneric64Alternate(b []byte, initial uint16) uint16 {
|
||||
var ac uint64
|
||||
|
||||
if cpu.IsBigEndian {
|
||||
ac = uint64(initial)
|
||||
} else {
|
||||
ac = uint64(bits.ReverseBytes16(initial))
|
||||
}
|
||||
|
||||
for len(b) >= 64 {
|
||||
if cpu.IsBigEndian {
|
||||
ac += uint64(binary.BigEndian.Uint32(b[:4]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[4:8]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[8:12]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[12:16]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[16:20]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[20:24]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[24:28]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[28:32]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[32:36]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[36:40]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[40:44]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[44:48]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[48:52]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[52:56]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[56:60]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[60:64]))
|
||||
} else {
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[:4]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[4:8]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[8:12]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[12:16]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[16:20]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[20:24]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[24:28]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[28:32]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[32:36]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[36:40]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[40:44]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[44:48]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[48:52]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[52:56]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[56:60]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[60:64]))
|
||||
}
|
||||
b = b[64:]
|
||||
}
|
||||
if len(b) >= 32 {
|
||||
if cpu.IsBigEndian {
|
||||
ac += uint64(binary.BigEndian.Uint32(b[:4]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[4:8]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[8:12]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[12:16]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[16:20]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[20:24]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[24:28]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[28:32]))
|
||||
} else {
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[:4]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[4:8]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[8:12]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[12:16]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[16:20]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[20:24]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[24:28]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[28:32]))
|
||||
}
|
||||
b = b[32:]
|
||||
}
|
||||
if len(b) >= 16 {
|
||||
if cpu.IsBigEndian {
|
||||
ac += uint64(binary.BigEndian.Uint32(b[:4]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[4:8]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[8:12]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[12:16]))
|
||||
} else {
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[:4]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[4:8]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[8:12]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[12:16]))
|
||||
}
|
||||
b = b[16:]
|
||||
}
|
||||
if len(b) >= 8 {
|
||||
if cpu.IsBigEndian {
|
||||
ac += uint64(binary.BigEndian.Uint32(b[:4]))
|
||||
ac += uint64(binary.BigEndian.Uint32(b[4:8]))
|
||||
} else {
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[:4]))
|
||||
ac += uint64(binary.LittleEndian.Uint32(b[4:8]))
|
||||
}
|
||||
b = b[8:]
|
||||
}
|
||||
if len(b) >= 4 {
|
||||
if cpu.IsBigEndian {
|
||||
ac += uint64(binary.BigEndian.Uint32(b))
|
||||
} else {
|
||||
ac += uint64(binary.LittleEndian.Uint32(b))
|
||||
}
|
||||
b = b[4:]
|
||||
}
|
||||
if len(b) >= 2 {
|
||||
if cpu.IsBigEndian {
|
||||
ac += uint64(binary.BigEndian.Uint16(b))
|
||||
} else {
|
||||
ac += uint64(binary.LittleEndian.Uint16(b))
|
||||
}
|
||||
b = b[2:]
|
||||
}
|
||||
if len(b) >= 1 {
|
||||
if cpu.IsBigEndian {
|
||||
ac += uint64(b[0]) << 8
|
||||
} else {
|
||||
ac += uint64(b[0])
|
||||
}
|
||||
}
|
||||
|
||||
folded := ipChecksumFold64(ac, 0)
|
||||
if !cpu.IsBigEndian {
|
||||
folded = bits.ReverseBytes16(folded)
|
||||
}
|
||||
return folded
|
||||
}
|
||||
|
||||
func ipChecksumFold64(unfolded uint64, initialCarry uint64) uint16 {
|
||||
sum, carry := bits.Add32(uint32(unfolded>>32), uint32(unfolded&0xffff_ffff), uint32(initialCarry))
|
||||
// if carry != 0, sum <= 0xffff_fffe, otherwise sum <= 0xffff_ffff
|
||||
// therefore (sum >> 16) + (sum & 0xffff) + carry <= 0x1_fffe; so there is
|
||||
// no need to save the carry flag
|
||||
sum = (sum >> 16) + (sum & 0xffff) + carry
|
||||
// sum <= 0x1_fffe therefore this is the last fold needed:
|
||||
// if (sum >> 16) > 0 then
|
||||
// (sum >> 16) == 1 && (sum & 0xffff) <= 0xfffe and therefore
|
||||
// the addition will not overflow
|
||||
// otherwise (sum >> 16) == 0 and sum will be unchanged
|
||||
sum = (sum >> 16) + (sum & 0xffff)
|
||||
return uint16(sum)
|
||||
}
|
||||
|
||||
func ipChecksumFold32(unfolded uint32, initialCarry uint32) uint16 {
|
||||
sum := (unfolded >> 16) + (unfolded & 0xffff) + initialCarry
|
||||
// sum <= 0x1_ffff:
|
||||
// 0xffff + 0xffff = 0x1_fffe
|
||||
// initialCarry is 0 or 1, for a combined maximum of 0x1_ffff
|
||||
sum = (sum >> 16) + (sum & 0xffff)
|
||||
// sum <= 0x1_0000 therefore this is the last fold needed:
|
||||
// if (sum >> 16) > 0 then
|
||||
// (sum >> 16) == 1 && (sum & 0xffff) == 0 and therefore
|
||||
// the addition will not overflow
|
||||
// otherwise (sum >> 16) == 0 and sum will be unchanged
|
||||
sum = (sum >> 16) + (sum & 0xffff)
|
||||
return uint16(sum)
|
||||
}
|
||||
|
||||
func addrPartialChecksum64(addr []byte, initial, carryIn uint64) (sum, carry uint64) {
|
||||
sum, carry = initial, carryIn
|
||||
switch len(addr) {
|
||||
case 4: // IPv4
|
||||
if cpu.IsBigEndian {
|
||||
sum, carry = bits.Add64(sum, uint64(binary.BigEndian.Uint32(addr)), carry)
|
||||
} else {
|
||||
sum, carry = bits.Add64(sum, uint64(binary.LittleEndian.Uint32(addr)), carry)
|
||||
}
|
||||
case 16: // IPv6
|
||||
if cpu.IsBigEndian {
|
||||
sum, carry = bits.Add64(sum, binary.BigEndian.Uint64(addr), carry)
|
||||
sum, carry = bits.Add64(sum, binary.BigEndian.Uint64(addr[8:]), carry)
|
||||
} else {
|
||||
sum, carry = bits.Add64(sum, binary.LittleEndian.Uint64(addr), carry)
|
||||
sum, carry = bits.Add64(sum, binary.LittleEndian.Uint64(addr[8:]), carry)
|
||||
}
|
||||
default:
|
||||
panic("bad addr length")
|
||||
}
|
||||
return sum, carry
|
||||
}
|
||||
|
||||
func addrPartialChecksum32(addr []byte, initial, carryIn uint32) (sum, carry uint32) {
|
||||
sum, carry = initial, carryIn
|
||||
switch len(addr) {
|
||||
case 4: // IPv4
|
||||
if cpu.IsBigEndian {
|
||||
sum, carry = bits.Add32(sum, binary.BigEndian.Uint32(addr), carry)
|
||||
} else {
|
||||
sum, carry = bits.Add32(sum, binary.LittleEndian.Uint32(addr), carry)
|
||||
}
|
||||
case 16: // IPv6
|
||||
if cpu.IsBigEndian {
|
||||
sum, carry = bits.Add32(sum, binary.BigEndian.Uint32(addr), carry)
|
||||
sum, carry = bits.Add32(sum, binary.BigEndian.Uint32(addr[4:8]), carry)
|
||||
sum, carry = bits.Add32(sum, binary.BigEndian.Uint32(addr[8:12]), carry)
|
||||
sum, carry = bits.Add32(sum, binary.BigEndian.Uint32(addr[12:16]), carry)
|
||||
} else {
|
||||
sum, carry = bits.Add32(sum, binary.LittleEndian.Uint32(addr), carry)
|
||||
sum, carry = bits.Add32(sum, binary.LittleEndian.Uint32(addr[4:8]), carry)
|
||||
sum, carry = bits.Add32(sum, binary.LittleEndian.Uint32(addr[8:12]), carry)
|
||||
sum, carry = bits.Add32(sum, binary.LittleEndian.Uint32(addr[12:16]), carry)
|
||||
}
|
||||
default:
|
||||
panic("bad addr length")
|
||||
}
|
||||
return sum, carry
|
||||
}
|
||||
|
||||
func pseudoHeaderChecksum64(protocol uint8, srcAddr, dstAddr []byte, totalLen uint16) uint16 {
|
||||
var sum uint64
|
||||
if cpu.IsBigEndian {
|
||||
sum = uint64(totalLen) + uint64(protocol)
|
||||
} else {
|
||||
sum = uint64(bits.ReverseBytes16(totalLen)) + uint64(protocol)<<8
|
||||
}
|
||||
sum, carry := addrPartialChecksum64(srcAddr, sum, 0)
|
||||
sum, carry = addrPartialChecksum64(dstAddr, sum, carry)
|
||||
|
||||
foldedSum := ipChecksumFold64(sum, carry)
|
||||
if !cpu.IsBigEndian {
|
||||
foldedSum = bits.ReverseBytes16(foldedSum)
|
||||
}
|
||||
return foldedSum
|
||||
}
|
||||
|
||||
func pseudoHeaderChecksum32(protocol uint8, srcAddr, dstAddr []byte, totalLen uint16) uint16 {
|
||||
var sum uint32
|
||||
if cpu.IsBigEndian {
|
||||
sum = uint32(totalLen) + uint32(protocol)
|
||||
} else {
|
||||
sum = uint32(bits.ReverseBytes16(totalLen)) + uint32(protocol)<<8
|
||||
}
|
||||
sum, carry := addrPartialChecksum32(srcAddr, sum, 0)
|
||||
sum, carry = addrPartialChecksum32(dstAddr, sum, carry)
|
||||
|
||||
foldedSum := ipChecksumFold32(sum, carry)
|
||||
if !cpu.IsBigEndian {
|
||||
foldedSum = bits.ReverseBytes16(foldedSum)
|
||||
}
|
||||
return foldedSum
|
||||
}
|
||||
|
||||
// PseudoHeaderChecksum computes an IP pseudo-header checksum. srcAddr and
|
||||
// dstAddr must be 4 or 16 bytes in length.
|
||||
func PseudoHeaderChecksum(protocol uint8, srcAddr, dstAddr []byte, totalLen uint16) uint16 {
|
||||
if strconv.IntSize < 64 {
|
||||
return pseudoHeaderChecksum32(protocol, srcAddr, dstAddr, totalLen)
|
||||
}
|
||||
return pseudoHeaderChecksum64(protocol, srcAddr, dstAddr, totalLen)
|
||||
}
|
23
internal/tschecksum/checksum_amd64.go
Normal file
23
internal/tschecksum/checksum_amd64.go
Normal file
|
@ -0,0 +1,23 @@
|
|||
package tschecksum
|
||||
|
||||
import "golang.org/x/sys/cpu"
|
||||
|
||||
var checksum = checksumAMD64
|
||||
|
||||
// Checksum computes an IP checksum starting with the provided initial value.
|
||||
// The length of data should be at least 128 bytes for best performance. Smaller
|
||||
// buffers will still compute a correct result.
|
||||
func Checksum(data []byte, initial uint16) uint16 {
|
||||
return checksum(data, initial)
|
||||
}
|
||||
|
||||
func init() {
|
||||
if cpu.X86.HasAVX && cpu.X86.HasAVX2 && cpu.X86.HasBMI2 {
|
||||
checksum = checksumAVX2
|
||||
return
|
||||
}
|
||||
if cpu.X86.HasSSE2 {
|
||||
checksum = checksumSSE2
|
||||
return
|
||||
}
|
||||
}
|
18
internal/tschecksum/checksum_generated_amd64.go
Normal file
18
internal/tschecksum/checksum_generated_amd64.go
Normal file
|
@ -0,0 +1,18 @@
|
|||
// Code generated by command: go run generate_amd64.go -out checksum_generated_amd64.s -stubs checksum_generated_amd64.go. DO NOT EDIT.
|
||||
|
||||
package tschecksum
|
||||
|
||||
// checksumAVX2 computes an IP checksum using amd64 v3 instructions (AVX2, BMI2)
|
||||
//
|
||||
//go:noescape
|
||||
func checksumAVX2(b []byte, initial uint16) uint16
|
||||
|
||||
// checksumSSE2 computes an IP checksum using amd64 baseline instructions (SSE2)
|
||||
//
|
||||
//go:noescape
|
||||
func checksumSSE2(b []byte, initial uint16) uint16
|
||||
|
||||
// checksumAMD64 computes an IP checksum using amd64 baseline instructions
|
||||
//
|
||||
//go:noescape
|
||||
func checksumAMD64(b []byte, initial uint16) uint16
|
851
internal/tschecksum/checksum_generated_amd64.s
Normal file
851
internal/tschecksum/checksum_generated_amd64.s
Normal file
|
@ -0,0 +1,851 @@
|
|||
// Code generated by command: go run generate_amd64.go -out checksum_generated_amd64.s -stubs checksum_generated_amd64.go. DO NOT EDIT.
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
DATA xmmLoadMasks<>+0(SB)/16, $"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff"
|
||||
DATA xmmLoadMasks<>+16(SB)/16, $"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff"
|
||||
DATA xmmLoadMasks<>+32(SB)/16, $"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff"
|
||||
DATA xmmLoadMasks<>+48(SB)/16, $"\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff"
|
||||
DATA xmmLoadMasks<>+64(SB)/16, $"\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"
|
||||
DATA xmmLoadMasks<>+80(SB)/16, $"\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"
|
||||
DATA xmmLoadMasks<>+96(SB)/16, $"\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"
|
||||
GLOBL xmmLoadMasks<>(SB), RODATA|NOPTR, $112
|
||||
|
||||
// func checksumAVX2(b []byte, initial uint16) uint16
|
||||
// Requires: AVX, AVX2, BMI2
|
||||
TEXT ·checksumAVX2(SB), NOSPLIT|NOFRAME, $0-34
|
||||
MOVWQZX initial+24(FP), AX
|
||||
XCHGB AH, AL
|
||||
MOVQ b_base+0(FP), DX
|
||||
MOVQ b_len+8(FP), BX
|
||||
|
||||
// handle odd length buffers; they are difficult to handle in general
|
||||
TESTQ $0x00000001, BX
|
||||
JZ lengthIsEven
|
||||
MOVBQZX -1(DX)(BX*1), CX
|
||||
DECQ BX
|
||||
ADDQ CX, AX
|
||||
|
||||
lengthIsEven:
|
||||
// handle tiny buffers (<=31 bytes) specially
|
||||
CMPQ BX, $0x1f
|
||||
JGT bufferIsNotTiny
|
||||
XORQ CX, CX
|
||||
XORQ SI, SI
|
||||
XORQ DI, DI
|
||||
|
||||
// shift twice to start because length is guaranteed to be even
|
||||
// n = n >> 2; CF = originalN & 2
|
||||
SHRQ $0x02, BX
|
||||
JNC handleTiny4
|
||||
|
||||
// tmp2 = binary.LittleEndian.Uint16(buf[:2]); buf = buf[2:]
|
||||
MOVWQZX (DX), CX
|
||||
ADDQ $0x02, DX
|
||||
|
||||
handleTiny4:
|
||||
// n = n >> 1; CF = originalN & 4
|
||||
SHRQ $0x01, BX
|
||||
JNC handleTiny8
|
||||
|
||||
// tmp4 = binary.LittleEndian.Uint32(buf[:4]); buf = buf[4:]
|
||||
MOVLQZX (DX), SI
|
||||
ADDQ $0x04, DX
|
||||
|
||||
handleTiny8:
|
||||
// n = n >> 1; CF = originalN & 8
|
||||
SHRQ $0x01, BX
|
||||
JNC handleTiny16
|
||||
|
||||
// tmp8 = binary.LittleEndian.Uint64(buf[:8]); buf = buf[8:]
|
||||
MOVQ (DX), DI
|
||||
ADDQ $0x08, DX
|
||||
|
||||
handleTiny16:
|
||||
// n = n >> 1; CF = originalN & 16
|
||||
// n == 0 now, otherwise we would have branched after comparing with tinyBufferSize
|
||||
SHRQ $0x01, BX
|
||||
JNC handleTinyFinish
|
||||
ADDQ (DX), AX
|
||||
ADCQ 8(DX), AX
|
||||
|
||||
handleTinyFinish:
|
||||
// CF should be included from the previous add, so we use ADCQ.
|
||||
// If we arrived via the JNC above, then CF=0 due to the branch condition,
|
||||
// so ADCQ will still produce the correct result.
|
||||
ADCQ CX, AX
|
||||
ADCQ SI, AX
|
||||
ADCQ DI, AX
|
||||
JMP foldAndReturn
|
||||
|
||||
bufferIsNotTiny:
|
||||
// skip all SIMD for small buffers
|
||||
CMPQ BX, $0x00000100
|
||||
JGE startSIMD
|
||||
|
||||
// Accumulate carries in this register. It is never expected to overflow.
|
||||
XORQ SI, SI
|
||||
|
||||
// We will perform an overlapped read for buffers with length not a multiple of 8.
|
||||
// Overlapped in this context means some memory will be read twice, but a shift will
|
||||
// eliminate the duplicated data. This extra read is performed at the end of the buffer to
|
||||
// preserve any alignment that may exist for the start of the buffer.
|
||||
MOVQ BX, CX
|
||||
SHRQ $0x03, BX
|
||||
ANDQ $0x07, CX
|
||||
JZ handleRemaining8
|
||||
LEAQ (DX)(BX*8), DI
|
||||
MOVQ -8(DI)(CX*1), DI
|
||||
|
||||
// Shift out the duplicated data: overlapRead = overlapRead >> (64 - leftoverBytes*8)
|
||||
SHLQ $0x03, CX
|
||||
NEGQ CX
|
||||
ADDQ $0x40, CX
|
||||
SHRQ CL, DI
|
||||
ADDQ DI, AX
|
||||
ADCQ $0x00, SI
|
||||
|
||||
handleRemaining8:
|
||||
SHRQ $0x01, BX
|
||||
JNC handleRemaining16
|
||||
ADDQ (DX), AX
|
||||
ADCQ $0x00, SI
|
||||
ADDQ $0x08, DX
|
||||
|
||||
handleRemaining16:
|
||||
SHRQ $0x01, BX
|
||||
JNC handleRemaining32
|
||||
ADDQ (DX), AX
|
||||
ADCQ 8(DX), AX
|
||||
ADCQ $0x00, SI
|
||||
ADDQ $0x10, DX
|
||||
|
||||
handleRemaining32:
|
||||
SHRQ $0x01, BX
|
||||
JNC handleRemaining64
|
||||
ADDQ (DX), AX
|
||||
ADCQ 8(DX), AX
|
||||
ADCQ 16(DX), AX
|
||||
ADCQ 24(DX), AX
|
||||
ADCQ $0x00, SI
|
||||
ADDQ $0x20, DX
|
||||
|
||||
handleRemaining64:
|
||||
SHRQ $0x01, BX
|
||||
JNC handleRemaining128
|
||||
ADDQ (DX), AX
|
||||
ADCQ 8(DX), AX
|
||||
ADCQ 16(DX), AX
|
||||
ADCQ 24(DX), AX
|
||||
ADCQ 32(DX), AX
|
||||
ADCQ 40(DX), AX
|
||||
ADCQ 48(DX), AX
|
||||
ADCQ 56(DX), AX
|
||||
ADCQ $0x00, SI
|
||||
ADDQ $0x40, DX
|
||||
|
||||
handleRemaining128:
|
||||
SHRQ $0x01, BX
|
||||
JNC handleRemainingComplete
|
||||
ADDQ (DX), AX
|
||||
ADCQ 8(DX), AX
|
||||
ADCQ 16(DX), AX
|
||||
ADCQ 24(DX), AX
|
||||
ADCQ 32(DX), AX
|
||||
ADCQ 40(DX), AX
|
||||
ADCQ 48(DX), AX
|
||||
ADCQ 56(DX), AX
|
||||
ADCQ 64(DX), AX
|
||||
ADCQ 72(DX), AX
|
||||
ADCQ 80(DX), AX
|
||||
ADCQ 88(DX), AX
|
||||
ADCQ 96(DX), AX
|
||||
ADCQ 104(DX), AX
|
||||
ADCQ 112(DX), AX
|
||||
ADCQ 120(DX), AX
|
||||
ADCQ $0x00, SI
|
||||
ADDQ $0x80, DX
|
||||
|
||||
handleRemainingComplete:
|
||||
ADDQ SI, AX
|
||||
JMP foldAndReturn
|
||||
|
||||
startSIMD:
|
||||
VPXOR Y0, Y0, Y0
|
||||
VPXOR Y1, Y1, Y1
|
||||
VPXOR Y2, Y2, Y2
|
||||
VPXOR Y3, Y3, Y3
|
||||
MOVQ BX, CX
|
||||
|
||||
// Update number of bytes remaining after the loop completes
|
||||
ANDQ $0xff, BX
|
||||
|
||||
// Number of 256 byte iterations
|
||||
SHRQ $0x08, CX
|
||||
JZ smallLoop
|
||||
|
||||
bigLoop:
|
||||
VPMOVZXWD (DX), Y4
|
||||
VPADDD Y4, Y0, Y0
|
||||
VPMOVZXWD 16(DX), Y4
|
||||
VPADDD Y4, Y1, Y1
|
||||
VPMOVZXWD 32(DX), Y4
|
||||
VPADDD Y4, Y2, Y2
|
||||
VPMOVZXWD 48(DX), Y4
|
||||
VPADDD Y4, Y3, Y3
|
||||
VPMOVZXWD 64(DX), Y4
|
||||
VPADDD Y4, Y0, Y0
|
||||
VPMOVZXWD 80(DX), Y4
|
||||
VPADDD Y4, Y1, Y1
|
||||
VPMOVZXWD 96(DX), Y4
|
||||
VPADDD Y4, Y2, Y2
|
||||
VPMOVZXWD 112(DX), Y4
|
||||
VPADDD Y4, Y3, Y3
|
||||
VPMOVZXWD 128(DX), Y4
|
||||
VPADDD Y4, Y0, Y0
|
||||
VPMOVZXWD 144(DX), Y4
|
||||
VPADDD Y4, Y1, Y1
|
||||
VPMOVZXWD 160(DX), Y4
|
||||
VPADDD Y4, Y2, Y2
|
||||
VPMOVZXWD 176(DX), Y4
|
||||
VPADDD Y4, Y3, Y3
|
||||
VPMOVZXWD 192(DX), Y4
|
||||
VPADDD Y4, Y0, Y0
|
||||
VPMOVZXWD 208(DX), Y4
|
||||
VPADDD Y4, Y1, Y1
|
||||
VPMOVZXWD 224(DX), Y4
|
||||
VPADDD Y4, Y2, Y2
|
||||
VPMOVZXWD 240(DX), Y4
|
||||
VPADDD Y4, Y3, Y3
|
||||
ADDQ $0x00000100, DX
|
||||
DECQ CX
|
||||
JNZ bigLoop
|
||||
CMPQ BX, $0x10
|
||||
JLT doneSmallLoop
|
||||
|
||||
// now read a single 16 byte unit of data at a time
|
||||
smallLoop:
|
||||
VPMOVZXWD (DX), Y4
|
||||
VPADDD Y4, Y0, Y0
|
||||
ADDQ $0x10, DX
|
||||
SUBQ $0x10, BX
|
||||
CMPQ BX, $0x10
|
||||
JGE smallLoop
|
||||
|
||||
doneSmallLoop:
|
||||
CMPQ BX, $0x00
|
||||
JE doneSIMD
|
||||
|
||||
// There are between 1 and 15 bytes remaining. Perform an overlapped read.
|
||||
LEAQ xmmLoadMasks<>+0(SB), CX
|
||||
VMOVDQU -16(DX)(BX*1), X4
|
||||
VPAND -16(CX)(BX*8), X4, X4
|
||||
VPMOVZXWD X4, Y4
|
||||
VPADDD Y4, Y0, Y0
|
||||
|
||||
doneSIMD:
|
||||
// Multi-chain loop is done, combine the accumulators
|
||||
VPADDD Y1, Y0, Y0
|
||||
VPADDD Y2, Y0, Y0
|
||||
VPADDD Y3, Y0, Y0
|
||||
|
||||
// extract the YMM into a pair of XMM and sum them
|
||||
VEXTRACTI128 $0x01, Y0, X1
|
||||
VPADDD X0, X1, X0
|
||||
|
||||
// extract the XMM into GP64
|
||||
VPEXTRQ $0x00, X0, CX
|
||||
VPEXTRQ $0x01, X0, DX
|
||||
|
||||
// no more AVX code, clear upper registers to avoid SSE slowdowns
|
||||
VZEROUPPER
|
||||
ADDQ CX, AX
|
||||
ADCQ DX, AX
|
||||
|
||||
foldAndReturn:
|
||||
// add CF and fold
|
||||
RORXQ $0x20, AX, CX
|
||||
ADCL CX, AX
|
||||
RORXL $0x10, AX, CX
|
||||
ADCW CX, AX
|
||||
ADCW $0x00, AX
|
||||
XCHGB AH, AL
|
||||
MOVW AX, ret+32(FP)
|
||||
RET
|
||||
|
||||
// func checksumSSE2(b []byte, initial uint16) uint16
|
||||
// Requires: SSE2
|
||||
TEXT ·checksumSSE2(SB), NOSPLIT|NOFRAME, $0-34
|
||||
MOVWQZX initial+24(FP), AX
|
||||
XCHGB AH, AL
|
||||
MOVQ b_base+0(FP), DX
|
||||
MOVQ b_len+8(FP), BX
|
||||
|
||||
// handle odd length buffers; they are difficult to handle in general
|
||||
TESTQ $0x00000001, BX
|
||||
JZ lengthIsEven
|
||||
MOVBQZX -1(DX)(BX*1), CX
|
||||
DECQ BX
|
||||
ADDQ CX, AX
|
||||
|
||||
lengthIsEven:
|
||||
// handle tiny buffers (<=31 bytes) specially
|
||||
CMPQ BX, $0x1f
|
||||
JGT bufferIsNotTiny
|
||||
XORQ CX, CX
|
||||
XORQ SI, SI
|
||||
XORQ DI, DI
|
||||
|
||||
// shift twice to start because length is guaranteed to be even
|
||||
// n = n >> 2; CF = originalN & 2
|
||||
SHRQ $0x02, BX
|
||||
JNC handleTiny4
|
||||
|
||||
// tmp2 = binary.LittleEndian.Uint16(buf[:2]); buf = buf[2:]
|
||||
MOVWQZX (DX), CX
|
||||
ADDQ $0x02, DX
|
||||
|
||||
handleTiny4:
|
||||
// n = n >> 1; CF = originalN & 4
|
||||
SHRQ $0x01, BX
|
||||
JNC handleTiny8
|
||||
|
||||
// tmp4 = binary.LittleEndian.Uint32(buf[:4]); buf = buf[4:]
|
||||
MOVLQZX (DX), SI
|
||||
ADDQ $0x04, DX
|
||||
|
||||
handleTiny8:
|
||||
// n = n >> 1; CF = originalN & 8
|
||||
SHRQ $0x01, BX
|
||||
JNC handleTiny16
|
||||
|
||||
// tmp8 = binary.LittleEndian.Uint64(buf[:8]); buf = buf[8:]
|
||||
MOVQ (DX), DI
|
||||
ADDQ $0x08, DX
|
||||
|
||||
handleTiny16:
|
||||
// n = n >> 1; CF = originalN & 16
|
||||
// n == 0 now, otherwise we would have branched after comparing with tinyBufferSize
|
||||
SHRQ $0x01, BX
|
||||
JNC handleTinyFinish
|
||||
ADDQ (DX), AX
|
||||
ADCQ 8(DX), AX
|
||||
|
||||
handleTinyFinish:
|
||||
// CF should be included from the previous add, so we use ADCQ.
|
||||
// If we arrived via the JNC above, then CF=0 due to the branch condition,
|
||||
// so ADCQ will still produce the correct result.
|
||||
ADCQ CX, AX
|
||||
ADCQ SI, AX
|
||||
ADCQ DI, AX
|
||||
JMP foldAndReturn
|
||||
|
||||
bufferIsNotTiny:
|
||||
// skip all SIMD for small buffers
|
||||
CMPQ BX, $0x00000100
|
||||
JGE startSIMD
|
||||
|
||||
// Accumulate carries in this register. It is never expected to overflow.
|
||||
XORQ SI, SI
|
||||
|
||||
// We will perform an overlapped read for buffers with length not a multiple of 8.
|
||||
// Overlapped in this context means some memory will be read twice, but a shift will
|
||||
// eliminate the duplicated data. This extra read is performed at the end of the buffer to
|
||||
// preserve any alignment that may exist for the start of the buffer.
|
||||
MOVQ BX, CX
|
||||
SHRQ $0x03, BX
|
||||
ANDQ $0x07, CX
|
||||
JZ handleRemaining8
|
||||
LEAQ (DX)(BX*8), DI
|
||||
MOVQ -8(DI)(CX*1), DI
|
||||
|
||||
// Shift out the duplicated data: overlapRead = overlapRead >> (64 - leftoverBytes*8)
|
||||
SHLQ $0x03, CX
|
||||
NEGQ CX
|
||||
ADDQ $0x40, CX
|
||||
SHRQ CL, DI
|
||||
ADDQ DI, AX
|
||||
ADCQ $0x00, SI
|
||||
|
||||
handleRemaining8:
|
||||
SHRQ $0x01, BX
|
||||
JNC handleRemaining16
|
||||
ADDQ (DX), AX
|
||||
ADCQ $0x00, SI
|
||||
ADDQ $0x08, DX
|
||||
|
||||
handleRemaining16:
|
||||
SHRQ $0x01, BX
|
||||
JNC handleRemaining32
|
||||
ADDQ (DX), AX
|
||||
ADCQ 8(DX), AX
|
||||
ADCQ $0x00, SI
|
||||
ADDQ $0x10, DX
|
||||
|
||||
handleRemaining32:
|
||||
SHRQ $0x01, BX
|
||||
JNC handleRemaining64
|
||||
ADDQ (DX), AX
|
||||
ADCQ 8(DX), AX
|
||||
ADCQ 16(DX), AX
|
||||
ADCQ 24(DX), AX
|
||||
ADCQ $0x00, SI
|
||||
ADDQ $0x20, DX
|
||||
|
||||
handleRemaining64:
|
||||
SHRQ $0x01, BX
|
||||
JNC handleRemaining128
|
||||
ADDQ (DX), AX
|
||||
ADCQ 8(DX), AX
|
||||
ADCQ 16(DX), AX
|
||||
ADCQ 24(DX), AX
|
||||
ADCQ 32(DX), AX
|
||||
ADCQ 40(DX), AX
|
||||
ADCQ 48(DX), AX
|
||||
ADCQ 56(DX), AX
|
||||
ADCQ $0x00, SI
|
||||
ADDQ $0x40, DX
|
||||
|
||||
handleRemaining128:
|
||||
SHRQ $0x01, BX
|
||||
JNC handleRemainingComplete
|
||||
ADDQ (DX), AX
|
||||
ADCQ 8(DX), AX
|
||||
ADCQ 16(DX), AX
|
||||
ADCQ 24(DX), AX
|
||||
ADCQ 32(DX), AX
|
||||
ADCQ 40(DX), AX
|
||||
ADCQ 48(DX), AX
|
||||
ADCQ 56(DX), AX
|
||||
ADCQ 64(DX), AX
|
||||
ADCQ 72(DX), AX
|
||||
ADCQ 80(DX), AX
|
||||
ADCQ 88(DX), AX
|
||||
ADCQ 96(DX), AX
|
||||
ADCQ 104(DX), AX
|
||||
ADCQ 112(DX), AX
|
||||
ADCQ 120(DX), AX
|
||||
ADCQ $0x00, SI
|
||||
ADDQ $0x80, DX
|
||||
|
||||
handleRemainingComplete:
|
||||
ADDQ SI, AX
|
||||
JMP foldAndReturn
|
||||
|
||||
startSIMD:
|
||||
PXOR X0, X0
|
||||
PXOR X1, X1
|
||||
PXOR X2, X2
|
||||
PXOR X3, X3
|
||||
PXOR X4, X4
|
||||
MOVQ BX, CX
|
||||
|
||||
// Update number of bytes remaining after the loop completes
|
||||
ANDQ $0xff, BX
|
||||
|
||||
// Number of 256 byte iterations
|
||||
SHRQ $0x08, CX
|
||||
JZ smallLoop
|
||||
|
||||
bigLoop:
|
||||
MOVOU (DX), X5
|
||||
MOVOA X5, X6
|
||||
PUNPCKHWL X4, X5
|
||||
PUNPCKLWL X4, X6
|
||||
PADDD X5, X0
|
||||
PADDD X6, X2
|
||||
MOVOU 16(DX), X5
|
||||
MOVOA X5, X6
|
||||
PUNPCKHWL X4, X5
|
||||
PUNPCKLWL X4, X6
|
||||
PADDD X5, X1
|
||||
PADDD X6, X3
|
||||
MOVOU 32(DX), X5
|
||||
MOVOA X5, X6
|
||||
PUNPCKHWL X4, X5
|
||||
PUNPCKLWL X4, X6
|
||||
PADDD X5, X2
|
||||
PADDD X6, X0
|
||||
MOVOU 48(DX), X5
|
||||
MOVOA X5, X6
|
||||
PUNPCKHWL X4, X5
|
||||
PUNPCKLWL X4, X6
|
||||
PADDD X5, X3
|
||||
PADDD X6, X1
|
||||
MOVOU 64(DX), X5
|
||||
MOVOA X5, X6
|
||||
PUNPCKHWL X4, X5
|
||||
PUNPCKLWL X4, X6
|
||||
PADDD X5, X0
|
||||
PADDD X6, X2
|
||||
MOVOU 80(DX), X5
|
||||
MOVOA X5, X6
|
||||
PUNPCKHWL X4, X5
|
||||
PUNPCKLWL X4, X6
|
||||
PADDD X5, X1
|
||||
PADDD X6, X3
|
||||
MOVOU 96(DX), X5
|
||||
MOVOA X5, X6
|
||||
PUNPCKHWL X4, X5
|
||||
PUNPCKLWL X4, X6
|
||||
PADDD X5, X2
|
||||
PADDD X6, X0
|
||||
MOVOU 112(DX), X5
|
||||
MOVOA X5, X6
|
||||
PUNPCKHWL X4, X5
|
||||
PUNPCKLWL X4, X6
|
||||
PADDD X5, X3
|
||||
PADDD X6, X1
|
||||
MOVOU 128(DX), X5
|
||||
MOVOA X5, X6
|
||||
PUNPCKHWL X4, X5
|
||||
PUNPCKLWL X4, X6
|
||||
PADDD X5, X0
|
||||
PADDD X6, X2
|
||||
MOVOU 144(DX), X5
|
||||
MOVOA X5, X6
|
||||
PUNPCKHWL X4, X5
|
||||
PUNPCKLWL X4, X6
|
||||
PADDD X5, X1
|
||||
PADDD X6, X3
|
||||
MOVOU 160(DX), X5
|
||||
MOVOA X5, X6
|
||||
PUNPCKHWL X4, X5
|
||||
PUNPCKLWL X4, X6
|
||||
PADDD X5, X2
|
||||
PADDD X6, X0
|
||||
MOVOU 176(DX), X5
|
||||
MOVOA X5, X6
|
||||
PUNPCKHWL X4, X5
|
||||
PUNPCKLWL X4, X6
|
||||
PADDD X5, X3
|
||||
PADDD X6, X1
|
||||
MOVOU 192(DX), X5
|
||||
MOVOA X5, X6
|
||||
PUNPCKHWL X4, X5
|
||||
PUNPCKLWL X4, X6
|
||||
PADDD X5, X0
|
||||
PADDD X6, X2
|
||||
MOVOU 208(DX), X5
|
||||
MOVOA X5, X6
|
||||
PUNPCKHWL X4, X5
|
||||
PUNPCKLWL X4, X6
|
||||
PADDD X5, X1
|
||||
PADDD X6, X3
|
||||
MOVOU 224(DX), X5
|
||||
MOVOA X5, X6
|
||||
PUNPCKHWL X4, X5
|
||||
PUNPCKLWL X4, X6
|
||||
PADDD X5, X2
|
||||
PADDD X6, X0
|
||||
MOVOU 240(DX), X5
|
||||
MOVOA X5, X6
|
||||
PUNPCKHWL X4, X5
|
||||
PUNPCKLWL X4, X6
|
||||
PADDD X5, X3
|
||||
PADDD X6, X1
|
||||
ADDQ $0x00000100, DX
|
||||
DECQ CX
|
||||
JNZ bigLoop
|
||||
CMPQ BX, $0x10
|
||||
JLT doneSmallLoop
|
||||
|
||||
// now read a single 16 byte unit of data at a time
|
||||
smallLoop:
|
||||
MOVOU (DX), X5
|
||||
MOVOA X5, X6
|
||||
PUNPCKHWL X4, X5
|
||||
PUNPCKLWL X4, X6
|
||||
PADDD X5, X0
|
||||
PADDD X6, X1
|
||||
ADDQ $0x10, DX
|
||||
SUBQ $0x10, BX
|
||||
CMPQ BX, $0x10
|
||||
JGE smallLoop
|
||||
|
||||
doneSmallLoop:
|
||||
CMPQ BX, $0x00
|
||||
JE doneSIMD
|
||||
|
||||
// There are between 1 and 15 bytes remaining. Perform an overlapped read.
|
||||
LEAQ xmmLoadMasks<>+0(SB), CX
|
||||
MOVOU -16(DX)(BX*1), X5
|
||||
PAND -16(CX)(BX*8), X5
|
||||
MOVOA X5, X6
|
||||
PUNPCKHWL X4, X5
|
||||
PUNPCKLWL X4, X6
|
||||
PADDD X5, X0
|
||||
PADDD X6, X1
|
||||
|
||||
doneSIMD:
|
||||
// Multi-chain loop is done, combine the accumulators
|
||||
PADDD X1, X0
|
||||
PADDD X2, X0
|
||||
PADDD X3, X0
|
||||
|
||||
// extract the XMM into GP64
|
||||
MOVQ X0, CX
|
||||
PSRLDQ $0x08, X0
|
||||
MOVQ X0, DX
|
||||
ADDQ CX, AX
|
||||
ADCQ DX, AX
|
||||
|
||||
foldAndReturn:
|
||||
// add CF and fold
|
||||
MOVL AX, CX
|
||||
ADCQ $0x00, CX
|
||||
SHRQ $0x20, AX
|
||||
ADDQ CX, AX
|
||||
MOVWQZX AX, CX
|
||||
SHRQ $0x10, AX
|
||||
ADDQ CX, AX
|
||||
MOVW AX, CX
|
||||
SHRQ $0x10, AX
|
||||
ADDW CX, AX
|
||||
ADCW $0x00, AX
|
||||
XCHGB AH, AL
|
||||
MOVW AX, ret+32(FP)
|
||||
RET
|
||||
|
||||
// func checksumAMD64(b []byte, initial uint16) uint16
|
||||
TEXT ·checksumAMD64(SB), NOSPLIT|NOFRAME, $0-34
|
||||
MOVWQZX initial+24(FP), AX
|
||||
XCHGB AH, AL
|
||||
MOVQ b_base+0(FP), DX
|
||||
MOVQ b_len+8(FP), BX
|
||||
|
||||
// handle odd length buffers; they are difficult to handle in general
|
||||
TESTQ $0x00000001, BX
|
||||
JZ lengthIsEven
|
||||
MOVBQZX -1(DX)(BX*1), CX
|
||||
DECQ BX
|
||||
ADDQ CX, AX
|
||||
|
||||
lengthIsEven:
|
||||
// handle tiny buffers (<=31 bytes) specially
|
||||
CMPQ BX, $0x1f
|
||||
JGT bufferIsNotTiny
|
||||
XORQ CX, CX
|
||||
XORQ SI, SI
|
||||
XORQ DI, DI
|
||||
|
||||
// shift twice to start because length is guaranteed to be even
|
||||
// n = n >> 2; CF = originalN & 2
|
||||
SHRQ $0x02, BX
|
||||
JNC handleTiny4
|
||||
|
||||
// tmp2 = binary.LittleEndian.Uint16(buf[:2]); buf = buf[2:]
|
||||
MOVWQZX (DX), CX
|
||||
ADDQ $0x02, DX
|
||||
|
||||
handleTiny4:
|
||||
// n = n >> 1; CF = originalN & 4
|
||||
SHRQ $0x01, BX
|
||||
JNC handleTiny8
|
||||
|
||||
// tmp4 = binary.LittleEndian.Uint32(buf[:4]); buf = buf[4:]
|
||||
MOVLQZX (DX), SI
|
||||
ADDQ $0x04, DX
|
||||
|
||||
handleTiny8:
|
||||
// n = n >> 1; CF = originalN & 8
|
||||
SHRQ $0x01, BX
|
||||
JNC handleTiny16
|
||||
|
||||
// tmp8 = binary.LittleEndian.Uint64(buf[:8]); buf = buf[8:]
|
||||
MOVQ (DX), DI
|
||||
ADDQ $0x08, DX
|
||||
|
||||
handleTiny16:
|
||||
// n = n >> 1; CF = originalN & 16
|
||||
// n == 0 now, otherwise we would have branched after comparing with tinyBufferSize
|
||||
SHRQ $0x01, BX
|
||||
JNC handleTinyFinish
|
||||
ADDQ (DX), AX
|
||||
ADCQ 8(DX), AX
|
||||
|
||||
handleTinyFinish:
|
||||
// CF should be included from the previous add, so we use ADCQ.
|
||||
// If we arrived via the JNC above, then CF=0 due to the branch condition,
|
||||
// so ADCQ will still produce the correct result.
|
||||
ADCQ CX, AX
|
||||
ADCQ SI, AX
|
||||
ADCQ DI, AX
|
||||
JMP foldAndReturn
|
||||
|
||||
bufferIsNotTiny:
|
||||
// Number of 256 byte iterations into loop counter
|
||||
MOVQ BX, CX
|
||||
|
||||
// Update number of bytes remaining after the loop completes
|
||||
ANDQ $0xff, BX
|
||||
SHRQ $0x08, CX
|
||||
JZ startCleanup
|
||||
CLC
|
||||
XORQ SI, SI
|
||||
XORQ DI, DI
|
||||
XORQ R8, R8
|
||||
XORQ R9, R9
|
||||
XORQ R10, R10
|
||||
XORQ R11, R11
|
||||
XORQ R12, R12
|
||||
|
||||
bigLoop:
|
||||
ADDQ (DX), AX
|
||||
ADCQ 8(DX), AX
|
||||
ADCQ 16(DX), AX
|
||||
ADCQ 24(DX), AX
|
||||
ADCQ $0x00, SI
|
||||
ADDQ 32(DX), DI
|
||||
ADCQ 40(DX), DI
|
||||
ADCQ 48(DX), DI
|
||||
ADCQ 56(DX), DI
|
||||
ADCQ $0x00, R8
|
||||
ADDQ 64(DX), R9
|
||||
ADCQ 72(DX), R9
|
||||
ADCQ 80(DX), R9
|
||||
ADCQ 88(DX), R9
|
||||
ADCQ $0x00, R10
|
||||
ADDQ 96(DX), R11
|
||||
ADCQ 104(DX), R11
|
||||
ADCQ 112(DX), R11
|
||||
ADCQ 120(DX), R11
|
||||
ADCQ $0x00, R12
|
||||
ADDQ 128(DX), AX
|
||||
ADCQ 136(DX), AX
|
||||
ADCQ 144(DX), AX
|
||||
ADCQ 152(DX), AX
|
||||
ADCQ $0x00, SI
|
||||
ADDQ 160(DX), DI
|
||||
ADCQ 168(DX), DI
|
||||
ADCQ 176(DX), DI
|
||||
ADCQ 184(DX), DI
|
||||
ADCQ $0x00, R8
|
||||
ADDQ 192(DX), R9
|
||||
ADCQ 200(DX), R9
|
||||
ADCQ 208(DX), R9
|
||||
ADCQ 216(DX), R9
|
||||
ADCQ $0x00, R10
|
||||
ADDQ 224(DX), R11
|
||||
ADCQ 232(DX), R11
|
||||
ADCQ 240(DX), R11
|
||||
ADCQ 248(DX), R11
|
||||
ADCQ $0x00, R12
|
||||
ADDQ $0x00000100, DX
|
||||
SUBQ $0x01, CX
|
||||
JNZ bigLoop
|
||||
ADDQ SI, AX
|
||||
ADCQ DI, AX
|
||||
ADCQ R8, AX
|
||||
ADCQ R9, AX
|
||||
ADCQ R10, AX
|
||||
ADCQ R11, AX
|
||||
ADCQ R12, AX
|
||||
|
||||
// accumulate CF (twice, in case the first time overflows)
|
||||
ADCQ $0x00, AX
|
||||
ADCQ $0x00, AX
|
||||
|
||||
startCleanup:
|
||||
// Accumulate carries in this register. It is never expected to overflow.
|
||||
XORQ SI, SI
|
||||
|
||||
// We will perform an overlapped read for buffers with length not a multiple of 8.
|
||||
// Overlapped in this context means some memory will be read twice, but a shift will
|
||||
// eliminate the duplicated data. This extra read is performed at the end of the buffer to
|
||||
// preserve any alignment that may exist for the start of the buffer.
|
||||
MOVQ BX, CX
|
||||
SHRQ $0x03, BX
|
||||
ANDQ $0x07, CX
|
||||
JZ handleRemaining8
|
||||
LEAQ (DX)(BX*8), DI
|
||||
MOVQ -8(DI)(CX*1), DI
|
||||
|
||||
// Shift out the duplicated data: overlapRead = overlapRead >> (64 - leftoverBytes*8)
|
||||
SHLQ $0x03, CX
|
||||
NEGQ CX
|
||||
ADDQ $0x40, CX
|
||||
SHRQ CL, DI
|
||||
ADDQ DI, AX
|
||||
ADCQ $0x00, SI
|
||||
|
||||
handleRemaining8:
|
||||
SHRQ $0x01, BX
|
||||
JNC handleRemaining16
|
||||
ADDQ (DX), AX
|
||||
ADCQ $0x00, SI
|
||||
ADDQ $0x08, DX
|
||||
|
||||
handleRemaining16:
|
||||
SHRQ $0x01, BX
|
||||
JNC handleRemaining32
|
||||
ADDQ (DX), AX
|
||||
ADCQ 8(DX), AX
|
||||
ADCQ $0x00, SI
|
||||
ADDQ $0x10, DX
|
||||
|
||||
handleRemaining32:
|
||||
SHRQ $0x01, BX
|
||||
JNC handleRemaining64
|
||||
ADDQ (DX), AX
|
||||
ADCQ 8(DX), AX
|
||||
ADCQ 16(DX), AX
|
||||
ADCQ 24(DX), AX
|
||||
ADCQ $0x00, SI
|
||||
ADDQ $0x20, DX
|
||||
|
||||
handleRemaining64:
|
||||
SHRQ $0x01, BX
|
||||
JNC handleRemaining128
|
||||
ADDQ (DX), AX
|
||||
ADCQ 8(DX), AX
|
||||
ADCQ 16(DX), AX
|
||||
ADCQ 24(DX), AX
|
||||
ADCQ 32(DX), AX
|
||||
ADCQ 40(DX), AX
|
||||
ADCQ 48(DX), AX
|
||||
ADCQ 56(DX), AX
|
||||
ADCQ $0x00, SI
|
||||
ADDQ $0x40, DX
|
||||
|
||||
handleRemaining128:
|
||||
SHRQ $0x01, BX
|
||||
JNC handleRemainingComplete
|
||||
ADDQ (DX), AX
|
||||
ADCQ 8(DX), AX
|
||||
ADCQ 16(DX), AX
|
||||
ADCQ 24(DX), AX
|
||||
ADCQ 32(DX), AX
|
||||
ADCQ 40(DX), AX
|
||||
ADCQ 48(DX), AX
|
||||
ADCQ 56(DX), AX
|
||||
ADCQ 64(DX), AX
|
||||
ADCQ 72(DX), AX
|
||||
ADCQ 80(DX), AX
|
||||
ADCQ 88(DX), AX
|
||||
ADCQ 96(DX), AX
|
||||
ADCQ 104(DX), AX
|
||||
ADCQ 112(DX), AX
|
||||
ADCQ 120(DX), AX
|
||||
ADCQ $0x00, SI
|
||||
ADDQ $0x80, DX
|
||||
|
||||
handleRemainingComplete:
|
||||
ADDQ SI, AX
|
||||
|
||||
foldAndReturn:
|
||||
// add CF and fold
|
||||
MOVL AX, CX
|
||||
ADCQ $0x00, CX
|
||||
SHRQ $0x20, AX
|
||||
ADDQ CX, AX
|
||||
MOVWQZX AX, CX
|
||||
SHRQ $0x10, AX
|
||||
ADDQ CX, AX
|
||||
MOVW AX, CX
|
||||
SHRQ $0x10, AX
|
||||
ADDW CX, AX
|
||||
ADCW $0x00, AX
|
||||
XCHGB AH, AL
|
||||
MOVW AX, ret+32(FP)
|
||||
RET
|
15
internal/tschecksum/checksum_generic.go
Normal file
15
internal/tschecksum/checksum_generic.go
Normal file
|
@ -0,0 +1,15 @@
|
|||
// This file contains IP checksum algorithms that are not specific to any
|
||||
// architecture and don't use hardware acceleration.
|
||||
|
||||
//go:build !amd64
|
||||
|
||||
package tschecksum
|
||||
|
||||
import "strconv"
|
||||
|
||||
func Checksum(data []byte, initial uint16) uint16 {
|
||||
if strconv.IntSize < 64 {
|
||||
return checksumGeneric32(data, initial)
|
||||
}
|
||||
return checksumGeneric64(data, initial)
|
||||
}
|
578
internal/tschecksum/generate_amd64.go
Normal file
578
internal/tschecksum/generate_amd64.go
Normal file
|
@ -0,0 +1,578 @@
|
|||
//go:build ignore
|
||||
|
||||
//go:generate go run generate_amd64.go -out checksum_generated_amd64.s -stubs checksum_generated_amd64.go
|
||||
|
||||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math"
|
||||
"math/bits"
|
||||
|
||||
"github.com/mmcloughlin/avo/operand"
|
||||
"github.com/mmcloughlin/avo/reg"
|
||||
)
|
||||
|
||||
const checksumSignature = "func(b []byte, initial uint16) uint16"
|
||||
|
||||
func loadParams() (accum, buf, n reg.GPVirtual) {
|
||||
accum, buf, n = GP64(), GP64(), GP64()
|
||||
Load(Param("initial"), accum)
|
||||
XCHGB(accum.As8H(), accum.As8L())
|
||||
Load(Param("b").Base(), buf)
|
||||
Load(Param("b").Len(), n)
|
||||
return
|
||||
}
|
||||
|
||||
type simdStrategy int
|
||||
|
||||
const (
|
||||
sse2 = iota
|
||||
avx2
|
||||
)
|
||||
|
||||
const tinyBufferSize = 31 // A buffer is tiny if it has at most 31 bytes.
|
||||
|
||||
func generateSIMDChecksum(name, doc string, minSIMDSize, chains int, strategy simdStrategy) {
|
||||
TEXT(name, NOSPLIT|NOFRAME, checksumSignature)
|
||||
Pragma("noescape")
|
||||
Doc(doc)
|
||||
|
||||
accum64, buf, n := loadParams()
|
||||
|
||||
handleOddLength(n, buf, accum64)
|
||||
// no chance of overflow because accum64 was initialized by a uint16 and
|
||||
// handleOddLength adds at most a uint8
|
||||
handleTinyBuffers(n, buf, accum64, operand.LabelRef("foldAndReturn"), operand.LabelRef("bufferIsNotTiny"))
|
||||
Label("bufferIsNotTiny")
|
||||
|
||||
const simdReadSize = 16
|
||||
|
||||
if minSIMDSize > tinyBufferSize {
|
||||
Comment("skip all SIMD for small buffers")
|
||||
if minSIMDSize <= math.MaxUint8 {
|
||||
CMPQ(n, operand.U8(minSIMDSize))
|
||||
} else {
|
||||
CMPQ(n, operand.U32(minSIMDSize))
|
||||
}
|
||||
JGE(operand.LabelRef("startSIMD"))
|
||||
|
||||
handleRemaining(n, buf, accum64, minSIMDSize-1)
|
||||
JMP(operand.LabelRef("foldAndReturn"))
|
||||
}
|
||||
|
||||
Label("startSIMD")
|
||||
|
||||
// chains is the number of accumulators to use. This improves speed via
|
||||
// reduced data dependency. We combine the accumulators once when the big
|
||||
// loop is complete.
|
||||
simdAccumulate := make([]reg.VecVirtual, chains)
|
||||
for i := range simdAccumulate {
|
||||
switch strategy {
|
||||
case sse2:
|
||||
simdAccumulate[i] = XMM()
|
||||
PXOR(simdAccumulate[i], simdAccumulate[i])
|
||||
case avx2:
|
||||
simdAccumulate[i] = YMM()
|
||||
VPXOR(simdAccumulate[i], simdAccumulate[i], simdAccumulate[i])
|
||||
}
|
||||
}
|
||||
var zero reg.VecVirtual
|
||||
if strategy == sse2 {
|
||||
zero = XMM()
|
||||
PXOR(zero, zero)
|
||||
}
|
||||
|
||||
// Number of loads per big loop
|
||||
const unroll = 16
|
||||
// Number of bytes
|
||||
loopSize := uint64(simdReadSize * unroll)
|
||||
if bits.Len64(loopSize) != bits.Len64(loopSize-1)+1 {
|
||||
panic("loopSize is not a power of 2")
|
||||
}
|
||||
loopCount := GP64()
|
||||
|
||||
MOVQ(n, loopCount)
|
||||
Comment("Update number of bytes remaining after the loop completes")
|
||||
ANDQ(operand.Imm(loopSize-1), n)
|
||||
Comment(fmt.Sprintf("Number of %d byte iterations", loopSize))
|
||||
SHRQ(operand.Imm(uint64(bits.Len64(loopSize-1))), loopCount)
|
||||
JZ(operand.LabelRef("smallLoop"))
|
||||
Label("bigLoop")
|
||||
for i := 0; i < unroll; i++ {
|
||||
chain := i % chains
|
||||
switch strategy {
|
||||
case sse2:
|
||||
sse2AccumulateStep(i*simdReadSize, buf, zero, simdAccumulate[chain], simdAccumulate[(chain+chains/2)%chains])
|
||||
case avx2:
|
||||
avx2AccumulateStep(i*simdReadSize, buf, simdAccumulate[chain])
|
||||
}
|
||||
}
|
||||
ADDQ(operand.U32(loopSize), buf)
|
||||
DECQ(loopCount)
|
||||
JNZ(operand.LabelRef("bigLoop"))
|
||||
|
||||
Label("bigCleanup")
|
||||
|
||||
CMPQ(n, operand.Imm(uint64(simdReadSize)))
|
||||
JLT(operand.LabelRef("doneSmallLoop"))
|
||||
|
||||
Commentf("now read a single %d byte unit of data at a time", simdReadSize)
|
||||
Label("smallLoop")
|
||||
|
||||
switch strategy {
|
||||
case sse2:
|
||||
sse2AccumulateStep(0, buf, zero, simdAccumulate[0], simdAccumulate[1])
|
||||
case avx2:
|
||||
avx2AccumulateStep(0, buf, simdAccumulate[0])
|
||||
}
|
||||
ADDQ(operand.Imm(uint64(simdReadSize)), buf)
|
||||
SUBQ(operand.Imm(uint64(simdReadSize)), n)
|
||||
CMPQ(n, operand.Imm(uint64(simdReadSize)))
|
||||
JGE(operand.LabelRef("smallLoop"))
|
||||
|
||||
Label("doneSmallLoop")
|
||||
CMPQ(n, operand.Imm(0))
|
||||
JE(operand.LabelRef("doneSIMD"))
|
||||
|
||||
Commentf("There are between 1 and %d bytes remaining. Perform an overlapped read.", simdReadSize-1)
|
||||
|
||||
maskDataPtr := GP64()
|
||||
LEAQ(operand.NewDataAddr(operand.NewStaticSymbol("xmmLoadMasks"), 0), maskDataPtr)
|
||||
dataAddr := operand.Mem{Index: n, Scale: 1, Base: buf, Disp: -simdReadSize}
|
||||
// scale 8 is only correct here because n is guaranteed to be even and we
|
||||
// do not generate masks for odd lengths
|
||||
maskAddr := operand.Mem{Base: maskDataPtr, Index: n, Scale: 8, Disp: -16}
|
||||
remainder := XMM()
|
||||
|
||||
switch strategy {
|
||||
case sse2:
|
||||
MOVOU(dataAddr, remainder)
|
||||
PAND(maskAddr, remainder)
|
||||
low := XMM()
|
||||
MOVOA(remainder, low)
|
||||
PUNPCKHWL(zero, remainder)
|
||||
PUNPCKLWL(zero, low)
|
||||
PADDD(remainder, simdAccumulate[0])
|
||||
PADDD(low, simdAccumulate[1])
|
||||
case avx2:
|
||||
// Note: this is very similar to the sse2 path but MOVOU has a massive
|
||||
// performance hit if used here, presumably due to switching between SSE
|
||||
// and AVX2 modes.
|
||||
VMOVDQU(dataAddr, remainder)
|
||||
VPAND(maskAddr, remainder, remainder)
|
||||
|
||||
temp := YMM()
|
||||
VPMOVZXWD(remainder, temp)
|
||||
VPADDD(temp, simdAccumulate[0], simdAccumulate[0])
|
||||
}
|
||||
|
||||
Label("doneSIMD")
|
||||
|
||||
Comment("Multi-chain loop is done, combine the accumulators")
|
||||
for i := range simdAccumulate {
|
||||
if i == 0 {
|
||||
continue
|
||||
}
|
||||
switch strategy {
|
||||
case sse2:
|
||||
PADDD(simdAccumulate[i], simdAccumulate[0])
|
||||
case avx2:
|
||||
VPADDD(simdAccumulate[i], simdAccumulate[0], simdAccumulate[0])
|
||||
}
|
||||
}
|
||||
|
||||
if strategy == avx2 {
|
||||
Comment("extract the YMM into a pair of XMM and sum them")
|
||||
tmp := YMM()
|
||||
VEXTRACTI128(operand.Imm(1), simdAccumulate[0], tmp.AsX())
|
||||
|
||||
xAccumulate := XMM()
|
||||
VPADDD(simdAccumulate[0].AsX(), tmp.AsX(), xAccumulate)
|
||||
simdAccumulate = []reg.VecVirtual{xAccumulate}
|
||||
}
|
||||
|
||||
Comment("extract the XMM into GP64")
|
||||
low, high := GP64(), GP64()
|
||||
switch strategy {
|
||||
case sse2:
|
||||
MOVQ(simdAccumulate[0], low)
|
||||
PSRLDQ(operand.Imm(8), simdAccumulate[0])
|
||||
MOVQ(simdAccumulate[0], high)
|
||||
case avx2:
|
||||
VPEXTRQ(operand.Imm(0), simdAccumulate[0], low)
|
||||
VPEXTRQ(operand.Imm(1), simdAccumulate[0], high)
|
||||
|
||||
Comment("no more AVX code, clear upper registers to avoid SSE slowdowns")
|
||||
VZEROUPPER()
|
||||
}
|
||||
ADDQ(low, accum64)
|
||||
ADCQ(high, accum64)
|
||||
Label("foldAndReturn")
|
||||
foldWithCF(accum64, strategy == avx2)
|
||||
XCHGB(accum64.As8H(), accum64.As8L())
|
||||
Store(accum64.As16(), ReturnIndex(0))
|
||||
RET()
|
||||
}
|
||||
|
||||
// handleOddLength generates instructions to incorporate the last byte into
|
||||
// accum64 if the length is odd. CF may be set if accum64 overflows; be sure to
|
||||
// handle that if overflow is possible.
|
||||
func handleOddLength(n, buf, accum64 reg.GPVirtual) {
|
||||
Comment("handle odd length buffers; they are difficult to handle in general")
|
||||
TESTQ(operand.U32(1), n)
|
||||
JZ(operand.LabelRef("lengthIsEven"))
|
||||
|
||||
tmp := GP64()
|
||||
MOVBQZX(operand.Mem{Base: buf, Index: n, Scale: 1, Disp: -1}, tmp)
|
||||
DECQ(n)
|
||||
ADDQ(tmp, accum64)
|
||||
|
||||
Label("lengthIsEven")
|
||||
}
|
||||
|
||||
func sse2AccumulateStep(offset int, buf reg.GPVirtual, zero, accumulate1, accumulate2 reg.VecVirtual) {
|
||||
high, low := XMM(), XMM()
|
||||
MOVOU(operand.Mem{Disp: offset, Base: buf}, high)
|
||||
MOVOA(high, low)
|
||||
PUNPCKHWL(zero, high)
|
||||
PUNPCKLWL(zero, low)
|
||||
PADDD(high, accumulate1)
|
||||
PADDD(low, accumulate2)
|
||||
}
|
||||
|
||||
func avx2AccumulateStep(offset int, buf reg.GPVirtual, accumulate reg.VecVirtual) {
|
||||
tmp := YMM()
|
||||
VPMOVZXWD(operand.Mem{Disp: offset, Base: buf}, tmp)
|
||||
VPADDD(tmp, accumulate, accumulate)
|
||||
}
|
||||
|
||||
func generateAMD64Checksum(name, doc string) {
|
||||
TEXT(name, NOSPLIT|NOFRAME, checksumSignature)
|
||||
Pragma("noescape")
|
||||
Doc(doc)
|
||||
|
||||
accum64, buf, n := loadParams()
|
||||
|
||||
handleOddLength(n, buf, accum64)
|
||||
// no chance of overflow because accum64 was initialized by a uint16 and
|
||||
// handleOddLength adds at most a uint8
|
||||
handleTinyBuffers(n, buf, accum64, operand.LabelRef("foldAndReturn"), operand.LabelRef("bufferIsNotTiny"))
|
||||
Label("bufferIsNotTiny")
|
||||
|
||||
const (
|
||||
// numChains is the number of accumulators and carry counters to use.
|
||||
// This improves speed via reduced data dependency. We combine the
|
||||
// accumulators and carry counters once when the loop is complete.
|
||||
numChains = 4
|
||||
unroll = 32 // The number of 64-bit reads to perform per iteration of the loop.
|
||||
loopSize = 8 * unroll // The number of bytes read per iteration of the loop.
|
||||
)
|
||||
if bits.Len(loopSize) != bits.Len(loopSize-1)+1 {
|
||||
panic("loopSize is not a power of 2")
|
||||
}
|
||||
loopCount := GP64()
|
||||
|
||||
Comment(fmt.Sprintf("Number of %d byte iterations into loop counter", loopSize))
|
||||
MOVQ(n, loopCount)
|
||||
Comment("Update number of bytes remaining after the loop completes")
|
||||
ANDQ(operand.Imm(loopSize-1), n)
|
||||
SHRQ(operand.Imm(uint64(bits.Len(loopSize-1))), loopCount)
|
||||
JZ(operand.LabelRef("startCleanup"))
|
||||
CLC()
|
||||
|
||||
chains := make([]struct {
|
||||
accum reg.GPVirtual
|
||||
carries reg.GPVirtual
|
||||
}, numChains)
|
||||
for i := range chains {
|
||||
if i == 0 {
|
||||
chains[i].accum = accum64
|
||||
} else {
|
||||
chains[i].accum = GP64()
|
||||
XORQ(chains[i].accum, chains[i].accum)
|
||||
}
|
||||
chains[i].carries = GP64()
|
||||
XORQ(chains[i].carries, chains[i].carries)
|
||||
}
|
||||
|
||||
Label("bigLoop")
|
||||
|
||||
var curChain int
|
||||
for i := 0; i < unroll; i++ {
|
||||
// It is significantly faster to use a ADCX/ADOX pair instead of plain
|
||||
// ADC, which results in two dependency chains, however those require
|
||||
// ADX support, which was added after AVX2. If AVX2 is available, that's
|
||||
// even better than ADCX/ADOX.
|
||||
//
|
||||
// However, multiple dependency chains using multiple accumulators and
|
||||
// occasionally storing CF into temporary counters seems to work almost
|
||||
// as well.
|
||||
addr := operand.Mem{Disp: i * 8, Base: buf}
|
||||
|
||||
if i%4 == 0 {
|
||||
if i > 0 {
|
||||
ADCQ(operand.Imm(0), chains[curChain].carries)
|
||||
curChain = (curChain + 1) % len(chains)
|
||||
}
|
||||
ADDQ(addr, chains[curChain].accum)
|
||||
} else {
|
||||
ADCQ(addr, chains[curChain].accum)
|
||||
}
|
||||
}
|
||||
ADCQ(operand.Imm(0), chains[curChain].carries)
|
||||
ADDQ(operand.U32(loopSize), buf)
|
||||
SUBQ(operand.Imm(1), loopCount)
|
||||
JNZ(operand.LabelRef("bigLoop"))
|
||||
for i := range chains {
|
||||
if i == 0 {
|
||||
ADDQ(chains[i].carries, accum64)
|
||||
continue
|
||||
}
|
||||
ADCQ(chains[i].accum, accum64)
|
||||
ADCQ(chains[i].carries, accum64)
|
||||
}
|
||||
|
||||
accumulateCF(accum64)
|
||||
|
||||
Label("startCleanup")
|
||||
handleRemaining(n, buf, accum64, loopSize-1)
|
||||
Label("foldAndReturn")
|
||||
foldWithCF(accum64, false)
|
||||
|
||||
XCHGB(accum64.As8H(), accum64.As8L())
|
||||
Store(accum64.As16(), ReturnIndex(0))
|
||||
RET()
|
||||
}
|
||||
|
||||
// handleTinyBuffers computes checksums if the buffer length (the n parameter)
|
||||
// is less than 32. After computing the checksum, a jump to returnLabel will
|
||||
// be executed. Otherwise, if the buffer length is at least 32, nothing will be
|
||||
// modified; a jump to continueLabel will be executed instead.
|
||||
//
|
||||
// When jumping to returnLabel, CF may be set and must be accommodated e.g.
|
||||
// using foldWithCF or accumulateCF.
|
||||
//
|
||||
// Anecdotally, this appears to be faster than attempting to coordinate an
|
||||
// overlapped read (which would also require special handling for buffers
|
||||
// smaller than 8).
|
||||
func handleTinyBuffers(n, buf, accum reg.GPVirtual, returnLabel, continueLabel operand.LabelRef) {
|
||||
Comment("handle tiny buffers (<=31 bytes) specially")
|
||||
CMPQ(n, operand.Imm(tinyBufferSize))
|
||||
JGT(continueLabel)
|
||||
|
||||
tmp2, tmp4, tmp8 := GP64(), GP64(), GP64()
|
||||
XORQ(tmp2, tmp2)
|
||||
XORQ(tmp4, tmp4)
|
||||
XORQ(tmp8, tmp8)
|
||||
|
||||
Comment("shift twice to start because length is guaranteed to be even",
|
||||
"n = n >> 2; CF = originalN & 2")
|
||||
SHRQ(operand.Imm(2), n)
|
||||
JNC(operand.LabelRef("handleTiny4"))
|
||||
Comment("tmp2 = binary.LittleEndian.Uint16(buf[:2]); buf = buf[2:]")
|
||||
MOVWQZX(operand.Mem{Base: buf}, tmp2)
|
||||
ADDQ(operand.Imm(2), buf)
|
||||
|
||||
Label("handleTiny4")
|
||||
Comment("n = n >> 1; CF = originalN & 4")
|
||||
SHRQ(operand.Imm(1), n)
|
||||
JNC(operand.LabelRef("handleTiny8"))
|
||||
Comment("tmp4 = binary.LittleEndian.Uint32(buf[:4]); buf = buf[4:]")
|
||||
MOVLQZX(operand.Mem{Base: buf}, tmp4)
|
||||
ADDQ(operand.Imm(4), buf)
|
||||
|
||||
Label("handleTiny8")
|
||||
Comment("n = n >> 1; CF = originalN & 8")
|
||||
SHRQ(operand.Imm(1), n)
|
||||
JNC(operand.LabelRef("handleTiny16"))
|
||||
Comment("tmp8 = binary.LittleEndian.Uint64(buf[:8]); buf = buf[8:]")
|
||||
MOVQ(operand.Mem{Base: buf}, tmp8)
|
||||
ADDQ(operand.Imm(8), buf)
|
||||
|
||||
Label("handleTiny16")
|
||||
Comment("n = n >> 1; CF = originalN & 16",
|
||||
"n == 0 now, otherwise we would have branched after comparing with tinyBufferSize")
|
||||
SHRQ(operand.Imm(1), n)
|
||||
JNC(operand.LabelRef("handleTinyFinish"))
|
||||
ADDQ(operand.Mem{Base: buf}, accum)
|
||||
ADCQ(operand.Mem{Base: buf, Disp: 8}, accum)
|
||||
|
||||
Label("handleTinyFinish")
|
||||
Comment("CF should be included from the previous add, so we use ADCQ.",
|
||||
"If we arrived via the JNC above, then CF=0 due to the branch condition,",
|
||||
"so ADCQ will still produce the correct result.")
|
||||
ADCQ(tmp2, accum)
|
||||
ADCQ(tmp4, accum)
|
||||
ADCQ(tmp8, accum)
|
||||
|
||||
JMP(returnLabel)
|
||||
}
|
||||
|
||||
// handleRemaining generates a series of conditional unrolled additions,
|
||||
// starting with 8 bytes long and doubling each time until the length reaches
|
||||
// max. This is the reverse order of what may be intuitive, but makes the branch
|
||||
// conditions convenient to compute: perform one right shift each time and test
|
||||
// against CF.
|
||||
//
|
||||
// When done, CF may be set and must be accommodated e.g., using foldWithCF or
|
||||
// accumulateCF.
|
||||
//
|
||||
// If n is not a multiple of 8, an extra 64 bit read at the end of the buffer
|
||||
// will be performed, overlapping with data that will be read later. The
|
||||
// duplicate data will be shifted off.
|
||||
//
|
||||
// The original buffer length must have been at least 8 bytes long, even if
|
||||
// n < 8, otherwise this will access memory before the start of the buffer,
|
||||
// which may be unsafe.
|
||||
func handleRemaining(n, buf, accum64 reg.GPVirtual, max int) {
|
||||
Comment("Accumulate carries in this register. It is never expected to overflow.")
|
||||
carries := GP64()
|
||||
XORQ(carries, carries)
|
||||
|
||||
Comment("We will perform an overlapped read for buffers with length not a multiple of 8.",
|
||||
"Overlapped in this context means some memory will be read twice, but a shift will",
|
||||
"eliminate the duplicated data. This extra read is performed at the end of the buffer to",
|
||||
"preserve any alignment that may exist for the start of the buffer.")
|
||||
leftover := reg.RCX
|
||||
MOVQ(n, leftover)
|
||||
SHRQ(operand.Imm(3), n) // n is now the number of 64 bit reads remaining
|
||||
ANDQ(operand.Imm(0x7), leftover) // leftover is now the number of bytes to read from the end
|
||||
JZ(operand.LabelRef("handleRemaining8"))
|
||||
endBuf := GP64()
|
||||
// endBuf is the position near the end of the buffer that is just past the
|
||||
// last multiple of 8: (buf + len(buf)) & ^0x7
|
||||
LEAQ(operand.Mem{Base: buf, Index: n, Scale: 8}, endBuf)
|
||||
|
||||
overlapRead := GP64()
|
||||
// equivalent to overlapRead = binary.LittleEndian.Uint64(buf[len(buf)-8:len(buf)])
|
||||
MOVQ(operand.Mem{Base: endBuf, Index: leftover, Scale: 1, Disp: -8}, overlapRead)
|
||||
|
||||
Comment("Shift out the duplicated data: overlapRead = overlapRead >> (64 - leftoverBytes*8)")
|
||||
SHLQ(operand.Imm(3), leftover) // leftover = leftover * 8
|
||||
NEGQ(leftover) // leftover = -leftover; this completes the (-leftoverBytes*8) part of the expression
|
||||
ADDQ(operand.Imm(64), leftover) // now we have (64 - leftoverBytes*8)
|
||||
SHRQ(reg.CL, overlapRead) // shift right by (64 - leftoverBytes*8); CL is the low 8 bits of leftover (set to RCX above) and variable shift only accepts CL
|
||||
|
||||
ADDQ(overlapRead, accum64)
|
||||
ADCQ(operand.Imm(0), carries)
|
||||
|
||||
for curBytes := 8; curBytes <= max; curBytes *= 2 {
|
||||
Label(fmt.Sprintf("handleRemaining%d", curBytes))
|
||||
SHRQ(operand.Imm(1), n)
|
||||
if curBytes*2 <= max {
|
||||
JNC(operand.LabelRef(fmt.Sprintf("handleRemaining%d", curBytes*2)))
|
||||
} else {
|
||||
JNC(operand.LabelRef("handleRemainingComplete"))
|
||||
}
|
||||
|
||||
numLoads := curBytes / 8
|
||||
for i := 0; i < numLoads; i++ {
|
||||
addr := operand.Mem{Base: buf, Disp: i * 8}
|
||||
// It is possible to add the multiple dependency chains trick here
|
||||
// that generateAMD64Checksum uses but anecdotally it does not
|
||||
// appear to outweigh the cost.
|
||||
if i == 0 {
|
||||
ADDQ(addr, accum64)
|
||||
continue
|
||||
}
|
||||
ADCQ(addr, accum64)
|
||||
}
|
||||
ADCQ(operand.Imm(0), carries)
|
||||
|
||||
if curBytes > math.MaxUint8 {
|
||||
ADDQ(operand.U32(uint64(curBytes)), buf)
|
||||
} else {
|
||||
ADDQ(operand.U8(uint64(curBytes)), buf)
|
||||
}
|
||||
if curBytes*2 >= max {
|
||||
continue
|
||||
}
|
||||
JMP(operand.LabelRef(fmt.Sprintf("handleRemaining%d", curBytes*2)))
|
||||
}
|
||||
Label("handleRemainingComplete")
|
||||
ADDQ(carries, accum64)
|
||||
}
|
||||
|
||||
func accumulateCF(accum64 reg.GPVirtual) {
|
||||
Comment("accumulate CF (twice, in case the first time overflows)")
|
||||
// accum64 += CF
|
||||
ADCQ(operand.Imm(0), accum64)
|
||||
// accum64 += CF again if the previous add overflowed. The previous add was
|
||||
// 0 or 1. If it overflowed, then accum64 == 0, so adding another 1 can
|
||||
// never overflow.
|
||||
ADCQ(operand.Imm(0), accum64)
|
||||
}
|
||||
|
||||
// foldWithCF generates instructions to fold accum (a GP64) into a 16-bit value
|
||||
// according to ones-complement arithmetic. BMI2 instructions will be used if
|
||||
// allowBMI2 is true (requires fewer instructions).
|
||||
func foldWithCF(accum reg.GPVirtual, allowBMI2 bool) {
|
||||
Comment("add CF and fold")
|
||||
|
||||
// CF|accum max value starts as 0x1_ffff_ffff_ffff_ffff
|
||||
|
||||
tmp := GP64()
|
||||
if allowBMI2 {
|
||||
// effectively, tmp = accum >> 32 (technically, this is a rotate)
|
||||
RORXQ(operand.Imm(32), accum, tmp)
|
||||
// accum as uint32 = uint32(accum) + uint32(tmp64) + CF; max value 0xffff_ffff + CF set
|
||||
ADCL(tmp.As32(), accum.As32())
|
||||
// effectively, tmp64 as uint32 = uint32(accum) >> 16 (also a rotate)
|
||||
RORXL(operand.Imm(16), accum.As32(), tmp.As32())
|
||||
// accum as uint16 = uint16(accum) + uint16(tmp) + CF; max value 0xffff + CF unset or 0xfffe + CF set
|
||||
ADCW(tmp.As16(), accum.As16())
|
||||
} else {
|
||||
// tmp = uint32(accum); max value 0xffff_ffff
|
||||
// MOVL clears the upper 32 bits of a GP64 so this is equivalent to the
|
||||
// non-existent MOVLQZX.
|
||||
MOVL(accum.As32(), tmp.As32())
|
||||
// tmp += CF; max value 0x1_0000_0000, CF unset
|
||||
ADCQ(operand.Imm(0), tmp)
|
||||
// accum = accum >> 32; max value 0xffff_ffff
|
||||
SHRQ(operand.Imm(32), accum)
|
||||
// accum = accum + tmp; max value 0x1_ffff_ffff + CF unset
|
||||
ADDQ(tmp, accum)
|
||||
// tmp = uint16(accum); max value 0xffff
|
||||
MOVWQZX(accum.As16(), tmp)
|
||||
// accum = accum >> 16; max value 0x1_ffff
|
||||
SHRQ(operand.Imm(16), accum)
|
||||
// accum = accum + tmp; max value 0x2_fffe + CF unset
|
||||
ADDQ(tmp, accum)
|
||||
// tmp as uint16 = uint16(accum); max value 0xffff
|
||||
MOVW(accum.As16(), tmp.As16())
|
||||
// accum = accum >> 16; max value 0x2
|
||||
SHRQ(operand.Imm(16), accum)
|
||||
// accum as uint16 = uint16(accum) + uint16(tmp); max value 0xffff + CF unset or 0x2 + CF set
|
||||
ADDW(tmp.As16(), accum.As16())
|
||||
}
|
||||
// accum as uint16 += CF; will not overflow: either CF was 0 or accum <= 0xfffe
|
||||
ADCW(operand.Imm(0), accum.As16())
|
||||
}
|
||||
|
||||
func generateLoadMasks() {
|
||||
var offset int
|
||||
// xmmLoadMasks is a table of masks that can be used with PAND to zero all but the last N bytes in an XMM, N=2,4,6,8,10,12,14
|
||||
GLOBL("xmmLoadMasks", RODATA|NOPTR)
|
||||
|
||||
for n := 2; n < 16; n += 2 {
|
||||
var pattern [16]byte
|
||||
for i := 0; i < len(pattern); i++ {
|
||||
if i < len(pattern)-n {
|
||||
pattern[i] = 0
|
||||
continue
|
||||
}
|
||||
pattern[i] = 0xff
|
||||
}
|
||||
DATA(offset, operand.String(pattern[:]))
|
||||
offset += len(pattern)
|
||||
}
|
||||
}
|
||||
|
||||
func main() {
|
||||
generateLoadMasks()
|
||||
generateSIMDChecksum("checksumAVX2", "checksumAVX2 computes an IP checksum using amd64 v3 instructions (AVX2, BMI2)", 256, 4, avx2)
|
||||
generateSIMDChecksum("checksumSSE2", "checksumSSE2 computes an IP checksum using amd64 baseline instructions (SSE2)", 256, 4, sse2)
|
||||
generateAMD64Checksum("checksumAMD64", "checksumAMD64 computes an IP checksum using amd64 baseline instructions")
|
||||
Generate()
|
||||
}
|
|
@ -19,13 +19,11 @@ import (
|
|||
"github.com/sagernet/gvisor/pkg/tcpip/transport/udp"
|
||||
E "github.com/sagernet/sing/common/exceptions"
|
||||
"github.com/sagernet/sing/common/logger"
|
||||
M "github.com/sagernet/sing/common/metadata"
|
||||
N "github.com/sagernet/sing/common/network"
|
||||
)
|
||||
|
||||
const WithGVisor = true
|
||||
|
||||
const defaultNIC tcpip.NICID = 1
|
||||
const DefaultNIC tcpip.NICID = 1
|
||||
|
||||
type GVisor struct {
|
||||
ctx context.Context
|
||||
|
@ -68,28 +66,11 @@ func (t *GVisor) Start() error {
|
|||
return err
|
||||
}
|
||||
linkEndpoint = &LinkEndpointFilter{linkEndpoint, t.broadcastAddr, t.tun}
|
||||
ipStack, err := newGVisorStack(linkEndpoint)
|
||||
ipStack, err := NewGVisorStack(linkEndpoint)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
tcpForwarder := tcp.NewForwarder(ipStack, 0, 1024, func(r *tcp.ForwarderRequest) {
|
||||
source := M.SocksaddrFrom(AddrFromAddress(r.ID().RemoteAddress), r.ID().RemotePort)
|
||||
destination := M.SocksaddrFrom(AddrFromAddress(r.ID().LocalAddress), r.ID().LocalPort)
|
||||
pErr := t.handler.PrepareConnection(N.NetworkTCP, source, destination)
|
||||
if pErr != nil {
|
||||
r.Complete(pErr != ErrDrop)
|
||||
return
|
||||
}
|
||||
conn := &gLazyConn{
|
||||
parentCtx: t.ctx,
|
||||
stack: t.stack,
|
||||
request: r,
|
||||
localAddr: source.TCPAddr(),
|
||||
remoteAddr: destination.TCPAddr(),
|
||||
}
|
||||
go t.handler.NewConnectionEx(t.ctx, conn, source, destination, nil)
|
||||
})
|
||||
ipStack.SetTransportProtocolHandler(tcp.ProtocolNumber, tcpForwarder.HandlePacket)
|
||||
ipStack.SetTransportProtocolHandler(tcp.ProtocolNumber, NewTCPForwarder(t.ctx, ipStack, t.handler).HandlePacket)
|
||||
ipStack.SetTransportProtocolHandler(udp.ProtocolNumber, NewUDPForwarder(t.ctx, ipStack, t.handler, t.udpTimeout).HandlePacket)
|
||||
t.stack = ipStack
|
||||
t.endpoint = linkEndpoint
|
||||
|
@ -124,7 +105,7 @@ func AddrFromAddress(address tcpip.Address) netip.Addr {
|
|||
}
|
||||
}
|
||||
|
||||
func newGVisorStack(ep stack.LinkEndpoint) (*stack.Stack, error) {
|
||||
func NewGVisorStack(ep stack.LinkEndpoint) (*stack.Stack, error) {
|
||||
ipStack := stack.New(stack.Options{
|
||||
NetworkProtocols: []stack.NetworkProtocolFactory{
|
||||
ipv4.NewProtocol,
|
||||
|
@ -137,19 +118,19 @@ func newGVisorStack(ep stack.LinkEndpoint) (*stack.Stack, error) {
|
|||
icmp.NewProtocol6,
|
||||
},
|
||||
})
|
||||
err := ipStack.CreateNIC(defaultNIC, ep)
|
||||
err := ipStack.CreateNIC(DefaultNIC, ep)
|
||||
if err != nil {
|
||||
return nil, gonet.TranslateNetstackError(err)
|
||||
}
|
||||
ipStack.SetRouteTable([]tcpip.Route{
|
||||
{Destination: header.IPv4EmptySubnet, NIC: defaultNIC},
|
||||
{Destination: header.IPv6EmptySubnet, NIC: defaultNIC},
|
||||
{Destination: header.IPv4EmptySubnet, NIC: DefaultNIC},
|
||||
{Destination: header.IPv6EmptySubnet, NIC: DefaultNIC},
|
||||
})
|
||||
err = ipStack.SetSpoofing(defaultNIC, true)
|
||||
err = ipStack.SetSpoofing(DefaultNIC, true)
|
||||
if err != nil {
|
||||
return nil, gonet.TranslateNetstackError(err)
|
||||
}
|
||||
err = ipStack.SetPromiscuousMode(defaultNIC, true)
|
||||
err = ipStack.SetPromiscuousMode(DefaultNIC, true)
|
||||
if err != nil {
|
||||
return nil, gonet.TranslateNetstackError(err)
|
||||
}
|
||||
|
|
51
stack_gvisor_tcp.go
Normal file
51
stack_gvisor_tcp.go
Normal file
|
@ -0,0 +1,51 @@
|
|||
//go:build with_gvisor
|
||||
|
||||
package tun
|
||||
|
||||
import (
|
||||
"context"
|
||||
|
||||
"github.com/sagernet/gvisor/pkg/tcpip/stack"
|
||||
"github.com/sagernet/gvisor/pkg/tcpip/transport/tcp"
|
||||
M "github.com/sagernet/sing/common/metadata"
|
||||
N "github.com/sagernet/sing/common/network"
|
||||
)
|
||||
|
||||
type TCPForwarder struct {
|
||||
ctx context.Context
|
||||
stack *stack.Stack
|
||||
handler Handler
|
||||
forwarder *tcp.Forwarder
|
||||
}
|
||||
|
||||
func NewTCPForwarder(ctx context.Context, stack *stack.Stack, handler Handler) *TCPForwarder {
|
||||
forwarder := &TCPForwarder{
|
||||
ctx: ctx,
|
||||
stack: stack,
|
||||
handler: handler,
|
||||
}
|
||||
forwarder.forwarder = tcp.NewForwarder(stack, 0, 1024, forwarder.Forward)
|
||||
return forwarder
|
||||
}
|
||||
|
||||
func (f *TCPForwarder) HandlePacket(id stack.TransportEndpointID, pkt *stack.PacketBuffer) bool {
|
||||
return f.forwarder.HandlePacket(id, pkt)
|
||||
}
|
||||
|
||||
func (f *TCPForwarder) Forward(r *tcp.ForwarderRequest) {
|
||||
source := M.SocksaddrFrom(AddrFromAddress(r.ID().RemoteAddress), r.ID().RemotePort)
|
||||
destination := M.SocksaddrFrom(AddrFromAddress(r.ID().LocalAddress), r.ID().LocalPort)
|
||||
pErr := f.handler.PrepareConnection(N.NetworkTCP, source, destination)
|
||||
if pErr != nil {
|
||||
r.Complete(pErr != ErrDrop)
|
||||
return
|
||||
}
|
||||
conn := &gLazyConn{
|
||||
parentCtx: f.ctx,
|
||||
stack: f.stack,
|
||||
request: r,
|
||||
localAddr: source.TCPAddr(),
|
||||
remoteAddr: destination.TCPAddr(),
|
||||
}
|
||||
go f.handler.NewConnectionEx(f.ctx, conn, source, destination, nil)
|
||||
}
|
|
@ -123,7 +123,7 @@ func (w *UDPBackWriter) WritePacket(packetBuffer *buf.Buffer, destination M.Sock
|
|||
defer packetBuffer.Release()
|
||||
|
||||
route, err := w.stack.FindRoute(
|
||||
defaultNIC,
|
||||
DefaultNIC,
|
||||
AddressFromAddr(destination.Addr),
|
||||
w.source,
|
||||
w.sourceNetwork,
|
||||
|
|
|
@ -38,7 +38,7 @@ func (m *Mixed) Start() error {
|
|||
return err
|
||||
}
|
||||
endpoint := channel.New(1024, uint32(m.mtu), "")
|
||||
ipStack, err := newGVisorStack(endpoint)
|
||||
ipStack, err := NewGVisorStack(endpoint)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
@ -151,10 +151,10 @@ func (m *Mixed) processPacket(packet []byte) bool {
|
|||
writeBack bool
|
||||
err error
|
||||
)
|
||||
switch ipVersion := packet[0] >> 4; ipVersion {
|
||||
case 4:
|
||||
switch ipVersion := header.IPVersion(packet); ipVersion {
|
||||
case header.IPv4Version:
|
||||
writeBack, err = m.processIPv4(packet)
|
||||
case 6:
|
||||
case header.IPv6Version:
|
||||
writeBack, err = m.processIPv6(packet)
|
||||
default:
|
||||
err = E.New("ip: unknown version: ", ipVersion)
|
||||
|
|
|
@ -244,7 +244,7 @@ func (s *System) batchLoop(linuxTUN LinuxTUN, batchSize int) {
|
|||
}
|
||||
}
|
||||
if len(writeBuffers) > 0 {
|
||||
err = linuxTUN.BatchWrite(writeBuffers, s.frontHeadroom)
|
||||
_, err = linuxTUN.BatchWrite(writeBuffers, s.frontHeadroom)
|
||||
if err != nil {
|
||||
s.logger.Trace(E.Cause(err, "batch write packet"))
|
||||
}
|
||||
|
@ -419,7 +419,7 @@ func (s *System) resetIPv4TCP(origIPHdr header.IPv4, origTCPHdr header.TCP) erro
|
|||
ipHdr.SetChecksum(0)
|
||||
ipHdr.SetChecksum(^ipHdr.CalculateChecksum())
|
||||
if PacketOffset > 0 {
|
||||
newPacket.ExtendHeader(PacketOffset)[3] = syscall.AF_INET
|
||||
PacketFillHeader(newPacket.ExtendHeader(PacketOffset), header.IPv4Version)
|
||||
} else {
|
||||
newPacket.Advance(-s.frontHeadroom)
|
||||
}
|
||||
|
@ -502,7 +502,7 @@ func (s *System) resetIPv6TCP(origIPHdr header.IPv6, origTCPHdr header.TCP) erro
|
|||
tcpHdr.SetChecksum(^tcpHdr.CalculateChecksum(header.PseudoHeaderChecksum(header.TCPProtocolNumber, ipHdr.SourceAddressSlice(), ipHdr.DestinationAddressSlice(), header.TCPMinimumSize)))
|
||||
}
|
||||
if PacketOffset > 0 {
|
||||
newPacket.ExtendHeader(PacketOffset)[3] = syscall.AF_INET6
|
||||
PacketFillHeader(newPacket.ExtendHeader(PacketOffset), header.IPv6Version)
|
||||
} else {
|
||||
newPacket.Advance(-s.frontHeadroom)
|
||||
}
|
||||
|
@ -684,7 +684,7 @@ func (s *System) rejectIPv6WithICMP(ipHdr header.IPv6, code header.ICMPv6Code) e
|
|||
}))
|
||||
copy(icmpHdr.Payload(), payload)
|
||||
if PacketOffset > 0 {
|
||||
newPacket.ExtendHeader(PacketOffset)[3] = syscall.AF_INET6
|
||||
PacketFillHeader(newPacket.ExtendHeader(PacketOffset), header.IPv6Version)
|
||||
} else {
|
||||
newPacket.Advance(-s.frontHeadroom)
|
||||
}
|
||||
|
@ -724,7 +724,7 @@ func (w *systemUDPPacketWriter4) WritePacket(buffer *buf.Buffer, destination M.S
|
|||
ipHdr.SetChecksum(0)
|
||||
ipHdr.SetChecksum(^ipHdr.CalculateChecksum())
|
||||
if PacketOffset > 0 {
|
||||
newPacket.ExtendHeader(PacketOffset)[3] = syscall.AF_INET
|
||||
PacketFillHeader(newPacket.ExtendHeader(PacketOffset), header.IPv4Version)
|
||||
} else {
|
||||
newPacket.Advance(-w.frontHeadroom)
|
||||
}
|
||||
|
@ -763,7 +763,7 @@ func (w *systemUDPPacketWriter6) WritePacket(buffer *buf.Buffer, destination M.S
|
|||
udpHdr.SetChecksum(0)
|
||||
}
|
||||
if PacketOffset > 0 {
|
||||
newPacket.ExtendHeader(PacketOffset)[3] = syscall.AF_INET6
|
||||
PacketFillHeader(newPacket.ExtendHeader(PacketOffset), header.IPv6Version)
|
||||
} else {
|
||||
newPacket.Advance(-w.frontHeadroom)
|
||||
}
|
||||
|
|
34
stack_system_packet.go
Normal file
34
stack_system_packet.go
Normal file
|
@ -0,0 +1,34 @@
|
|||
package tun
|
||||
|
||||
import (
|
||||
"net/netip"
|
||||
"syscall"
|
||||
|
||||
"github.com/sagernet/sing-tun/internal/gtcpip/header"
|
||||
)
|
||||
|
||||
func PacketIPVersion(packet []byte) int {
|
||||
return header.IPVersion(packet)
|
||||
}
|
||||
|
||||
func PacketFillHeader(packet []byte, ipVersion int) {
|
||||
if PacketOffset > 0 {
|
||||
switch ipVersion {
|
||||
case header.IPv4Version:
|
||||
packet[3] = syscall.AF_INET
|
||||
case header.IPv6Version:
|
||||
packet[3] = syscall.AF_INET6
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func PacketDestination(packet []byte) netip.Addr {
|
||||
switch ipVersion := header.IPVersion(packet); ipVersion {
|
||||
case header.IPv4Version:
|
||||
return header.IPv4(packet).DestinationAddr()
|
||||
case header.IPv6Version:
|
||||
return header.IPv6(packet).DestinationAddr()
|
||||
default:
|
||||
return netip.Addr{}
|
||||
}
|
||||
}
|
7
tun.go
7
tun.go
|
@ -8,6 +8,7 @@ import (
|
|||
"strconv"
|
||||
"strings"
|
||||
|
||||
"github.com/sagernet/sing/common/control"
|
||||
F "github.com/sagernet/sing/common/format"
|
||||
"github.com/sagernet/sing/common/logger"
|
||||
M "github.com/sagernet/sing/common/metadata"
|
||||
|
@ -38,7 +39,9 @@ type LinuxTUN interface {
|
|||
N.FrontHeadroom
|
||||
BatchSize() int
|
||||
BatchRead(buffers [][]byte, offset int, readN []int) (n int, err error)
|
||||
BatchWrite(buffers [][]byte, offset int) error
|
||||
BatchWrite(buffers [][]byte, offset int) (n int, err error)
|
||||
DisableUDPGRO()
|
||||
DisableTCPGRO()
|
||||
TXChecksumOffload() bool
|
||||
}
|
||||
|
||||
|
@ -54,6 +57,7 @@ type Options struct {
|
|||
MTU uint32
|
||||
GSO bool
|
||||
AutoRoute bool
|
||||
InterfaceScope bool
|
||||
Inet4Gateway netip.Addr
|
||||
Inet6Gateway netip.Addr
|
||||
DNSServers []netip.Addr
|
||||
|
@ -74,6 +78,7 @@ type Options struct {
|
|||
IncludeAndroidUser []int
|
||||
IncludePackage []string
|
||||
ExcludePackage []string
|
||||
InterfaceFinder control.InterfaceFinder
|
||||
InterfaceMonitor DefaultInterfaceMonitor
|
||||
FileDescriptor int
|
||||
Logger logger.Logger
|
||||
|
|
|
@ -9,6 +9,7 @@ import (
|
|||
"syscall"
|
||||
"unsafe"
|
||||
|
||||
"github.com/sagernet/sing-tun/internal/gtcpip/header"
|
||||
"github.com/sagernet/sing/common"
|
||||
"github.com/sagernet/sing/common/buf"
|
||||
"github.com/sagernet/sing/common/bufio"
|
||||
|
@ -96,9 +97,10 @@ var (
|
|||
|
||||
func (t *NativeTun) WriteVectorised(buffers []*buf.Buffer) error {
|
||||
var packetHeader []byte
|
||||
if buffers[0].Byte(0)>>4 == 4 {
|
||||
switch header.IPVersion(buffers[0].Bytes()) {
|
||||
case header.IPv4Version:
|
||||
packetHeader = packetHeader4[:]
|
||||
} else {
|
||||
case header.IPv6Version:
|
||||
packetHeader = packetHeader6[:]
|
||||
}
|
||||
return t.tunWriter.WriteVectorised(append([]*buf.Buffer{buf.As(packetHeader)}, buffers...))
|
||||
|
@ -250,6 +252,7 @@ func configure(tunFd int, ifIndex int, name string, options Options) error {
|
|||
|
||||
func (t *NativeTun) setRoutes() error {
|
||||
if t.options.AutoRoute && t.options.FileDescriptor == 0 {
|
||||
|
||||
routeRanges, err := t.options.BuildAutoRouteRanges(false)
|
||||
if err != nil {
|
||||
return err
|
||||
|
@ -262,14 +265,22 @@ func (t *NativeTun) setRoutes() error {
|
|||
} else {
|
||||
gateway = gateway6
|
||||
}
|
||||
err = execRoute(unix.RTM_ADD, destination, gateway)
|
||||
var interfaceIndex int
|
||||
if t.options.InterfaceScope {
|
||||
iff, err := t.options.InterfaceFinder.ByName(t.options.Name)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
interfaceIndex = iff.Index
|
||||
}
|
||||
err = execRoute(unix.RTM_ADD, t.options.InterfaceScope, interfaceIndex, destination, gateway)
|
||||
if err != nil {
|
||||
if errors.Is(err, unix.EEXIST) {
|
||||
err = execRoute(unix.RTM_DELETE, destination, gateway)
|
||||
err = execRoute(unix.RTM_DELETE, false, 0, destination, gateway)
|
||||
if err != nil {
|
||||
return E.Cause(err, "remove existing route: ", destination)
|
||||
}
|
||||
err = execRoute(unix.RTM_ADD, destination, gateway)
|
||||
err = execRoute(unix.RTM_ADD, t.options.InterfaceScope, interfaceIndex, destination, gateway)
|
||||
if err != nil {
|
||||
return E.Cause(err, "re-add route: ", destination)
|
||||
}
|
||||
|
@ -300,7 +311,7 @@ func (t *NativeTun) unsetRoutes() error {
|
|||
} else {
|
||||
gateway = gateway6
|
||||
}
|
||||
err = execRoute(unix.RTM_DELETE, destination, gateway)
|
||||
err = execRoute(unix.RTM_DELETE, false, 0, destination, gateway)
|
||||
if err != nil {
|
||||
err = E.Errors(err, E.Cause(err, "delete route: ", destination))
|
||||
}
|
||||
|
@ -317,7 +328,7 @@ func useSocket(domain, typ, proto int, block func(socketFd int) error) error {
|
|||
return block(socketFd)
|
||||
}
|
||||
|
||||
func execRoute(rtmType int, destination netip.Prefix, gateway netip.Addr) error {
|
||||
func execRoute(rtmType int, interfaceScope bool, interfaceIndex int, destination netip.Prefix, gateway netip.Addr) error {
|
||||
routeMessage := route.RouteMessage{
|
||||
Type: rtmType,
|
||||
Version: unix.RTM_VERSION,
|
||||
|
@ -326,6 +337,10 @@ func execRoute(rtmType int, destination netip.Prefix, gateway netip.Addr) error
|
|||
}
|
||||
if rtmType == unix.RTM_ADD {
|
||||
routeMessage.Flags |= unix.RTF_UP
|
||||
if interfaceScope {
|
||||
routeMessage.Flags |= unix.RTF_IFSCOPE
|
||||
routeMessage.Index = interfaceIndex
|
||||
}
|
||||
}
|
||||
if gateway.Is4() {
|
||||
routeMessage.Addrs = []route.Addr{
|
||||
|
|
184
tun_linux.go
184
tun_linux.go
|
@ -2,6 +2,7 @@ package tun
|
|||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"math/rand"
|
||||
"net"
|
||||
"net/netip"
|
||||
|
@ -35,13 +36,15 @@ type NativeTun struct {
|
|||
interfaceCallback *list.Element[DefaultInterfaceUpdateCallback]
|
||||
options Options
|
||||
ruleIndex6 []int
|
||||
gsoEnabled bool
|
||||
gsoBuffer []byte
|
||||
readAccess sync.Mutex
|
||||
writeAccess sync.Mutex
|
||||
vnetHdr bool
|
||||
writeBuffer []byte
|
||||
gsoToWrite []int
|
||||
gsoReadAccess sync.Mutex
|
||||
tcpGROAccess sync.Mutex
|
||||
tcp4GROTable *tcpGROTable
|
||||
tcp6GROTable *tcpGROTable
|
||||
tcpGROTable *tcpGROTable
|
||||
udpGroAccess sync.Mutex
|
||||
udpGROTable *udpGROTable
|
||||
gro groDisablementFlags
|
||||
txChecksumOffload bool
|
||||
}
|
||||
|
||||
|
@ -81,20 +84,23 @@ func New(options Options) (Tun, error) {
|
|||
}
|
||||
|
||||
func (t *NativeTun) FrontHeadroom() int {
|
||||
if t.gsoEnabled {
|
||||
if t.vnetHdr {
|
||||
return virtioNetHdrLen
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
func (t *NativeTun) Read(p []byte) (n int, err error) {
|
||||
if t.gsoEnabled {
|
||||
n, err = t.tunFile.Read(t.gsoBuffer)
|
||||
if t.vnetHdr {
|
||||
n, err = t.tunFile.Read(t.writeBuffer)
|
||||
if err != nil {
|
||||
if errors.Is(err, syscall.EBADFD) {
|
||||
err = os.ErrClosed
|
||||
}
|
||||
return
|
||||
}
|
||||
var sizes [1]int
|
||||
n, err = handleVirtioRead(t.gsoBuffer[:n], [][]byte{p}, sizes[:], 0)
|
||||
n, err = handleVirtioRead(t.writeBuffer[:n], [][]byte{p}, sizes[:], 0)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
@ -108,9 +114,50 @@ func (t *NativeTun) Read(p []byte) (n int, err error) {
|
|||
}
|
||||
}
|
||||
|
||||
// handleVirtioRead splits in into bufs, leaving offset bytes at the front of
|
||||
// each buffer. It mutates sizes to reflect the size of each element of bufs,
|
||||
// and returns the number of packets read.
|
||||
func handleVirtioRead(in []byte, bufs [][]byte, sizes []int, offset int) (int, error) {
|
||||
var hdr virtioNetHdr
|
||||
err := hdr.decode(in)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
in = in[virtioNetHdrLen:]
|
||||
|
||||
options, err := hdr.toGSOOptions()
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
// Don't trust HdrLen from the kernel as it can be equal to the length
|
||||
// of the entire first packet when the kernel is handling it as part of a
|
||||
// FORWARD path. Instead, parse the transport header length and add it onto
|
||||
// CsumStart, which is synonymous for IP header length.
|
||||
if options.GSOType == GSOUDPL4 {
|
||||
options.HdrLen = options.CsumStart + 8
|
||||
} else if options.GSOType != GSONone {
|
||||
if len(in) <= int(options.CsumStart+12) {
|
||||
return 0, errors.New("packet is too short")
|
||||
}
|
||||
|
||||
tcpHLen := uint16(in[options.CsumStart+12] >> 4 * 4)
|
||||
if tcpHLen < 20 || tcpHLen > 60 {
|
||||
// A TCP header must be between 20 and 60 bytes in length.
|
||||
return 0, fmt.Errorf("tcp header len is invalid: %d", tcpHLen)
|
||||
}
|
||||
options.HdrLen = options.CsumStart + tcpHLen
|
||||
}
|
||||
|
||||
return GSOSplit(in, options, bufs, sizes, offset)
|
||||
}
|
||||
|
||||
func (t *NativeTun) Write(p []byte) (n int, err error) {
|
||||
if t.gsoEnabled {
|
||||
err = t.BatchWrite([][]byte{p}, virtioNetHdrLen)
|
||||
if t.vnetHdr {
|
||||
buffer := buf.Get(virtioNetHdrLen + len(p))
|
||||
copy(buffer[virtioNetHdrLen:], p)
|
||||
_, err = t.BatchWrite([][]byte{buffer}, virtioNetHdrLen)
|
||||
buf.Put(buffer)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
@ -121,7 +168,7 @@ func (t *NativeTun) Write(p []byte) (n int, err error) {
|
|||
}
|
||||
|
||||
func (t *NativeTun) WriteVectorised(buffers []*buf.Buffer) error {
|
||||
if t.gsoEnabled {
|
||||
if t.vnetHdr {
|
||||
n := buf.LenMulti(buffers)
|
||||
buffer := buf.NewSize(virtioNetHdrLen + n)
|
||||
buffer.Truncate(virtioNetHdrLen)
|
||||
|
@ -135,7 +182,7 @@ func (t *NativeTun) WriteVectorised(buffers []*buf.Buffer) error {
|
|||
}
|
||||
|
||||
func (t *NativeTun) BatchSize() int {
|
||||
if !t.gsoEnabled {
|
||||
if !t.vnetHdr {
|
||||
return 1
|
||||
}
|
||||
/* // Not works on some devices: https://github.com/SagerNet/sing-box/issues/1605
|
||||
|
@ -147,36 +194,67 @@ func (t *NativeTun) BatchSize() int {
|
|||
return idealBatchSize
|
||||
}
|
||||
|
||||
// DisableUDPGRO disables UDP GRO if it is enabled. See the GRODevice interface
|
||||
// for cases where it should be called.
|
||||
func (t *NativeTun) DisableUDPGRO() {
|
||||
t.writeAccess.Lock()
|
||||
t.gro.disableUDPGRO()
|
||||
t.writeAccess.Unlock()
|
||||
}
|
||||
|
||||
// DisableTCPGRO disables TCP GRO if it is enabled. See the GRODevice interface
|
||||
// for cases where it should be called.
|
||||
func (t *NativeTun) DisableTCPGRO() {
|
||||
t.writeAccess.Lock()
|
||||
t.gro.disableTCPGRO()
|
||||
t.writeAccess.Unlock()
|
||||
}
|
||||
|
||||
func (t *NativeTun) BatchRead(buffers [][]byte, offset int, readN []int) (n int, err error) {
|
||||
t.gsoReadAccess.Lock()
|
||||
defer t.gsoReadAccess.Unlock()
|
||||
n, err = t.tunFile.Read(t.gsoBuffer)
|
||||
t.readAccess.Lock()
|
||||
defer t.readAccess.Unlock()
|
||||
n, err = t.tunFile.Read(t.writeBuffer)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
return handleVirtioRead(t.gsoBuffer[:n], buffers, readN, offset)
|
||||
return handleVirtioRead(t.writeBuffer[:n], buffers, readN, offset)
|
||||
}
|
||||
|
||||
func (t *NativeTun) BatchWrite(buffers [][]byte, offset int) error {
|
||||
t.tcpGROAccess.Lock()
|
||||
func (t *NativeTun) BatchWrite(buffers [][]byte, offset int) (int, error) {
|
||||
t.writeAccess.Lock()
|
||||
defer func() {
|
||||
t.tcp4GROTable.reset()
|
||||
t.tcp6GROTable.reset()
|
||||
t.tcpGROAccess.Unlock()
|
||||
t.tcpGROTable.reset()
|
||||
t.udpGROTable.reset()
|
||||
t.writeAccess.Unlock()
|
||||
}()
|
||||
var (
|
||||
errs error
|
||||
total int
|
||||
)
|
||||
t.gsoToWrite = t.gsoToWrite[:0]
|
||||
err := handleGRO(buffers, offset, t.tcp4GROTable, t.tcp6GROTable, &t.gsoToWrite)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
offset -= virtioNetHdrLen
|
||||
for _, bufferIndex := range t.gsoToWrite {
|
||||
_, err = t.tunFile.Write(buffers[bufferIndex][offset:])
|
||||
if t.vnetHdr {
|
||||
err := handleGRO(buffers, offset, t.tcpGROTable, t.udpGROTable, t.gro, &t.gsoToWrite)
|
||||
if err != nil {
|
||||
return err
|
||||
return 0, err
|
||||
}
|
||||
offset -= virtioNetHdrLen
|
||||
} else {
|
||||
for i := range buffers {
|
||||
t.gsoToWrite = append(t.gsoToWrite, i)
|
||||
}
|
||||
}
|
||||
return nil
|
||||
for _, toWrite := range t.gsoToWrite {
|
||||
n, err := t.tunFile.Write(buffers[toWrite][offset:])
|
||||
if errors.Is(err, syscall.EBADFD) {
|
||||
return total, os.ErrClosed
|
||||
}
|
||||
if err != nil {
|
||||
errs = errors.Join(errs, err)
|
||||
} else {
|
||||
total += n
|
||||
}
|
||||
}
|
||||
return total, errs
|
||||
}
|
||||
|
||||
var controlPath string
|
||||
|
@ -250,22 +328,10 @@ func (t *NativeTun) configure(tunLink netlink.Link) error {
|
|||
}
|
||||
|
||||
if t.options.GSO {
|
||||
var vnetHdrEnabled bool
|
||||
vnetHdrEnabled, err = checkVNETHDREnabled(t.tunFd, t.options.Name)
|
||||
err = t.enableGSO()
|
||||
if err != nil {
|
||||
return E.Cause(err, "enable offload: check IFF_VNET_HDR enabled")
|
||||
t.options.Logger.Warn(err)
|
||||
}
|
||||
if !vnetHdrEnabled {
|
||||
return E.Cause(err, "enable offload: IFF_VNET_HDR not enabled")
|
||||
}
|
||||
err = setTCPOffload(t.tunFd)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
t.gsoEnabled = true
|
||||
t.gsoBuffer = make([]byte, virtioNetHdrLen+int(gsoMaxSize))
|
||||
t.tcp4GROTable = newTCPGROTable()
|
||||
t.tcp6GROTable = newTCPGROTable()
|
||||
}
|
||||
|
||||
var rxChecksumOffload bool
|
||||
|
@ -280,7 +346,7 @@ func (t *NativeTun) configure(tunLink netlink.Link) error {
|
|||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if err == nil && !txChecksumOffload {
|
||||
if !txChecksumOffload {
|
||||
err = setChecksumOffload(t.options.Name, unix.ETHTOOL_STXCSUM)
|
||||
if err != nil {
|
||||
return err
|
||||
|
@ -292,6 +358,30 @@ func (t *NativeTun) configure(tunLink netlink.Link) error {
|
|||
return nil
|
||||
}
|
||||
|
||||
func (t *NativeTun) enableGSO() error {
|
||||
vnetHdrEnabled, err := checkVNETHDREnabled(t.tunFd, t.options.Name)
|
||||
if err != nil {
|
||||
return E.Cause(err, "enable offload: check IFF_VNET_HDR enabled")
|
||||
}
|
||||
if !vnetHdrEnabled {
|
||||
return E.Cause(err, "enable offload: IFF_VNET_HDR not enabled")
|
||||
}
|
||||
err = setTCPOffload(t.tunFd)
|
||||
if err != nil {
|
||||
return E.Cause(err, "enable TCP offload")
|
||||
}
|
||||
t.vnetHdr = true
|
||||
t.writeBuffer = make([]byte, virtioNetHdrLen+int(gsoMaxSize))
|
||||
t.tcpGROTable = newTCPGROTable()
|
||||
t.udpGROTable = newUDPGROTable()
|
||||
err = setUDPOffload(t.tunFd)
|
||||
if err != nil {
|
||||
t.gro.disableUDPGRO()
|
||||
return E.Cause(err, "enable UDP offload")
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (t *NativeTun) Start() error {
|
||||
if t.options.FileDescriptor != 0 {
|
||||
return nil
|
||||
|
|
|
@ -12,6 +12,12 @@ import (
|
|||
"golang.org/x/sys/unix"
|
||||
)
|
||||
|
||||
const (
|
||||
// TODO: support TSO with ECN bits
|
||||
tunTCPOffloads = unix.TUN_F_CSUM | unix.TUN_F_TSO4 | unix.TUN_F_TSO6
|
||||
tunUDPOffloads = unix.TUN_F_USO4 | unix.TUN_F_USO6
|
||||
)
|
||||
|
||||
func checkVNETHDREnabled(fd int, name string) (bool, error) {
|
||||
ifr, err := unix.NewIfreq(name)
|
||||
if err != nil {
|
||||
|
@ -25,17 +31,17 @@ func checkVNETHDREnabled(fd int, name string) (bool, error) {
|
|||
}
|
||||
|
||||
func setTCPOffload(fd int) error {
|
||||
const (
|
||||
// TODO: support TSO with ECN bits
|
||||
tunOffloads = unix.TUN_F_CSUM | unix.TUN_F_TSO4 | unix.TUN_F_TSO6
|
||||
)
|
||||
err := unix.IoctlSetInt(fd, unix.TUNSETOFFLOAD, tunOffloads)
|
||||
err := unix.IoctlSetInt(fd, unix.TUNSETOFFLOAD, tunTCPOffloads)
|
||||
if err != nil {
|
||||
return E.Cause(os.NewSyscallError("TUNSETOFFLOAD", err), "enable offload")
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func setUDPOffload(fd int) error {
|
||||
return unix.IoctlSetInt(fd, unix.TUNSETOFFLOAD, tunTCPOffloads|tunUDPOffloads)
|
||||
}
|
||||
|
||||
type ifreqData struct {
|
||||
ifrName [unix.IFNAMSIZ]byte
|
||||
ifrData uintptr
|
||||
|
|
|
@ -10,11 +10,12 @@ import (
|
|||
var _ GVisorTun = (*NativeTun)(nil)
|
||||
|
||||
func (t *NativeTun) NewEndpoint() (stack.LinkEndpoint, error) {
|
||||
if t.gsoEnabled {
|
||||
if t.vnetHdr {
|
||||
return fdbased.New(&fdbased.Options{
|
||||
FDs: []int{t.tunFd},
|
||||
MTU: t.options.MTU,
|
||||
GSOMaxSize: gsoMaxSize,
|
||||
GRO: true,
|
||||
RXChecksumOffload: true,
|
||||
TXChecksumOffload: t.txChecksumOffload,
|
||||
})
|
||||
|
|
|
@ -1,768 +0,0 @@
|
|||
//go:build linux
|
||||
|
||||
/* SPDX-License-Identifier: MIT
|
||||
*
|
||||
* Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
|
||||
*/
|
||||
|
||||
package tun
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"unsafe"
|
||||
|
||||
"github.com/sagernet/sing-tun/internal/gtcpip/checksum"
|
||||
E "github.com/sagernet/sing/common/exceptions"
|
||||
|
||||
"golang.org/x/sys/unix"
|
||||
)
|
||||
|
||||
const (
|
||||
gsoMaxSize = 65536
|
||||
tcpFlagsOffset = 13
|
||||
idealBatchSize = 128
|
||||
)
|
||||
|
||||
const (
|
||||
tcpFlagFIN uint8 = 0x01
|
||||
tcpFlagPSH uint8 = 0x08
|
||||
tcpFlagACK uint8 = 0x10
|
||||
)
|
||||
|
||||
// virtioNetHdr is defined in the kernel in include/uapi/linux/virtio_net.h. The
|
||||
// kernel symbol is virtio_net_hdr.
|
||||
type virtioNetHdr struct {
|
||||
flags uint8
|
||||
gsoType uint8
|
||||
hdrLen uint16
|
||||
gsoSize uint16
|
||||
csumStart uint16
|
||||
csumOffset uint16
|
||||
}
|
||||
|
||||
func (v *virtioNetHdr) decode(b []byte) error {
|
||||
if len(b) < virtioNetHdrLen {
|
||||
return io.ErrShortBuffer
|
||||
}
|
||||
copy(unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen), b[:virtioNetHdrLen])
|
||||
return nil
|
||||
}
|
||||
|
||||
func (v *virtioNetHdr) encode(b []byte) error {
|
||||
if len(b) < virtioNetHdrLen {
|
||||
return io.ErrShortBuffer
|
||||
}
|
||||
copy(b[:virtioNetHdrLen], unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen))
|
||||
return nil
|
||||
}
|
||||
|
||||
const (
|
||||
// virtioNetHdrLen is the length in bytes of virtioNetHdr. This matches the
|
||||
// shape of the C ABI for its kernel counterpart -- sizeof(virtio_net_hdr).
|
||||
virtioNetHdrLen = int(unsafe.Sizeof(virtioNetHdr{}))
|
||||
)
|
||||
|
||||
// flowKey represents the key for a flow.
|
||||
type flowKey struct {
|
||||
srcAddr, dstAddr [16]byte
|
||||
srcPort, dstPort uint16
|
||||
rxAck uint32 // varying ack values should not be coalesced. Treat them as separate flows.
|
||||
}
|
||||
|
||||
// tcpGROTable holds flow and coalescing information for the purposes of GRO.
|
||||
type tcpGROTable struct {
|
||||
itemsByFlow map[flowKey][]tcpGROItem
|
||||
itemsPool [][]tcpGROItem
|
||||
}
|
||||
|
||||
func newTCPGROTable() *tcpGROTable {
|
||||
t := &tcpGROTable{
|
||||
itemsByFlow: make(map[flowKey][]tcpGROItem, idealBatchSize),
|
||||
itemsPool: make([][]tcpGROItem, idealBatchSize),
|
||||
}
|
||||
for i := range t.itemsPool {
|
||||
t.itemsPool[i] = make([]tcpGROItem, 0, idealBatchSize)
|
||||
}
|
||||
return t
|
||||
}
|
||||
|
||||
func newFlowKey(pkt []byte, srcAddr, dstAddr, tcphOffset int) flowKey {
|
||||
key := flowKey{}
|
||||
addrSize := dstAddr - srcAddr
|
||||
copy(key.srcAddr[:], pkt[srcAddr:dstAddr])
|
||||
copy(key.dstAddr[:], pkt[dstAddr:dstAddr+addrSize])
|
||||
key.srcPort = binary.BigEndian.Uint16(pkt[tcphOffset:])
|
||||
key.dstPort = binary.BigEndian.Uint16(pkt[tcphOffset+2:])
|
||||
key.rxAck = binary.BigEndian.Uint32(pkt[tcphOffset+8:])
|
||||
return key
|
||||
}
|
||||
|
||||
// lookupOrInsert looks up a flow for the provided packet and metadata,
|
||||
// returning the packets found for the flow, or inserting a new one if none
|
||||
// is found.
|
||||
func (t *tcpGROTable) lookupOrInsert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex int) ([]tcpGROItem, bool) {
|
||||
key := newFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset)
|
||||
items, ok := t.itemsByFlow[key]
|
||||
if ok {
|
||||
return items, ok
|
||||
}
|
||||
// TODO: insert() performs another map lookup. This could be rearranged to avoid.
|
||||
t.insert(pkt, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex)
|
||||
return nil, false
|
||||
}
|
||||
|
||||
// insert an item in the table for the provided packet and packet metadata.
|
||||
func (t *tcpGROTable) insert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex int) {
|
||||
key := newFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset)
|
||||
item := tcpGROItem{
|
||||
key: key,
|
||||
bufsIndex: uint16(bufsIndex),
|
||||
gsoSize: uint16(len(pkt[tcphOffset+tcphLen:])),
|
||||
iphLen: uint8(tcphOffset),
|
||||
tcphLen: uint8(tcphLen),
|
||||
sentSeq: binary.BigEndian.Uint32(pkt[tcphOffset+4:]),
|
||||
pshSet: pkt[tcphOffset+tcpFlagsOffset]&tcpFlagPSH != 0,
|
||||
}
|
||||
items, ok := t.itemsByFlow[key]
|
||||
if !ok {
|
||||
items = t.newItems()
|
||||
}
|
||||
items = append(items, item)
|
||||
t.itemsByFlow[key] = items
|
||||
}
|
||||
|
||||
func (t *tcpGROTable) updateAt(item tcpGROItem, i int) {
|
||||
items, _ := t.itemsByFlow[item.key]
|
||||
items[i] = item
|
||||
}
|
||||
|
||||
func (t *tcpGROTable) deleteAt(key flowKey, i int) {
|
||||
items, _ := t.itemsByFlow[key]
|
||||
items = append(items[:i], items[i+1:]...)
|
||||
t.itemsByFlow[key] = items
|
||||
}
|
||||
|
||||
// tcpGROItem represents bookkeeping data for a TCP packet during the lifetime
|
||||
// of a GRO evaluation across a vector of packets.
|
||||
type tcpGROItem struct {
|
||||
key flowKey
|
||||
sentSeq uint32 // the sequence number
|
||||
bufsIndex uint16 // the index into the original bufs slice
|
||||
numMerged uint16 // the number of packets merged into this item
|
||||
gsoSize uint16 // payload size
|
||||
iphLen uint8 // ip header len
|
||||
tcphLen uint8 // tcp header len
|
||||
pshSet bool // psh flag is set
|
||||
}
|
||||
|
||||
func (t *tcpGROTable) newItems() []tcpGROItem {
|
||||
var items []tcpGROItem
|
||||
items, t.itemsPool = t.itemsPool[len(t.itemsPool)-1], t.itemsPool[:len(t.itemsPool)-1]
|
||||
return items
|
||||
}
|
||||
|
||||
func (t *tcpGROTable) reset() {
|
||||
for k, items := range t.itemsByFlow {
|
||||
items = items[:0]
|
||||
t.itemsPool = append(t.itemsPool, items)
|
||||
delete(t.itemsByFlow, k)
|
||||
}
|
||||
}
|
||||
|
||||
// canCoalesce represents the outcome of checking if two TCP packets are
|
||||
// candidates for coalescing.
|
||||
type canCoalesce int
|
||||
|
||||
const (
|
||||
coalescePrepend canCoalesce = -1
|
||||
coalesceUnavailable canCoalesce = 0
|
||||
coalesceAppend canCoalesce = 1
|
||||
)
|
||||
|
||||
// tcpPacketsCanCoalesce evaluates if pkt can be coalesced with the packet
|
||||
// described by item. This function makes considerations that match the kernel's
|
||||
// GRO self tests, which can be found in tools/testing/selftests/net/gro.c.
|
||||
func tcpPacketsCanCoalesce(pkt []byte, iphLen, tcphLen uint8, seq uint32, pshSet bool, gsoSize uint16, item tcpGROItem, bufs [][]byte, bufsOffset int) canCoalesce {
|
||||
pktTarget := bufs[item.bufsIndex][bufsOffset:]
|
||||
if tcphLen != item.tcphLen {
|
||||
// cannot coalesce with unequal tcp options len
|
||||
return coalesceUnavailable
|
||||
}
|
||||
if tcphLen > 20 {
|
||||
if !bytes.Equal(pkt[iphLen+20:iphLen+tcphLen], pktTarget[item.iphLen+20:iphLen+tcphLen]) {
|
||||
// cannot coalesce with unequal tcp options
|
||||
return coalesceUnavailable
|
||||
}
|
||||
}
|
||||
if pkt[0]>>4 == 6 {
|
||||
if pkt[0] != pktTarget[0] || pkt[1]>>4 != pktTarget[1]>>4 {
|
||||
// cannot coalesce with unequal Traffic class values
|
||||
return coalesceUnavailable
|
||||
}
|
||||
if pkt[7] != pktTarget[7] {
|
||||
// cannot coalesce with unequal Hop limit values
|
||||
return coalesceUnavailable
|
||||
}
|
||||
} else {
|
||||
if pkt[1] != pktTarget[1] {
|
||||
// cannot coalesce with unequal ToS values
|
||||
return coalesceUnavailable
|
||||
}
|
||||
if pkt[6]>>5 != pktTarget[6]>>5 {
|
||||
// cannot coalesce with unequal DF or reserved bits. MF is checked
|
||||
// further up the stack.
|
||||
return coalesceUnavailable
|
||||
}
|
||||
if pkt[8] != pktTarget[8] {
|
||||
// cannot coalesce with unequal TTL values
|
||||
return coalesceUnavailable
|
||||
}
|
||||
}
|
||||
// seq adjacency
|
||||
lhsLen := item.gsoSize
|
||||
lhsLen += item.numMerged * item.gsoSize
|
||||
if seq == item.sentSeq+uint32(lhsLen) { // pkt aligns following item from a seq num perspective
|
||||
if item.pshSet {
|
||||
// We cannot append to a segment that has the PSH flag set, PSH
|
||||
// can only be set on the final segment in a reassembled group.
|
||||
return coalesceUnavailable
|
||||
}
|
||||
if len(pktTarget[iphLen+tcphLen:])%int(item.gsoSize) != 0 {
|
||||
// A smaller than gsoSize packet has been appended previously.
|
||||
// Nothing can come after a smaller packet on the end.
|
||||
return coalesceUnavailable
|
||||
}
|
||||
if gsoSize > item.gsoSize {
|
||||
// We cannot have a larger packet following a smaller one.
|
||||
return coalesceUnavailable
|
||||
}
|
||||
return coalesceAppend
|
||||
} else if seq+uint32(gsoSize) == item.sentSeq { // pkt aligns in front of item from a seq num perspective
|
||||
if pshSet {
|
||||
// We cannot prepend with a segment that has the PSH flag set, PSH
|
||||
// can only be set on the final segment in a reassembled group.
|
||||
return coalesceUnavailable
|
||||
}
|
||||
if gsoSize < item.gsoSize {
|
||||
// We cannot have a larger packet following a smaller one.
|
||||
return coalesceUnavailable
|
||||
}
|
||||
if gsoSize > item.gsoSize && item.numMerged > 0 {
|
||||
// There's at least one previous merge, and we're larger than all
|
||||
// previous. This would put multiple smaller packets on the end.
|
||||
return coalesceUnavailable
|
||||
}
|
||||
return coalescePrepend
|
||||
}
|
||||
return coalesceUnavailable
|
||||
}
|
||||
|
||||
func tcpChecksumValid(pkt []byte, iphLen uint8, isV6 bool) bool {
|
||||
srcAddrAt := ipv4SrcAddrOffset
|
||||
addrSize := 4
|
||||
if isV6 {
|
||||
srcAddrAt = ipv6SrcAddrOffset
|
||||
addrSize = 16
|
||||
}
|
||||
tcpTotalLen := uint16(len(pkt) - int(iphLen))
|
||||
tcpCSumNoFold := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, pkt[srcAddrAt:srcAddrAt+addrSize], pkt[srcAddrAt+addrSize:srcAddrAt+addrSize*2], tcpTotalLen)
|
||||
return ^checksumFold(pkt[iphLen:], tcpCSumNoFold) == 0
|
||||
}
|
||||
|
||||
// coalesceResult represents the result of attempting to coalesce two TCP
|
||||
// packets.
|
||||
type coalesceResult int
|
||||
|
||||
const (
|
||||
coalesceInsufficientCap coalesceResult = iota
|
||||
coalescePSHEnding
|
||||
coalesceItemInvalidCSum
|
||||
coalescePktInvalidCSum
|
||||
coalesceSuccess
|
||||
)
|
||||
|
||||
// coalesceTCPPackets attempts to coalesce pkt with the packet described by
|
||||
// item, returning the outcome. This function may swap bufs elements in the
|
||||
// event of a prepend as item's bufs index is already being tracked for writing
|
||||
// to a Device.
|
||||
func coalesceTCPPackets(mode canCoalesce, pkt []byte, pktBuffsIndex int, gsoSize uint16, seq uint32, pshSet bool, item *tcpGROItem, bufs [][]byte, bufsOffset int, isV6 bool) coalesceResult {
|
||||
var pktHead []byte // the packet that will end up at the front
|
||||
headersLen := item.iphLen + item.tcphLen
|
||||
coalescedLen := len(bufs[item.bufsIndex][bufsOffset:]) + len(pkt) - int(headersLen)
|
||||
|
||||
// Copy data
|
||||
if mode == coalescePrepend {
|
||||
pktHead = pkt
|
||||
if cap(pkt)-bufsOffset < coalescedLen {
|
||||
// We don't want to allocate a new underlying array if capacity is
|
||||
// too small.
|
||||
return coalesceInsufficientCap
|
||||
}
|
||||
if pshSet {
|
||||
return coalescePSHEnding
|
||||
}
|
||||
if item.numMerged == 0 {
|
||||
if !tcpChecksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, isV6) {
|
||||
return coalesceItemInvalidCSum
|
||||
}
|
||||
}
|
||||
if !tcpChecksumValid(pkt, item.iphLen, isV6) {
|
||||
return coalescePktInvalidCSum
|
||||
}
|
||||
item.sentSeq = seq
|
||||
extendBy := coalescedLen - len(pktHead)
|
||||
bufs[pktBuffsIndex] = append(bufs[pktBuffsIndex], make([]byte, extendBy)...)
|
||||
copy(bufs[pktBuffsIndex][bufsOffset+len(pkt):], bufs[item.bufsIndex][bufsOffset+int(headersLen):])
|
||||
// Flip the slice headers in bufs as part of prepend. The index of item
|
||||
// is already being tracked for writing.
|
||||
bufs[item.bufsIndex], bufs[pktBuffsIndex] = bufs[pktBuffsIndex], bufs[item.bufsIndex]
|
||||
} else {
|
||||
pktHead = bufs[item.bufsIndex][bufsOffset:]
|
||||
if cap(pktHead)-bufsOffset < coalescedLen {
|
||||
// We don't want to allocate a new underlying array if capacity is
|
||||
// too small.
|
||||
return coalesceInsufficientCap
|
||||
}
|
||||
if item.numMerged == 0 {
|
||||
if !tcpChecksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, isV6) {
|
||||
return coalesceItemInvalidCSum
|
||||
}
|
||||
}
|
||||
if !tcpChecksumValid(pkt, item.iphLen, isV6) {
|
||||
return coalescePktInvalidCSum
|
||||
}
|
||||
if pshSet {
|
||||
// We are appending a segment with PSH set.
|
||||
item.pshSet = pshSet
|
||||
pktHead[item.iphLen+tcpFlagsOffset] |= tcpFlagPSH
|
||||
}
|
||||
extendBy := len(pkt) - int(headersLen)
|
||||
bufs[item.bufsIndex] = append(bufs[item.bufsIndex], make([]byte, extendBy)...)
|
||||
copy(bufs[item.bufsIndex][bufsOffset+len(pktHead):], pkt[headersLen:])
|
||||
}
|
||||
|
||||
if gsoSize > item.gsoSize {
|
||||
item.gsoSize = gsoSize
|
||||
}
|
||||
|
||||
item.numMerged++
|
||||
return coalesceSuccess
|
||||
}
|
||||
|
||||
const (
|
||||
ipv4FlagMoreFragments uint8 = 0x20
|
||||
)
|
||||
|
||||
const (
|
||||
ipv4SrcAddrOffset = 12
|
||||
ipv6SrcAddrOffset = 8
|
||||
maxUint16 = 1<<16 - 1
|
||||
)
|
||||
|
||||
type tcpGROResult int
|
||||
|
||||
const (
|
||||
tcpGROResultNoop tcpGROResult = iota
|
||||
tcpGROResultTableInsert
|
||||
tcpGROResultCoalesced
|
||||
)
|
||||
|
||||
// tcpGRO evaluates the TCP packet at pktI in bufs for coalescing with
|
||||
// existing packets tracked in table. It returns a tcpGROResultNoop when no
|
||||
// action was taken, tcpGROResultTableInsert when the evaluated packet was
|
||||
// inserted into table, and tcpGROResultCoalesced when the evaluated packet was
|
||||
// coalesced with another packet in table.
|
||||
func tcpGRO(bufs [][]byte, offset int, pktI int, table *tcpGROTable, isV6 bool) tcpGROResult {
|
||||
pkt := bufs[pktI][offset:]
|
||||
if len(pkt) > maxUint16 {
|
||||
// A valid IPv4 or IPv6 packet will never exceed this.
|
||||
return tcpGROResultNoop
|
||||
}
|
||||
iphLen := int((pkt[0] & 0x0F) * 4)
|
||||
if isV6 {
|
||||
iphLen = 40
|
||||
ipv6HPayloadLen := int(binary.BigEndian.Uint16(pkt[4:]))
|
||||
if ipv6HPayloadLen != len(pkt)-iphLen {
|
||||
return tcpGROResultNoop
|
||||
}
|
||||
} else {
|
||||
totalLen := int(binary.BigEndian.Uint16(pkt[2:]))
|
||||
if totalLen != len(pkt) {
|
||||
return tcpGROResultNoop
|
||||
}
|
||||
}
|
||||
if len(pkt) < iphLen {
|
||||
return tcpGROResultNoop
|
||||
}
|
||||
tcphLen := int((pkt[iphLen+12] >> 4) * 4)
|
||||
if tcphLen < 20 || tcphLen > 60 {
|
||||
return tcpGROResultNoop
|
||||
}
|
||||
if len(pkt) < iphLen+tcphLen {
|
||||
return tcpGROResultNoop
|
||||
}
|
||||
if !isV6 {
|
||||
if pkt[6]&ipv4FlagMoreFragments != 0 || pkt[6]<<3 != 0 || pkt[7] != 0 {
|
||||
// no GRO support for fragmented segments for now
|
||||
return tcpGROResultNoop
|
||||
}
|
||||
}
|
||||
tcpFlags := pkt[iphLen+tcpFlagsOffset]
|
||||
var pshSet bool
|
||||
// not a candidate if any non-ACK flags (except PSH+ACK) are set
|
||||
if tcpFlags != tcpFlagACK {
|
||||
if pkt[iphLen+tcpFlagsOffset] != tcpFlagACK|tcpFlagPSH {
|
||||
return tcpGROResultNoop
|
||||
}
|
||||
pshSet = true
|
||||
}
|
||||
gsoSize := uint16(len(pkt) - tcphLen - iphLen)
|
||||
// not a candidate if payload len is 0
|
||||
if gsoSize < 1 {
|
||||
return tcpGROResultNoop
|
||||
}
|
||||
seq := binary.BigEndian.Uint32(pkt[iphLen+4:])
|
||||
srcAddrOffset := ipv4SrcAddrOffset
|
||||
addrLen := 4
|
||||
if isV6 {
|
||||
srcAddrOffset = ipv6SrcAddrOffset
|
||||
addrLen = 16
|
||||
}
|
||||
items, existing := table.lookupOrInsert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI)
|
||||
if !existing {
|
||||
return tcpGROResultNoop
|
||||
}
|
||||
for i := len(items) - 1; i >= 0; i-- {
|
||||
// In the best case of packets arriving in order iterating in reverse is
|
||||
// more efficient if there are multiple items for a given flow. This
|
||||
// also enables a natural table.deleteAt() in the
|
||||
// coalesceItemInvalidCSum case without the need for index tracking.
|
||||
// This algorithm makes a best effort to coalesce in the event of
|
||||
// unordered packets, where pkt may land anywhere in items from a
|
||||
// sequence number perspective, however once an item is inserted into
|
||||
// the table it is never compared across other items later.
|
||||
item := items[i]
|
||||
can := tcpPacketsCanCoalesce(pkt, uint8(iphLen), uint8(tcphLen), seq, pshSet, gsoSize, item, bufs, offset)
|
||||
if can != coalesceUnavailable {
|
||||
result := coalesceTCPPackets(can, pkt, pktI, gsoSize, seq, pshSet, &item, bufs, offset, isV6)
|
||||
switch result {
|
||||
case coalesceSuccess:
|
||||
table.updateAt(item, i)
|
||||
return tcpGROResultCoalesced
|
||||
case coalesceItemInvalidCSum:
|
||||
// delete the item with an invalid csum
|
||||
table.deleteAt(item.key, i)
|
||||
case coalescePktInvalidCSum:
|
||||
// no point in inserting an item that we can't coalesce
|
||||
return tcpGROResultNoop
|
||||
default:
|
||||
}
|
||||
}
|
||||
}
|
||||
// failed to coalesce with any other packets; store the item in the flow
|
||||
table.insert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI)
|
||||
return tcpGROResultTableInsert
|
||||
}
|
||||
|
||||
func isTCP4NoIPOptions(b []byte) bool {
|
||||
if len(b) < 40 {
|
||||
return false
|
||||
}
|
||||
if b[0]>>4 != 4 {
|
||||
return false
|
||||
}
|
||||
if b[0]&0x0F != 5 {
|
||||
return false
|
||||
}
|
||||
if b[9] != unix.IPPROTO_TCP {
|
||||
return false
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
func isTCP6NoEH(b []byte) bool {
|
||||
if len(b) < 60 {
|
||||
return false
|
||||
}
|
||||
if b[0]>>4 != 6 {
|
||||
return false
|
||||
}
|
||||
if b[6] != unix.IPPROTO_TCP {
|
||||
return false
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// applyCoalesceAccounting updates bufs to account for coalescing based on the
|
||||
// metadata found in table.
|
||||
func applyCoalesceAccounting(bufs [][]byte, offset int, table *tcpGROTable, isV6 bool) error {
|
||||
for _, items := range table.itemsByFlow {
|
||||
for _, item := range items {
|
||||
if item.numMerged > 0 {
|
||||
hdr := virtioNetHdr{
|
||||
flags: unix.VIRTIO_NET_HDR_F_NEEDS_CSUM, // this turns into CHECKSUM_PARTIAL in the skb
|
||||
hdrLen: uint16(item.iphLen + item.tcphLen),
|
||||
gsoSize: item.gsoSize,
|
||||
csumStart: uint16(item.iphLen),
|
||||
csumOffset: 16,
|
||||
}
|
||||
pkt := bufs[item.bufsIndex][offset:]
|
||||
|
||||
// Recalculate the total len (IPv4) or payload len (IPv6).
|
||||
// Recalculate the (IPv4) header checksum.
|
||||
if isV6 {
|
||||
hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV6
|
||||
binary.BigEndian.PutUint16(pkt[4:], uint16(len(pkt))-uint16(item.iphLen)) // set new IPv6 header payload len
|
||||
} else {
|
||||
hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV4
|
||||
pkt[10], pkt[11] = 0, 0
|
||||
binary.BigEndian.PutUint16(pkt[2:], uint16(len(pkt))) // set new total length
|
||||
iphCSum := ^checksumFold(pkt[:item.iphLen], 0) // compute IPv4 header checksum
|
||||
binary.BigEndian.PutUint16(pkt[10:], iphCSum) // set IPv4 header checksum field
|
||||
}
|
||||
err := hdr.encode(bufs[item.bufsIndex][offset-virtioNetHdrLen:])
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Calculate the pseudo header checksum and place it at the TCP
|
||||
// checksum offset. Downstream checksum offloading will combine
|
||||
// this with computation of the tcp header and payload checksum.
|
||||
addrLen := 4
|
||||
addrOffset := ipv4SrcAddrOffset
|
||||
if isV6 {
|
||||
addrLen = 16
|
||||
addrOffset = ipv6SrcAddrOffset
|
||||
}
|
||||
srcAddrAt := offset + addrOffset
|
||||
srcAddr := bufs[item.bufsIndex][srcAddrAt : srcAddrAt+addrLen]
|
||||
dstAddr := bufs[item.bufsIndex][srcAddrAt+addrLen : srcAddrAt+addrLen*2]
|
||||
psum := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, srcAddr, dstAddr, uint16(len(pkt)-int(item.iphLen)))
|
||||
binary.BigEndian.PutUint16(pkt[hdr.csumStart+hdr.csumOffset:], checksumFold([]byte{}, psum))
|
||||
} else {
|
||||
hdr := virtioNetHdr{}
|
||||
err := hdr.encode(bufs[item.bufsIndex][offset-virtioNetHdrLen:])
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// handleGRO evaluates bufs for GRO, and writes the indices of the resulting
|
||||
// packets into toWrite. toWrite, tcp4Table, and tcp6Table should initially be
|
||||
// empty (but non-nil), and are passed in to save allocs as the caller may reset
|
||||
// and recycle them across vectors of packets.
|
||||
func handleGRO(bufs [][]byte, offset int, tcp4Table, tcp6Table *tcpGROTable, toWrite *[]int) error {
|
||||
for i := range bufs {
|
||||
if offset < virtioNetHdrLen || offset > len(bufs[i])-1 {
|
||||
return errors.New("invalid offset")
|
||||
}
|
||||
var result tcpGROResult
|
||||
switch {
|
||||
case isTCP4NoIPOptions(bufs[i][offset:]): // ipv4 packets w/IP options do not coalesce
|
||||
result = tcpGRO(bufs, offset, i, tcp4Table, false)
|
||||
case isTCP6NoEH(bufs[i][offset:]): // ipv6 packets w/extension headers do not coalesce
|
||||
result = tcpGRO(bufs, offset, i, tcp6Table, true)
|
||||
}
|
||||
switch result {
|
||||
case tcpGROResultNoop:
|
||||
hdr := virtioNetHdr{}
|
||||
err := hdr.encode(bufs[i][offset-virtioNetHdrLen:])
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
fallthrough
|
||||
case tcpGROResultTableInsert:
|
||||
*toWrite = append(*toWrite, i)
|
||||
}
|
||||
}
|
||||
err4 := applyCoalesceAccounting(bufs, offset, tcp4Table, false)
|
||||
err6 := applyCoalesceAccounting(bufs, offset, tcp6Table, true)
|
||||
return E.Errors(err4, err6)
|
||||
}
|
||||
|
||||
// tcpTSO splits packets from in into outBuffs, writing the size of each
|
||||
// element into sizes. It returns the number of buffers populated, and/or an
|
||||
// error.
|
||||
func tcpTSO(in []byte, hdr virtioNetHdr, outBuffs [][]byte, sizes []int, outOffset int) (int, error) {
|
||||
iphLen := int(hdr.csumStart)
|
||||
srcAddrOffset := ipv6SrcAddrOffset
|
||||
addrLen := 16
|
||||
if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV4 {
|
||||
in[10], in[11] = 0, 0 // clear ipv4 header checksum
|
||||
srcAddrOffset = ipv4SrcAddrOffset
|
||||
addrLen = 4
|
||||
}
|
||||
tcpCSumAt := int(hdr.csumStart + hdr.csumOffset)
|
||||
in[tcpCSumAt], in[tcpCSumAt+1] = 0, 0 // clear tcp checksum
|
||||
firstTCPSeqNum := binary.BigEndian.Uint32(in[hdr.csumStart+4:])
|
||||
nextSegmentDataAt := int(hdr.hdrLen)
|
||||
i := 0
|
||||
for ; nextSegmentDataAt < len(in); i++ {
|
||||
if i == len(outBuffs) {
|
||||
return i - 1, ErrTooManySegments
|
||||
}
|
||||
nextSegmentEnd := nextSegmentDataAt + int(hdr.gsoSize)
|
||||
if nextSegmentEnd > len(in) {
|
||||
nextSegmentEnd = len(in)
|
||||
}
|
||||
segmentDataLen := nextSegmentEnd - nextSegmentDataAt
|
||||
totalLen := int(hdr.hdrLen) + segmentDataLen
|
||||
sizes[i] = totalLen
|
||||
out := outBuffs[i][outOffset:]
|
||||
|
||||
copy(out, in[:iphLen])
|
||||
if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV4 {
|
||||
// For IPv4 we are responsible for incrementing the ID field,
|
||||
// updating the total len field, and recalculating the header
|
||||
// checksum.
|
||||
if i > 0 {
|
||||
id := binary.BigEndian.Uint16(out[4:])
|
||||
id += uint16(i)
|
||||
binary.BigEndian.PutUint16(out[4:], id)
|
||||
}
|
||||
binary.BigEndian.PutUint16(out[2:], uint16(totalLen))
|
||||
ipv4CSum := ^checksumFold(out[:iphLen], 0)
|
||||
binary.BigEndian.PutUint16(out[10:], ipv4CSum)
|
||||
} else {
|
||||
// For IPv6 we are responsible for updating the payload length field.
|
||||
binary.BigEndian.PutUint16(out[4:], uint16(totalLen-iphLen))
|
||||
}
|
||||
|
||||
// TCP header
|
||||
copy(out[hdr.csumStart:hdr.hdrLen], in[hdr.csumStart:hdr.hdrLen])
|
||||
tcpSeq := firstTCPSeqNum + uint32(hdr.gsoSize*uint16(i))
|
||||
binary.BigEndian.PutUint32(out[hdr.csumStart+4:], tcpSeq)
|
||||
if nextSegmentEnd != len(in) {
|
||||
// FIN and PSH should only be set on last segment
|
||||
clearFlags := tcpFlagFIN | tcpFlagPSH
|
||||
out[hdr.csumStart+tcpFlagsOffset] &^= clearFlags
|
||||
}
|
||||
|
||||
// payload
|
||||
copy(out[hdr.hdrLen:], in[nextSegmentDataAt:nextSegmentEnd])
|
||||
|
||||
// TCP checksum
|
||||
tcpHLen := int(hdr.hdrLen - hdr.csumStart)
|
||||
tcpLenForPseudo := uint16(tcpHLen + segmentDataLen)
|
||||
tcpCSumNoFold := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, in[srcAddrOffset:srcAddrOffset+addrLen], in[srcAddrOffset+addrLen:srcAddrOffset+addrLen*2], tcpLenForPseudo)
|
||||
tcpCSum := ^checksumFold(out[hdr.csumStart:totalLen], tcpCSumNoFold)
|
||||
binary.BigEndian.PutUint16(out[hdr.csumStart+hdr.csumOffset:], tcpCSum)
|
||||
|
||||
nextSegmentDataAt += int(hdr.gsoSize)
|
||||
}
|
||||
return i, nil
|
||||
}
|
||||
|
||||
func gsoNoneChecksum(in []byte, cSumStart, cSumOffset uint16) error {
|
||||
cSumAt := cSumStart + cSumOffset
|
||||
// The initial value at the checksum offset should be summed with the
|
||||
// checksum we compute. This is typically the pseudo-header checksum.
|
||||
initial := binary.BigEndian.Uint16(in[cSumAt:])
|
||||
in[cSumAt], in[cSumAt+1] = 0, 0
|
||||
binary.BigEndian.PutUint16(in[cSumAt:], ^checksumFold(in[cSumStart:], uint64(initial)))
|
||||
return nil
|
||||
}
|
||||
|
||||
// handleVirtioRead splits in into bufs, leaving offset bytes at the front of
|
||||
// each buffer. It mutates sizes to reflect the size of each element of bufs,
|
||||
// and returns the number of packets read.
|
||||
func handleVirtioRead(in []byte, bufs [][]byte, sizes []int, offset int) (int, error) {
|
||||
var hdr virtioNetHdr
|
||||
err := hdr.decode(in)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
in = in[virtioNetHdrLen:]
|
||||
if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_NONE {
|
||||
if hdr.flags&unix.VIRTIO_NET_HDR_F_NEEDS_CSUM != 0 {
|
||||
// This means CHECKSUM_PARTIAL in skb context. We are responsible
|
||||
// for computing the checksum starting at hdr.csumStart and placing
|
||||
// at hdr.csumOffset.
|
||||
err = gsoNoneChecksum(in, hdr.csumStart, hdr.csumOffset)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
}
|
||||
if len(in) > len(bufs[0][offset:]) {
|
||||
return 0, fmt.Errorf("read len %d overflows bufs element len %d", len(in), len(bufs[0][offset:]))
|
||||
}
|
||||
n := copy(bufs[0][offset:], in)
|
||||
sizes[0] = n
|
||||
return 1, nil
|
||||
}
|
||||
if hdr.gsoType != unix.VIRTIO_NET_HDR_GSO_TCPV4 && hdr.gsoType != unix.VIRTIO_NET_HDR_GSO_TCPV6 {
|
||||
return 0, fmt.Errorf("unsupported virtio GSO type: %d", hdr.gsoType)
|
||||
}
|
||||
|
||||
ipVersion := in[0] >> 4
|
||||
switch ipVersion {
|
||||
case 4:
|
||||
if hdr.gsoType != unix.VIRTIO_NET_HDR_GSO_TCPV4 {
|
||||
return 0, fmt.Errorf("ip header version: %d, GSO type: %d", ipVersion, hdr.gsoType)
|
||||
}
|
||||
case 6:
|
||||
if hdr.gsoType != unix.VIRTIO_NET_HDR_GSO_TCPV6 {
|
||||
return 0, fmt.Errorf("ip header version: %d, GSO type: %d", ipVersion, hdr.gsoType)
|
||||
}
|
||||
default:
|
||||
return 0, fmt.Errorf("invalid ip header version: %d", ipVersion)
|
||||
}
|
||||
|
||||
if len(in) <= int(hdr.csumStart+12) {
|
||||
return 0, errors.New("packet is too short")
|
||||
}
|
||||
// Don't trust hdr.hdrLen from the kernel as it can be equal to the length
|
||||
// of the entire first packet when the kernel is handling it as part of a
|
||||
// FORWARD path. Instead, parse the TCP header length and add it onto
|
||||
// csumStart, which is synonymous for IP header length.
|
||||
tcpHLen := uint16(in[hdr.csumStart+12] >> 4 * 4)
|
||||
if tcpHLen < 20 || tcpHLen > 60 {
|
||||
// A TCP header must be between 20 and 60 bytes in length.
|
||||
return 0, fmt.Errorf("tcp header len is invalid: %d", tcpHLen)
|
||||
}
|
||||
hdr.hdrLen = hdr.csumStart + tcpHLen
|
||||
|
||||
if len(in) < int(hdr.hdrLen) {
|
||||
return 0, fmt.Errorf("length of packet (%d) < virtioNetHdr.hdrLen (%d)", len(in), hdr.hdrLen)
|
||||
}
|
||||
|
||||
if hdr.hdrLen < hdr.csumStart {
|
||||
return 0, fmt.Errorf("virtioNetHdr.hdrLen (%d) < virtioNetHdr.csumStart (%d)", hdr.hdrLen, hdr.csumStart)
|
||||
}
|
||||
cSumAt := int(hdr.csumStart + hdr.csumOffset)
|
||||
if cSumAt+1 >= len(in) {
|
||||
return 0, fmt.Errorf("end of checksum offset (%d) exceeds packet length (%d)", cSumAt+1, len(in))
|
||||
}
|
||||
|
||||
return tcpTSO(in, hdr, bufs, sizes, offset)
|
||||
}
|
||||
|
||||
func checksumNoFold(b []byte, initial uint64) uint64 {
|
||||
return uint64(checksum.Checksum(b, uint16(initial)))
|
||||
}
|
||||
|
||||
func checksumFold(b []byte, initial uint64) uint16 {
|
||||
ac := checksumNoFold(b, initial)
|
||||
ac = (ac >> 16) + (ac & 0xffff)
|
||||
ac = (ac >> 16) + (ac & 0xffff)
|
||||
ac = (ac >> 16) + (ac & 0xffff)
|
||||
ac = (ac >> 16) + (ac & 0xffff)
|
||||
return uint16(ac)
|
||||
}
|
||||
|
||||
func pseudoHeaderChecksumNoFold(protocol uint8, srcAddr, dstAddr []byte, totalLen uint16) uint64 {
|
||||
sum := checksumNoFold(srcAddr, 0)
|
||||
sum = checksumNoFold(dstAddr, sum)
|
||||
sum = checksumNoFold([]byte{0, protocol}, sum)
|
||||
tmp := make([]byte, 2)
|
||||
binary.BigEndian.PutUint16(tmp, totalLen)
|
||||
return checksumNoFold(tmp, sum)
|
||||
}
|
|
@ -1,5 +0,0 @@
|
|||
package tun
|
||||
|
||||
import E "github.com/sagernet/sing/common/exceptions"
|
||||
|
||||
var ErrTooManySegments = E.New("too many segments")
|
229
tun_offload.go
Normal file
229
tun_offload.go
Normal file
|
@ -0,0 +1,229 @@
|
|||
package tun
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"fmt"
|
||||
|
||||
"github.com/sagernet/sing-tun/internal/gtcpip"
|
||||
"github.com/sagernet/sing-tun/internal/gtcpip/checksum"
|
||||
"github.com/sagernet/sing-tun/internal/gtcpip/header"
|
||||
)
|
||||
|
||||
const (
|
||||
gsoMaxSize = 65536
|
||||
idealBatchSize = 128
|
||||
)
|
||||
|
||||
// GSOType represents the type of segmentation offload.
|
||||
type GSOType int
|
||||
|
||||
const (
|
||||
GSONone GSOType = iota
|
||||
GSOTCPv4
|
||||
GSOTCPv6
|
||||
GSOUDPL4
|
||||
)
|
||||
|
||||
func (g GSOType) String() string {
|
||||
switch g {
|
||||
case GSONone:
|
||||
return "GSONone"
|
||||
case GSOTCPv4:
|
||||
return "GSOTCPv4"
|
||||
case GSOTCPv6:
|
||||
return "GSOTCPv6"
|
||||
case GSOUDPL4:
|
||||
return "GSOUDPL4"
|
||||
default:
|
||||
return "unknown"
|
||||
}
|
||||
}
|
||||
|
||||
// GSOOptions is loosely modeled after struct virtio_net_hdr from the VIRTIO
|
||||
// specification. It is a common representation of GSO metadata that can be
|
||||
// applied to support packet GSO across tun.Device implementations.
|
||||
type GSOOptions struct {
|
||||
// GSOType represents the type of segmentation offload.
|
||||
GSOType GSOType
|
||||
// HdrLen is the sum of the layer 3 and 4 header lengths. This field may be
|
||||
// zero when GSOType == GSONone.
|
||||
HdrLen uint16
|
||||
// CsumStart is the head byte index of the packet data to be checksummed,
|
||||
// i.e. the start of the TCP or UDP header.
|
||||
CsumStart uint16
|
||||
// CsumOffset is the offset from CsumStart where the 2-byte checksum value
|
||||
// should be placed.
|
||||
CsumOffset uint16
|
||||
// GSOSize is the size of each segment exclusive of HdrLen. The tail segment
|
||||
// may be smaller than this value.
|
||||
GSOSize uint16
|
||||
// NeedsCsum may be set where GSOType == GSONone. When set, the checksum
|
||||
// at CsumStart + CsumOffset must be a partial checksum, i.e. the
|
||||
// pseudo-header sum.
|
||||
NeedsCsum bool
|
||||
}
|
||||
|
||||
const (
|
||||
ipv4SrcAddrOffset = 12
|
||||
ipv6SrcAddrOffset = 8
|
||||
)
|
||||
|
||||
const tcpFlagsOffset = 13
|
||||
|
||||
const (
|
||||
tcpFlagFIN uint8 = 0x01
|
||||
tcpFlagPSH uint8 = 0x08
|
||||
tcpFlagACK uint8 = 0x10
|
||||
)
|
||||
|
||||
const (
|
||||
// defined here in order to avoid importation of any platform-specific pkgs
|
||||
ipProtoTCP = 6
|
||||
ipProtoUDP = 17
|
||||
)
|
||||
|
||||
// GSOSplit splits packets from 'in' into outBufs[<index>][outOffset:], writing
|
||||
// the size of each element into sizes. It returns the number of buffers
|
||||
// populated, and/or an error. Callers may pass an 'in' slice that overlaps with
|
||||
// the first element of outBuffers, i.e. &in[0] may be equal to
|
||||
// &outBufs[0][outOffset]. GSONone is a valid options.GSOType regardless of the
|
||||
// value of options.NeedsCsum. Length of each outBufs element must be greater
|
||||
// than or equal to the length of 'in', otherwise output may be silently
|
||||
// truncated.
|
||||
func GSOSplit(in []byte, options GSOOptions, outBufs [][]byte, sizes []int, outOffset int) (int, error) {
|
||||
cSumAt := int(options.CsumStart) + int(options.CsumOffset)
|
||||
if cSumAt+1 >= len(in) {
|
||||
return 0, fmt.Errorf("end of checksum offset (%d) exceeds packet length (%d)", cSumAt+1, len(in))
|
||||
}
|
||||
|
||||
if len(in) < int(options.HdrLen) {
|
||||
return 0, fmt.Errorf("length of packet (%d) < GSO HdrLen (%d)", len(in), options.HdrLen)
|
||||
}
|
||||
|
||||
// Handle the conditions where we are copying a single element to outBuffs.
|
||||
payloadLen := len(in) - int(options.HdrLen)
|
||||
if options.GSOType == GSONone || payloadLen < int(options.GSOSize) {
|
||||
if len(in) > len(outBufs[0][outOffset:]) {
|
||||
return 0, fmt.Errorf("length of packet (%d) exceeds output element length (%d)", len(in), len(outBufs[0][outOffset:]))
|
||||
}
|
||||
if options.NeedsCsum {
|
||||
// The initial value at the checksum offset should be summed with
|
||||
// the checksum we compute. This is typically the pseudo-header sum.
|
||||
initial := binary.BigEndian.Uint16(in[cSumAt:])
|
||||
in[cSumAt], in[cSumAt+1] = 0, 0
|
||||
binary.BigEndian.PutUint16(in[cSumAt:], ^checksum.Checksum(in[options.CsumStart:], initial))
|
||||
}
|
||||
sizes[0] = copy(outBufs[0][outOffset:], in)
|
||||
return 1, nil
|
||||
}
|
||||
|
||||
if options.HdrLen < options.CsumStart {
|
||||
return 0, fmt.Errorf("GSO HdrLen (%d) < GSO CsumStart (%d)", options.HdrLen, options.CsumStart)
|
||||
}
|
||||
|
||||
ipVersion := in[0] >> 4
|
||||
switch ipVersion {
|
||||
case 4:
|
||||
if options.GSOType != GSOTCPv4 && options.GSOType != GSOUDPL4 {
|
||||
return 0, fmt.Errorf("ip header version: %d, GSO type: %s", ipVersion, options.GSOType)
|
||||
}
|
||||
if len(in) < 20 {
|
||||
return 0, fmt.Errorf("length of packet (%d) < minimum ipv4 header size (%d)", len(in), 20)
|
||||
}
|
||||
case 6:
|
||||
if options.GSOType != GSOTCPv6 && options.GSOType != GSOUDPL4 {
|
||||
return 0, fmt.Errorf("ip header version: %d, GSO type: %s", ipVersion, options.GSOType)
|
||||
}
|
||||
if len(in) < 40 {
|
||||
return 0, fmt.Errorf("length of packet (%d) < minimum ipv6 header size (%d)", len(in), 40)
|
||||
}
|
||||
default:
|
||||
return 0, fmt.Errorf("invalid ip header version: %d", ipVersion)
|
||||
}
|
||||
|
||||
iphLen := int(options.CsumStart)
|
||||
srcAddrOffset := ipv6SrcAddrOffset
|
||||
addrLen := 16
|
||||
if ipVersion == 4 {
|
||||
srcAddrOffset = ipv4SrcAddrOffset
|
||||
addrLen = 4
|
||||
}
|
||||
transportCsumAt := int(options.CsumStart + options.CsumOffset)
|
||||
var firstTCPSeqNum uint32
|
||||
var protocol uint8
|
||||
if options.GSOType == GSOTCPv4 || options.GSOType == GSOTCPv6 {
|
||||
protocol = ipProtoTCP
|
||||
if len(in) < int(options.CsumStart)+20 {
|
||||
return 0, fmt.Errorf("length of packet (%d) < GSO CsumStart (%d) + minimum TCP header size (%d)",
|
||||
len(in), options.CsumStart, 20)
|
||||
}
|
||||
firstTCPSeqNum = binary.BigEndian.Uint32(in[options.CsumStart+4:])
|
||||
} else {
|
||||
protocol = ipProtoUDP
|
||||
}
|
||||
nextSegmentDataAt := int(options.HdrLen)
|
||||
i := 0
|
||||
for ; nextSegmentDataAt < len(in); i++ {
|
||||
if i == len(outBufs) {
|
||||
return i - 1, ErrTooManySegments
|
||||
}
|
||||
nextSegmentEnd := nextSegmentDataAt + int(options.GSOSize)
|
||||
if nextSegmentEnd > len(in) {
|
||||
nextSegmentEnd = len(in)
|
||||
}
|
||||
segmentDataLen := nextSegmentEnd - nextSegmentDataAt
|
||||
totalLen := int(options.HdrLen) + segmentDataLen
|
||||
sizes[i] = totalLen
|
||||
out := outBufs[i][outOffset:]
|
||||
|
||||
copy(out, in[:iphLen])
|
||||
if ipVersion == 4 {
|
||||
// For IPv4 we are responsible for incrementing the ID field,
|
||||
// updating the total len field, and recalculating the header
|
||||
// checksum.
|
||||
if i > 0 {
|
||||
id := binary.BigEndian.Uint16(out[4:])
|
||||
id += uint16(i)
|
||||
binary.BigEndian.PutUint16(out[4:], id)
|
||||
}
|
||||
out[10], out[11] = 0, 0 // clear ipv4 header checksum
|
||||
binary.BigEndian.PutUint16(out[2:], uint16(totalLen))
|
||||
ipv4CSum := ^checksum.Checksum(out[:iphLen], 0)
|
||||
binary.BigEndian.PutUint16(out[10:], ipv4CSum)
|
||||
} else {
|
||||
// For IPv6 we are responsible for updating the payload length field.
|
||||
binary.BigEndian.PutUint16(out[4:], uint16(totalLen-iphLen))
|
||||
}
|
||||
|
||||
// copy transport header
|
||||
copy(out[options.CsumStart:options.HdrLen], in[options.CsumStart:options.HdrLen])
|
||||
|
||||
if protocol == ipProtoTCP {
|
||||
// set TCP seq and adjust TCP flags
|
||||
tcpSeq := firstTCPSeqNum + uint32(options.GSOSize*uint16(i))
|
||||
binary.BigEndian.PutUint32(out[options.CsumStart+4:], tcpSeq)
|
||||
if nextSegmentEnd != len(in) {
|
||||
// FIN and PSH should only be set on last segment
|
||||
clearFlags := tcpFlagFIN | tcpFlagPSH
|
||||
out[options.CsumStart+tcpFlagsOffset] &^= clearFlags
|
||||
}
|
||||
} else {
|
||||
// set UDP header len
|
||||
binary.BigEndian.PutUint16(out[options.CsumStart+4:], uint16(segmentDataLen)+(options.HdrLen-options.CsumStart))
|
||||
}
|
||||
|
||||
// payload
|
||||
copy(out[options.HdrLen:], in[nextSegmentDataAt:nextSegmentEnd])
|
||||
|
||||
// transport checksum
|
||||
out[transportCsumAt], out[transportCsumAt+1] = 0, 0 // clear tcp/udp checksum
|
||||
transportHeaderLen := int(options.HdrLen - options.CsumStart)
|
||||
lenForPseudo := uint16(transportHeaderLen + segmentDataLen)
|
||||
transportCSum := header.PseudoHeaderChecksum(tcpip.TransportProtocolNumber(protocol), in[srcAddrOffset:srcAddrOffset+addrLen], in[srcAddrOffset+addrLen:srcAddrOffset+addrLen*2], lenForPseudo)
|
||||
transportCSum = ^checksum.Checksum(out[options.CsumStart:totalLen], transportCSum)
|
||||
binary.BigEndian.PutUint16(out[options.CsumStart+options.CsumOffset:], transportCSum)
|
||||
|
||||
nextSegmentDataAt += int(options.GSOSize)
|
||||
}
|
||||
return i, nil
|
||||
}
|
10
tun_offload_errors.go
Normal file
10
tun_offload_errors.go
Normal file
|
@ -0,0 +1,10 @@
|
|||
package tun
|
||||
|
||||
import (
|
||||
"errors"
|
||||
)
|
||||
|
||||
// ErrTooManySegments is returned by Device.Read() when segmentation
|
||||
// overflows the length of supplied buffers. This error should not cause
|
||||
// reads to cease.
|
||||
var ErrTooManySegments = errors.New("too many segments")
|
937
tun_offload_linux.go
Normal file
937
tun_offload_linux.go
Normal file
|
@ -0,0 +1,937 @@
|
|||
/* SPDX-License-Identifier: MIT
|
||||
*
|
||||
* Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
|
||||
*/
|
||||
|
||||
package tun
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"unsafe"
|
||||
|
||||
"github.com/sagernet/sing-tun/internal/gtcpip"
|
||||
"github.com/sagernet/sing-tun/internal/gtcpip/checksum"
|
||||
"github.com/sagernet/sing-tun/internal/gtcpip/header"
|
||||
|
||||
"golang.org/x/sys/unix"
|
||||
)
|
||||
|
||||
// virtioNetHdr is defined in the kernel in include/uapi/linux/virtio_net.h. The
|
||||
// kernel symbol is virtio_net_hdr.
|
||||
type virtioNetHdr struct {
|
||||
flags uint8
|
||||
gsoType uint8
|
||||
hdrLen uint16
|
||||
gsoSize uint16
|
||||
csumStart uint16
|
||||
csumOffset uint16
|
||||
}
|
||||
|
||||
func (v *virtioNetHdr) toGSOOptions() (GSOOptions, error) {
|
||||
var gsoType GSOType
|
||||
switch v.gsoType {
|
||||
case unix.VIRTIO_NET_HDR_GSO_NONE:
|
||||
gsoType = GSONone
|
||||
case unix.VIRTIO_NET_HDR_GSO_TCPV4:
|
||||
gsoType = GSOTCPv4
|
||||
case unix.VIRTIO_NET_HDR_GSO_TCPV6:
|
||||
gsoType = GSOTCPv6
|
||||
case unix.VIRTIO_NET_HDR_GSO_UDP_L4:
|
||||
gsoType = GSOUDPL4
|
||||
default:
|
||||
return GSOOptions{}, fmt.Errorf("unsupported virtio gsoType: %d", v.gsoType)
|
||||
}
|
||||
return GSOOptions{
|
||||
GSOType: gsoType,
|
||||
HdrLen: v.hdrLen,
|
||||
CsumStart: v.csumStart,
|
||||
CsumOffset: v.csumOffset,
|
||||
GSOSize: v.gsoSize,
|
||||
NeedsCsum: v.flags&unix.VIRTIO_NET_HDR_F_NEEDS_CSUM != 0,
|
||||
}, nil
|
||||
}
|
||||
|
||||
func (v *virtioNetHdr) decode(b []byte) error {
|
||||
if len(b) < virtioNetHdrLen {
|
||||
return io.ErrShortBuffer
|
||||
}
|
||||
copy(unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen), b[:virtioNetHdrLen])
|
||||
return nil
|
||||
}
|
||||
|
||||
func (v *virtioNetHdr) encode(b []byte) error {
|
||||
if len(b) < virtioNetHdrLen {
|
||||
return io.ErrShortBuffer
|
||||
}
|
||||
copy(b[:virtioNetHdrLen], unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen))
|
||||
return nil
|
||||
}
|
||||
|
||||
const (
|
||||
// virtioNetHdrLen is the length in bytes of virtioNetHdr. This matches the
|
||||
// shape of the C ABI for its kernel counterpart -- sizeof(virtio_net_hdr).
|
||||
virtioNetHdrLen = int(unsafe.Sizeof(virtioNetHdr{}))
|
||||
)
|
||||
|
||||
// tcpFlowKey represents the key for a TCP flow.
|
||||
type tcpFlowKey struct {
|
||||
srcAddr, dstAddr [16]byte
|
||||
srcPort, dstPort uint16
|
||||
rxAck uint32 // varying ack values should not be coalesced. Treat them as separate flows.
|
||||
isV6 bool
|
||||
}
|
||||
|
||||
// tcpGROTable holds flow and coalescing information for the purposes of TCP GRO.
|
||||
type tcpGROTable struct {
|
||||
itemsByFlow map[tcpFlowKey][]tcpGROItem
|
||||
itemsPool [][]tcpGROItem
|
||||
}
|
||||
|
||||
func newTCPGROTable() *tcpGROTable {
|
||||
t := &tcpGROTable{
|
||||
itemsByFlow: make(map[tcpFlowKey][]tcpGROItem, idealBatchSize),
|
||||
itemsPool: make([][]tcpGROItem, idealBatchSize),
|
||||
}
|
||||
for i := range t.itemsPool {
|
||||
t.itemsPool[i] = make([]tcpGROItem, 0, idealBatchSize)
|
||||
}
|
||||
return t
|
||||
}
|
||||
|
||||
func newTCPFlowKey(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset int) tcpFlowKey {
|
||||
key := tcpFlowKey{}
|
||||
addrSize := dstAddrOffset - srcAddrOffset
|
||||
copy(key.srcAddr[:], pkt[srcAddrOffset:dstAddrOffset])
|
||||
copy(key.dstAddr[:], pkt[dstAddrOffset:dstAddrOffset+addrSize])
|
||||
key.srcPort = binary.BigEndian.Uint16(pkt[tcphOffset:])
|
||||
key.dstPort = binary.BigEndian.Uint16(pkt[tcphOffset+2:])
|
||||
key.rxAck = binary.BigEndian.Uint32(pkt[tcphOffset+8:])
|
||||
key.isV6 = addrSize == 16
|
||||
return key
|
||||
}
|
||||
|
||||
// lookupOrInsert looks up a flow for the provided packet and metadata,
|
||||
// returning the packets found for the flow, or inserting a new one if none
|
||||
// is found.
|
||||
func (t *tcpGROTable) lookupOrInsert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex int) ([]tcpGROItem, bool) {
|
||||
key := newTCPFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset)
|
||||
items, ok := t.itemsByFlow[key]
|
||||
if ok {
|
||||
return items, ok
|
||||
}
|
||||
// TODO: insert() performs another map lookup. This could be rearranged to avoid.
|
||||
t.insert(pkt, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex)
|
||||
return nil, false
|
||||
}
|
||||
|
||||
// insert an item in the table for the provided packet and packet metadata.
|
||||
func (t *tcpGROTable) insert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex int) {
|
||||
key := newTCPFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset)
|
||||
item := tcpGROItem{
|
||||
key: key,
|
||||
bufsIndex: uint16(bufsIndex),
|
||||
gsoSize: uint16(len(pkt[tcphOffset+tcphLen:])),
|
||||
iphLen: uint8(tcphOffset),
|
||||
tcphLen: uint8(tcphLen),
|
||||
sentSeq: binary.BigEndian.Uint32(pkt[tcphOffset+4:]),
|
||||
pshSet: pkt[tcphOffset+tcpFlagsOffset]&tcpFlagPSH != 0,
|
||||
}
|
||||
items, ok := t.itemsByFlow[key]
|
||||
if !ok {
|
||||
items = t.newItems()
|
||||
}
|
||||
items = append(items, item)
|
||||
t.itemsByFlow[key] = items
|
||||
}
|
||||
|
||||
func (t *tcpGROTable) updateAt(item tcpGROItem, i int) {
|
||||
items, _ := t.itemsByFlow[item.key]
|
||||
items[i] = item
|
||||
}
|
||||
|
||||
func (t *tcpGROTable) deleteAt(key tcpFlowKey, i int) {
|
||||
items, _ := t.itemsByFlow[key]
|
||||
items = append(items[:i], items[i+1:]...)
|
||||
t.itemsByFlow[key] = items
|
||||
}
|
||||
|
||||
// tcpGROItem represents bookkeeping data for a TCP packet during the lifetime
|
||||
// of a GRO evaluation across a vector of packets.
|
||||
type tcpGROItem struct {
|
||||
key tcpFlowKey
|
||||
sentSeq uint32 // the sequence number
|
||||
bufsIndex uint16 // the index into the original bufs slice
|
||||
numMerged uint16 // the number of packets merged into this item
|
||||
gsoSize uint16 // payload size
|
||||
iphLen uint8 // ip header len
|
||||
tcphLen uint8 // tcp header len
|
||||
pshSet bool // psh flag is set
|
||||
}
|
||||
|
||||
func (t *tcpGROTable) newItems() []tcpGROItem {
|
||||
var items []tcpGROItem
|
||||
items, t.itemsPool = t.itemsPool[len(t.itemsPool)-1], t.itemsPool[:len(t.itemsPool)-1]
|
||||
return items
|
||||
}
|
||||
|
||||
func (t *tcpGROTable) reset() {
|
||||
for k, items := range t.itemsByFlow {
|
||||
items = items[:0]
|
||||
t.itemsPool = append(t.itemsPool, items)
|
||||
delete(t.itemsByFlow, k)
|
||||
}
|
||||
}
|
||||
|
||||
// udpFlowKey represents the key for a UDP flow.
|
||||
type udpFlowKey struct {
|
||||
srcAddr, dstAddr [16]byte
|
||||
srcPort, dstPort uint16
|
||||
isV6 bool
|
||||
}
|
||||
|
||||
// udpGROTable holds flow and coalescing information for the purposes of UDP GRO.
|
||||
type udpGROTable struct {
|
||||
itemsByFlow map[udpFlowKey][]udpGROItem
|
||||
itemsPool [][]udpGROItem
|
||||
}
|
||||
|
||||
func newUDPGROTable() *udpGROTable {
|
||||
u := &udpGROTable{
|
||||
itemsByFlow: make(map[udpFlowKey][]udpGROItem, idealBatchSize),
|
||||
itemsPool: make([][]udpGROItem, idealBatchSize),
|
||||
}
|
||||
for i := range u.itemsPool {
|
||||
u.itemsPool[i] = make([]udpGROItem, 0, idealBatchSize)
|
||||
}
|
||||
return u
|
||||
}
|
||||
|
||||
func newUDPFlowKey(pkt []byte, srcAddrOffset, dstAddrOffset, udphOffset int) udpFlowKey {
|
||||
key := udpFlowKey{}
|
||||
addrSize := dstAddrOffset - srcAddrOffset
|
||||
copy(key.srcAddr[:], pkt[srcAddrOffset:dstAddrOffset])
|
||||
copy(key.dstAddr[:], pkt[dstAddrOffset:dstAddrOffset+addrSize])
|
||||
key.srcPort = binary.BigEndian.Uint16(pkt[udphOffset:])
|
||||
key.dstPort = binary.BigEndian.Uint16(pkt[udphOffset+2:])
|
||||
key.isV6 = addrSize == 16
|
||||
return key
|
||||
}
|
||||
|
||||
// lookupOrInsert looks up a flow for the provided packet and metadata,
|
||||
// returning the packets found for the flow, or inserting a new one if none
|
||||
// is found.
|
||||
func (u *udpGROTable) lookupOrInsert(pkt []byte, srcAddrOffset, dstAddrOffset, udphOffset, bufsIndex int) ([]udpGROItem, bool) {
|
||||
key := newUDPFlowKey(pkt, srcAddrOffset, dstAddrOffset, udphOffset)
|
||||
items, ok := u.itemsByFlow[key]
|
||||
if ok {
|
||||
return items, ok
|
||||
}
|
||||
// TODO: insert() performs another map lookup. This could be rearranged to avoid.
|
||||
u.insert(pkt, srcAddrOffset, dstAddrOffset, udphOffset, bufsIndex, false)
|
||||
return nil, false
|
||||
}
|
||||
|
||||
// insert an item in the table for the provided packet and packet metadata.
|
||||
func (u *udpGROTable) insert(pkt []byte, srcAddrOffset, dstAddrOffset, udphOffset, bufsIndex int, cSumKnownInvalid bool) {
|
||||
key := newUDPFlowKey(pkt, srcAddrOffset, dstAddrOffset, udphOffset)
|
||||
item := udpGROItem{
|
||||
key: key,
|
||||
bufsIndex: uint16(bufsIndex),
|
||||
gsoSize: uint16(len(pkt[udphOffset+udphLen:])),
|
||||
iphLen: uint8(udphOffset),
|
||||
cSumKnownInvalid: cSumKnownInvalid,
|
||||
}
|
||||
items, ok := u.itemsByFlow[key]
|
||||
if !ok {
|
||||
items = u.newItems()
|
||||
}
|
||||
items = append(items, item)
|
||||
u.itemsByFlow[key] = items
|
||||
}
|
||||
|
||||
func (u *udpGROTable) updateAt(item udpGROItem, i int) {
|
||||
items, _ := u.itemsByFlow[item.key]
|
||||
items[i] = item
|
||||
}
|
||||
|
||||
// udpGROItem represents bookkeeping data for a UDP packet during the lifetime
|
||||
// of a GRO evaluation across a vector of packets.
|
||||
type udpGROItem struct {
|
||||
key udpFlowKey
|
||||
bufsIndex uint16 // the index into the original bufs slice
|
||||
numMerged uint16 // the number of packets merged into this item
|
||||
gsoSize uint16 // payload size
|
||||
iphLen uint8 // ip header len
|
||||
cSumKnownInvalid bool // UDP header checksum validity; a false value DOES NOT imply valid, just unknown.
|
||||
}
|
||||
|
||||
func (u *udpGROTable) newItems() []udpGROItem {
|
||||
var items []udpGROItem
|
||||
items, u.itemsPool = u.itemsPool[len(u.itemsPool)-1], u.itemsPool[:len(u.itemsPool)-1]
|
||||
return items
|
||||
}
|
||||
|
||||
func (u *udpGROTable) reset() {
|
||||
for k, items := range u.itemsByFlow {
|
||||
items = items[:0]
|
||||
u.itemsPool = append(u.itemsPool, items)
|
||||
delete(u.itemsByFlow, k)
|
||||
}
|
||||
}
|
||||
|
||||
// canCoalesce represents the outcome of checking if two TCP packets are
|
||||
// candidates for coalescing.
|
||||
type canCoalesce int
|
||||
|
||||
const (
|
||||
coalescePrepend canCoalesce = -1
|
||||
coalesceUnavailable canCoalesce = 0
|
||||
coalesceAppend canCoalesce = 1
|
||||
)
|
||||
|
||||
// ipHeadersCanCoalesce returns true if the IP headers found in pktA and pktB
|
||||
// meet all requirements to be merged as part of a GRO operation, otherwise it
|
||||
// returns false.
|
||||
func ipHeadersCanCoalesce(pktA, pktB []byte) bool {
|
||||
if len(pktA) < 9 || len(pktB) < 9 {
|
||||
return false
|
||||
}
|
||||
if pktA[0]>>4 == 6 {
|
||||
if pktA[0] != pktB[0] || pktA[1]>>4 != pktB[1]>>4 {
|
||||
// cannot coalesce with unequal Traffic class values
|
||||
return false
|
||||
}
|
||||
if pktA[7] != pktB[7] {
|
||||
// cannot coalesce with unequal Hop limit values
|
||||
return false
|
||||
}
|
||||
} else {
|
||||
if pktA[1] != pktB[1] {
|
||||
// cannot coalesce with unequal ToS values
|
||||
return false
|
||||
}
|
||||
if pktA[6]>>5 != pktB[6]>>5 {
|
||||
// cannot coalesce with unequal DF or reserved bits. MF is checked
|
||||
// further up the stack.
|
||||
return false
|
||||
}
|
||||
if pktA[8] != pktB[8] {
|
||||
// cannot coalesce with unequal TTL values
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// udpPacketsCanCoalesce evaluates if pkt can be coalesced with the packet
|
||||
// described by item. iphLen and gsoSize describe pkt. bufs is the vector of
|
||||
// packets involved in the current GRO evaluation. bufsOffset is the offset at
|
||||
// which packet data begins within bufs.
|
||||
func udpPacketsCanCoalesce(pkt []byte, iphLen uint8, gsoSize uint16, item udpGROItem, bufs [][]byte, bufsOffset int) canCoalesce {
|
||||
pktTarget := bufs[item.bufsIndex][bufsOffset:]
|
||||
if !ipHeadersCanCoalesce(pkt, pktTarget) {
|
||||
return coalesceUnavailable
|
||||
}
|
||||
if len(pktTarget[iphLen+udphLen:])%int(item.gsoSize) != 0 {
|
||||
// A smaller than gsoSize packet has been appended previously.
|
||||
// Nothing can come after a smaller packet on the end.
|
||||
return coalesceUnavailable
|
||||
}
|
||||
if gsoSize > item.gsoSize {
|
||||
// We cannot have a larger packet following a smaller one.
|
||||
return coalesceUnavailable
|
||||
}
|
||||
return coalesceAppend
|
||||
}
|
||||
|
||||
// tcpPacketsCanCoalesce evaluates if pkt can be coalesced with the packet
|
||||
// described by item. This function makes considerations that match the kernel's
|
||||
// GRO self tests, which can be found in tools/testing/selftests/net/gro.c.
|
||||
func tcpPacketsCanCoalesce(pkt []byte, iphLen, tcphLen uint8, seq uint32, pshSet bool, gsoSize uint16, item tcpGROItem, bufs [][]byte, bufsOffset int) canCoalesce {
|
||||
pktTarget := bufs[item.bufsIndex][bufsOffset:]
|
||||
if tcphLen != item.tcphLen {
|
||||
// cannot coalesce with unequal tcp options len
|
||||
return coalesceUnavailable
|
||||
}
|
||||
if tcphLen > 20 {
|
||||
if !bytes.Equal(pkt[iphLen+20:iphLen+tcphLen], pktTarget[item.iphLen+20:iphLen+tcphLen]) {
|
||||
// cannot coalesce with unequal tcp options
|
||||
return coalesceUnavailable
|
||||
}
|
||||
}
|
||||
if !ipHeadersCanCoalesce(pkt, pktTarget) {
|
||||
return coalesceUnavailable
|
||||
}
|
||||
// seq adjacency
|
||||
lhsLen := item.gsoSize
|
||||
lhsLen += item.numMerged * item.gsoSize
|
||||
if seq == item.sentSeq+uint32(lhsLen) { // pkt aligns following item from a seq num perspective
|
||||
if item.pshSet {
|
||||
// We cannot append to a segment that has the PSH flag set, PSH
|
||||
// can only be set on the final segment in a reassembled group.
|
||||
return coalesceUnavailable
|
||||
}
|
||||
if len(pktTarget[iphLen+tcphLen:])%int(item.gsoSize) != 0 {
|
||||
// A smaller than gsoSize packet has been appended previously.
|
||||
// Nothing can come after a smaller packet on the end.
|
||||
return coalesceUnavailable
|
||||
}
|
||||
if gsoSize > item.gsoSize {
|
||||
// We cannot have a larger packet following a smaller one.
|
||||
return coalesceUnavailable
|
||||
}
|
||||
return coalesceAppend
|
||||
} else if seq+uint32(gsoSize) == item.sentSeq { // pkt aligns in front of item from a seq num perspective
|
||||
if pshSet {
|
||||
// We cannot prepend with a segment that has the PSH flag set, PSH
|
||||
// can only be set on the final segment in a reassembled group.
|
||||
return coalesceUnavailable
|
||||
}
|
||||
if gsoSize < item.gsoSize {
|
||||
// We cannot have a larger packet following a smaller one.
|
||||
return coalesceUnavailable
|
||||
}
|
||||
if gsoSize > item.gsoSize && item.numMerged > 0 {
|
||||
// There's at least one previous merge, and we're larger than all
|
||||
// previous. This would put multiple smaller packets on the end.
|
||||
return coalesceUnavailable
|
||||
}
|
||||
return coalescePrepend
|
||||
}
|
||||
return coalesceUnavailable
|
||||
}
|
||||
|
||||
func checksumValid(pkt []byte, iphLen, proto uint8, isV6 bool) bool {
|
||||
srcAddrAt := ipv4SrcAddrOffset
|
||||
addrSize := 4
|
||||
if isV6 {
|
||||
srcAddrAt = ipv6SrcAddrOffset
|
||||
addrSize = 16
|
||||
}
|
||||
lenForPseudo := uint16(len(pkt) - int(iphLen))
|
||||
cSum := header.PseudoHeaderChecksum(tcpip.TransportProtocolNumber(proto), pkt[srcAddrAt:srcAddrAt+addrSize], pkt[srcAddrAt+addrSize:srcAddrAt+addrSize*2], lenForPseudo)
|
||||
return ^checksum.Checksum(pkt[iphLen:], cSum) == 0
|
||||
}
|
||||
|
||||
// coalesceResult represents the result of attempting to coalesce two TCP
|
||||
// packets.
|
||||
type coalesceResult int
|
||||
|
||||
const (
|
||||
coalesceInsufficientCap coalesceResult = iota
|
||||
coalescePSHEnding
|
||||
coalesceItemInvalidCSum
|
||||
coalescePktInvalidCSum
|
||||
coalesceSuccess
|
||||
)
|
||||
|
||||
// coalesceUDPPackets attempts to coalesce pkt with the packet described by
|
||||
// item, and returns the outcome.
|
||||
func coalesceUDPPackets(pkt []byte, item *udpGROItem, bufs [][]byte, bufsOffset int, isV6 bool) coalesceResult {
|
||||
pktHead := bufs[item.bufsIndex][bufsOffset:] // the packet that will end up at the front
|
||||
headersLen := item.iphLen + udphLen
|
||||
coalescedLen := len(bufs[item.bufsIndex][bufsOffset:]) + len(pkt) - int(headersLen)
|
||||
|
||||
if cap(pktHead)-bufsOffset < coalescedLen {
|
||||
// We don't want to allocate a new underlying array if capacity is
|
||||
// too small.
|
||||
return coalesceInsufficientCap
|
||||
}
|
||||
if item.numMerged == 0 {
|
||||
if item.cSumKnownInvalid || !checksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, unix.IPPROTO_UDP, isV6) {
|
||||
return coalesceItemInvalidCSum
|
||||
}
|
||||
}
|
||||
if !checksumValid(pkt, item.iphLen, unix.IPPROTO_UDP, isV6) {
|
||||
return coalescePktInvalidCSum
|
||||
}
|
||||
extendBy := len(pkt) - int(headersLen)
|
||||
bufs[item.bufsIndex] = append(bufs[item.bufsIndex], make([]byte, extendBy)...)
|
||||
copy(bufs[item.bufsIndex][bufsOffset+len(pktHead):], pkt[headersLen:])
|
||||
|
||||
item.numMerged++
|
||||
return coalesceSuccess
|
||||
}
|
||||
|
||||
// coalesceTCPPackets attempts to coalesce pkt with the packet described by
|
||||
// item, and returns the outcome. This function may swap bufs elements in the
|
||||
// event of a prepend as item's bufs index is already being tracked for writing
|
||||
// to a Device.
|
||||
func coalesceTCPPackets(mode canCoalesce, pkt []byte, pktBuffsIndex int, gsoSize uint16, seq uint32, pshSet bool, item *tcpGROItem, bufs [][]byte, bufsOffset int, isV6 bool) coalesceResult {
|
||||
var pktHead []byte // the packet that will end up at the front
|
||||
headersLen := item.iphLen + item.tcphLen
|
||||
coalescedLen := len(bufs[item.bufsIndex][bufsOffset:]) + len(pkt) - int(headersLen)
|
||||
|
||||
// Copy data
|
||||
if mode == coalescePrepend {
|
||||
pktHead = pkt
|
||||
if cap(pkt)-bufsOffset < coalescedLen {
|
||||
// We don't want to allocate a new underlying array if capacity is
|
||||
// too small.
|
||||
return coalesceInsufficientCap
|
||||
}
|
||||
if pshSet {
|
||||
return coalescePSHEnding
|
||||
}
|
||||
if item.numMerged == 0 {
|
||||
if !checksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, unix.IPPROTO_TCP, isV6) {
|
||||
return coalesceItemInvalidCSum
|
||||
}
|
||||
}
|
||||
if !checksumValid(pkt, item.iphLen, unix.IPPROTO_TCP, isV6) {
|
||||
return coalescePktInvalidCSum
|
||||
}
|
||||
item.sentSeq = seq
|
||||
extendBy := coalescedLen - len(pktHead)
|
||||
bufs[pktBuffsIndex] = append(bufs[pktBuffsIndex], make([]byte, extendBy)...)
|
||||
copy(bufs[pktBuffsIndex][bufsOffset+len(pkt):], bufs[item.bufsIndex][bufsOffset+int(headersLen):])
|
||||
// Flip the slice headers in bufs as part of prepend. The index of item
|
||||
// is already being tracked for writing.
|
||||
bufs[item.bufsIndex], bufs[pktBuffsIndex] = bufs[pktBuffsIndex], bufs[item.bufsIndex]
|
||||
} else {
|
||||
pktHead = bufs[item.bufsIndex][bufsOffset:]
|
||||
if cap(pktHead)-bufsOffset < coalescedLen {
|
||||
// We don't want to allocate a new underlying array if capacity is
|
||||
// too small.
|
||||
return coalesceInsufficientCap
|
||||
}
|
||||
if item.numMerged == 0 {
|
||||
if !checksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, unix.IPPROTO_TCP, isV6) {
|
||||
return coalesceItemInvalidCSum
|
||||
}
|
||||
}
|
||||
if !checksumValid(pkt, item.iphLen, unix.IPPROTO_TCP, isV6) {
|
||||
return coalescePktInvalidCSum
|
||||
}
|
||||
if pshSet {
|
||||
// We are appending a segment with PSH set.
|
||||
item.pshSet = pshSet
|
||||
pktHead[item.iphLen+tcpFlagsOffset] |= tcpFlagPSH
|
||||
}
|
||||
extendBy := len(pkt) - int(headersLen)
|
||||
bufs[item.bufsIndex] = append(bufs[item.bufsIndex], make([]byte, extendBy)...)
|
||||
copy(bufs[item.bufsIndex][bufsOffset+len(pktHead):], pkt[headersLen:])
|
||||
}
|
||||
|
||||
if gsoSize > item.gsoSize {
|
||||
item.gsoSize = gsoSize
|
||||
}
|
||||
|
||||
item.numMerged++
|
||||
return coalesceSuccess
|
||||
}
|
||||
|
||||
const (
|
||||
ipv4FlagMoreFragments uint8 = 0x20
|
||||
)
|
||||
|
||||
const (
|
||||
maxUint16 = 1<<16 - 1
|
||||
)
|
||||
|
||||
type groResult int
|
||||
|
||||
const (
|
||||
groResultNoop groResult = iota
|
||||
groResultTableInsert
|
||||
groResultCoalesced
|
||||
)
|
||||
|
||||
// tcpGRO evaluates the TCP packet at pktI in bufs for coalescing with
|
||||
// existing packets tracked in table. It returns a groResultNoop when no
|
||||
// action was taken, groResultTableInsert when the evaluated packet was
|
||||
// inserted into table, and groResultCoalesced when the evaluated packet was
|
||||
// coalesced with another packet in table.
|
||||
func tcpGRO(bufs [][]byte, offset int, pktI int, table *tcpGROTable, isV6 bool) groResult {
|
||||
pkt := bufs[pktI][offset:]
|
||||
if len(pkt) > maxUint16 {
|
||||
// A valid IPv4 or IPv6 packet will never exceed this.
|
||||
return groResultNoop
|
||||
}
|
||||
iphLen := int((pkt[0] & 0x0F) * 4)
|
||||
if isV6 {
|
||||
iphLen = 40
|
||||
ipv6HPayloadLen := int(binary.BigEndian.Uint16(pkt[4:]))
|
||||
if ipv6HPayloadLen != len(pkt)-iphLen {
|
||||
return groResultNoop
|
||||
}
|
||||
} else {
|
||||
totalLen := int(binary.BigEndian.Uint16(pkt[2:]))
|
||||
if totalLen != len(pkt) {
|
||||
return groResultNoop
|
||||
}
|
||||
}
|
||||
if len(pkt) < iphLen {
|
||||
return groResultNoop
|
||||
}
|
||||
tcphLen := int((pkt[iphLen+12] >> 4) * 4)
|
||||
if tcphLen < 20 || tcphLen > 60 {
|
||||
return groResultNoop
|
||||
}
|
||||
if len(pkt) < iphLen+tcphLen {
|
||||
return groResultNoop
|
||||
}
|
||||
if !isV6 {
|
||||
if pkt[6]&ipv4FlagMoreFragments != 0 || pkt[6]<<3 != 0 || pkt[7] != 0 {
|
||||
// no GRO support for fragmented segments for now
|
||||
return groResultNoop
|
||||
}
|
||||
}
|
||||
tcpFlags := pkt[iphLen+tcpFlagsOffset]
|
||||
var pshSet bool
|
||||
// not a candidate if any non-ACK flags (except PSH+ACK) are set
|
||||
if tcpFlags != tcpFlagACK {
|
||||
if pkt[iphLen+tcpFlagsOffset] != tcpFlagACK|tcpFlagPSH {
|
||||
return groResultNoop
|
||||
}
|
||||
pshSet = true
|
||||
}
|
||||
gsoSize := uint16(len(pkt) - tcphLen - iphLen)
|
||||
// not a candidate if payload len is 0
|
||||
if gsoSize < 1 {
|
||||
return groResultNoop
|
||||
}
|
||||
seq := binary.BigEndian.Uint32(pkt[iphLen+4:])
|
||||
srcAddrOffset := ipv4SrcAddrOffset
|
||||
addrLen := 4
|
||||
if isV6 {
|
||||
srcAddrOffset = ipv6SrcAddrOffset
|
||||
addrLen = 16
|
||||
}
|
||||
items, existing := table.lookupOrInsert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI)
|
||||
if !existing {
|
||||
return groResultTableInsert
|
||||
}
|
||||
for i := len(items) - 1; i >= 0; i-- {
|
||||
// In the best case of packets arriving in order iterating in reverse is
|
||||
// more efficient if there are multiple items for a given flow. This
|
||||
// also enables a natural table.deleteAt() in the
|
||||
// coalesceItemInvalidCSum case without the need for index tracking.
|
||||
// This algorithm makes a best effort to coalesce in the event of
|
||||
// unordered packets, where pkt may land anywhere in items from a
|
||||
// sequence number perspective, however once an item is inserted into
|
||||
// the table it is never compared across other items later.
|
||||
item := items[i]
|
||||
can := tcpPacketsCanCoalesce(pkt, uint8(iphLen), uint8(tcphLen), seq, pshSet, gsoSize, item, bufs, offset)
|
||||
if can != coalesceUnavailable {
|
||||
result := coalesceTCPPackets(can, pkt, pktI, gsoSize, seq, pshSet, &item, bufs, offset, isV6)
|
||||
switch result {
|
||||
case coalesceSuccess:
|
||||
table.updateAt(item, i)
|
||||
return groResultCoalesced
|
||||
case coalesceItemInvalidCSum:
|
||||
// delete the item with an invalid csum
|
||||
table.deleteAt(item.key, i)
|
||||
case coalescePktInvalidCSum:
|
||||
// no point in inserting an item that we can't coalesce
|
||||
return groResultNoop
|
||||
default:
|
||||
}
|
||||
}
|
||||
}
|
||||
// failed to coalesce with any other packets; store the item in the flow
|
||||
table.insert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI)
|
||||
return groResultTableInsert
|
||||
}
|
||||
|
||||
// applyTCPCoalesceAccounting updates bufs to account for coalescing based on the
|
||||
// metadata found in table.
|
||||
func applyTCPCoalesceAccounting(bufs [][]byte, offset int, table *tcpGROTable) error {
|
||||
for _, items := range table.itemsByFlow {
|
||||
for _, item := range items {
|
||||
if item.numMerged > 0 {
|
||||
hdr := virtioNetHdr{
|
||||
flags: unix.VIRTIO_NET_HDR_F_NEEDS_CSUM, // this turns into CHECKSUM_PARTIAL in the skb
|
||||
hdrLen: uint16(item.iphLen + item.tcphLen),
|
||||
gsoSize: item.gsoSize,
|
||||
csumStart: uint16(item.iphLen),
|
||||
csumOffset: 16,
|
||||
}
|
||||
pkt := bufs[item.bufsIndex][offset:]
|
||||
|
||||
// Recalculate the total len (IPv4) or payload len (IPv6).
|
||||
// Recalculate the (IPv4) header checksum.
|
||||
if item.key.isV6 {
|
||||
hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV6
|
||||
binary.BigEndian.PutUint16(pkt[4:], uint16(len(pkt))-uint16(item.iphLen)) // set new IPv6 header payload len
|
||||
} else {
|
||||
hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV4
|
||||
pkt[10], pkt[11] = 0, 0
|
||||
binary.BigEndian.PutUint16(pkt[2:], uint16(len(pkt))) // set new total length
|
||||
iphCSum := ^checksum.Checksum(pkt[:item.iphLen], 0) // compute IPv4 header checksum
|
||||
binary.BigEndian.PutUint16(pkt[10:], iphCSum) // set IPv4 header checksum field
|
||||
}
|
||||
err := hdr.encode(bufs[item.bufsIndex][offset-virtioNetHdrLen:])
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Calculate the pseudo header checksum and place it at the TCP
|
||||
// checksum offset. Downstream checksum offloading will combine
|
||||
// this with computation of the tcp header and payload checksum.
|
||||
addrLen := 4
|
||||
addrOffset := ipv4SrcAddrOffset
|
||||
if item.key.isV6 {
|
||||
addrLen = 16
|
||||
addrOffset = ipv6SrcAddrOffset
|
||||
}
|
||||
srcAddrAt := offset + addrOffset
|
||||
srcAddr := bufs[item.bufsIndex][srcAddrAt : srcAddrAt+addrLen]
|
||||
dstAddr := bufs[item.bufsIndex][srcAddrAt+addrLen : srcAddrAt+addrLen*2]
|
||||
psum := header.PseudoHeaderChecksum(unix.IPPROTO_TCP, srcAddr, dstAddr, uint16(len(pkt)-int(item.iphLen)))
|
||||
binary.BigEndian.PutUint16(pkt[hdr.csumStart+hdr.csumOffset:], checksum.Checksum([]byte{}, psum))
|
||||
} else {
|
||||
hdr := virtioNetHdr{}
|
||||
err := hdr.encode(bufs[item.bufsIndex][offset-virtioNetHdrLen:])
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// applyUDPCoalesceAccounting updates bufs to account for coalescing based on the
|
||||
// metadata found in table.
|
||||
func applyUDPCoalesceAccounting(bufs [][]byte, offset int, table *udpGROTable) error {
|
||||
for _, items := range table.itemsByFlow {
|
||||
for _, item := range items {
|
||||
if item.numMerged > 0 {
|
||||
hdr := virtioNetHdr{
|
||||
flags: unix.VIRTIO_NET_HDR_F_NEEDS_CSUM, // this turns into CHECKSUM_PARTIAL in the skb
|
||||
hdrLen: uint16(item.iphLen + udphLen),
|
||||
gsoSize: item.gsoSize,
|
||||
csumStart: uint16(item.iphLen),
|
||||
csumOffset: 6,
|
||||
}
|
||||
pkt := bufs[item.bufsIndex][offset:]
|
||||
|
||||
// Recalculate the total len (IPv4) or payload len (IPv6).
|
||||
// Recalculate the (IPv4) header checksum.
|
||||
hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_UDP_L4
|
||||
if item.key.isV6 {
|
||||
binary.BigEndian.PutUint16(pkt[4:], uint16(len(pkt))-uint16(item.iphLen)) // set new IPv6 header payload len
|
||||
} else {
|
||||
pkt[10], pkt[11] = 0, 0
|
||||
binary.BigEndian.PutUint16(pkt[2:], uint16(len(pkt))) // set new total length
|
||||
iphCSum := ^checksum.Checksum(pkt[:item.iphLen], 0) // compute IPv4 header checksum
|
||||
binary.BigEndian.PutUint16(pkt[10:], iphCSum) // set IPv4 header checksum field
|
||||
}
|
||||
err := hdr.encode(bufs[item.bufsIndex][offset-virtioNetHdrLen:])
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Recalculate the UDP len field value
|
||||
binary.BigEndian.PutUint16(pkt[item.iphLen+4:], uint16(len(pkt[item.iphLen:])))
|
||||
|
||||
// Calculate the pseudo header checksum and place it at the UDP
|
||||
// checksum offset. Downstream checksum offloading will combine
|
||||
// this with computation of the udp header and payload checksum.
|
||||
addrLen := 4
|
||||
addrOffset := ipv4SrcAddrOffset
|
||||
if item.key.isV6 {
|
||||
addrLen = 16
|
||||
addrOffset = ipv6SrcAddrOffset
|
||||
}
|
||||
srcAddrAt := offset + addrOffset
|
||||
srcAddr := bufs[item.bufsIndex][srcAddrAt : srcAddrAt+addrLen]
|
||||
dstAddr := bufs[item.bufsIndex][srcAddrAt+addrLen : srcAddrAt+addrLen*2]
|
||||
psum := header.PseudoHeaderChecksum(unix.IPPROTO_UDP, srcAddr, dstAddr, uint16(len(pkt)-int(item.iphLen)))
|
||||
binary.BigEndian.PutUint16(pkt[hdr.csumStart+hdr.csumOffset:], checksum.Checksum([]byte{}, psum))
|
||||
} else {
|
||||
hdr := virtioNetHdr{}
|
||||
err := hdr.encode(bufs[item.bufsIndex][offset-virtioNetHdrLen:])
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
type groCandidateType uint8
|
||||
|
||||
const (
|
||||
notGROCandidate groCandidateType = iota
|
||||
tcp4GROCandidate
|
||||
tcp6GROCandidate
|
||||
udp4GROCandidate
|
||||
udp6GROCandidate
|
||||
)
|
||||
|
||||
type groDisablementFlags int
|
||||
|
||||
const (
|
||||
tcpGRODisabled groDisablementFlags = 1 << iota
|
||||
udpGRODisabled
|
||||
)
|
||||
|
||||
func (g *groDisablementFlags) disableTCPGRO() {
|
||||
*g |= tcpGRODisabled
|
||||
}
|
||||
|
||||
func (g *groDisablementFlags) canTCPGRO() bool {
|
||||
return (*g)&tcpGRODisabled == 0
|
||||
}
|
||||
|
||||
func (g *groDisablementFlags) disableUDPGRO() {
|
||||
*g |= udpGRODisabled
|
||||
}
|
||||
|
||||
func (g *groDisablementFlags) canUDPGRO() bool {
|
||||
return (*g)&udpGRODisabled == 0
|
||||
}
|
||||
|
||||
func packetIsGROCandidate(b []byte, gro groDisablementFlags) groCandidateType {
|
||||
if len(b) < 28 {
|
||||
return notGROCandidate
|
||||
}
|
||||
if b[0]>>4 == 4 {
|
||||
if b[0]&0x0F != 5 {
|
||||
// IPv4 packets w/IP options do not coalesce
|
||||
return notGROCandidate
|
||||
}
|
||||
if b[9] == unix.IPPROTO_TCP && len(b) >= 40 && gro.canTCPGRO() {
|
||||
return tcp4GROCandidate
|
||||
}
|
||||
if b[9] == unix.IPPROTO_UDP && gro.canUDPGRO() {
|
||||
return udp4GROCandidate
|
||||
}
|
||||
} else if b[0]>>4 == 6 {
|
||||
if b[6] == unix.IPPROTO_TCP && len(b) >= 60 && gro.canTCPGRO() {
|
||||
return tcp6GROCandidate
|
||||
}
|
||||
if b[6] == unix.IPPROTO_UDP && len(b) >= 48 && gro.canUDPGRO() {
|
||||
return udp6GROCandidate
|
||||
}
|
||||
}
|
||||
return notGROCandidate
|
||||
}
|
||||
|
||||
const (
|
||||
udphLen = 8
|
||||
)
|
||||
|
||||
// udpGRO evaluates the UDP packet at pktI in bufs for coalescing with
|
||||
// existing packets tracked in table. It returns a groResultNoop when no
|
||||
// action was taken, groResultTableInsert when the evaluated packet was
|
||||
// inserted into table, and groResultCoalesced when the evaluated packet was
|
||||
// coalesced with another packet in table.
|
||||
func udpGRO(bufs [][]byte, offset int, pktI int, table *udpGROTable, isV6 bool) groResult {
|
||||
pkt := bufs[pktI][offset:]
|
||||
if len(pkt) > maxUint16 {
|
||||
// A valid IPv4 or IPv6 packet will never exceed this.
|
||||
return groResultNoop
|
||||
}
|
||||
iphLen := int((pkt[0] & 0x0F) * 4)
|
||||
if isV6 {
|
||||
iphLen = 40
|
||||
ipv6HPayloadLen := int(binary.BigEndian.Uint16(pkt[4:]))
|
||||
if ipv6HPayloadLen != len(pkt)-iphLen {
|
||||
return groResultNoop
|
||||
}
|
||||
} else {
|
||||
totalLen := int(binary.BigEndian.Uint16(pkt[2:]))
|
||||
if totalLen != len(pkt) {
|
||||
return groResultNoop
|
||||
}
|
||||
}
|
||||
if len(pkt) < iphLen {
|
||||
return groResultNoop
|
||||
}
|
||||
if len(pkt) < iphLen+udphLen {
|
||||
return groResultNoop
|
||||
}
|
||||
if !isV6 {
|
||||
if pkt[6]&ipv4FlagMoreFragments != 0 || pkt[6]<<3 != 0 || pkt[7] != 0 {
|
||||
// no GRO support for fragmented segments for now
|
||||
return groResultNoop
|
||||
}
|
||||
}
|
||||
gsoSize := uint16(len(pkt) - udphLen - iphLen)
|
||||
// not a candidate if payload len is 0
|
||||
if gsoSize < 1 {
|
||||
return groResultNoop
|
||||
}
|
||||
srcAddrOffset := ipv4SrcAddrOffset
|
||||
addrLen := 4
|
||||
if isV6 {
|
||||
srcAddrOffset = ipv6SrcAddrOffset
|
||||
addrLen = 16
|
||||
}
|
||||
items, existing := table.lookupOrInsert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, pktI)
|
||||
if !existing {
|
||||
return groResultTableInsert
|
||||
}
|
||||
// With UDP we only check the last item, otherwise we could reorder packets
|
||||
// for a given flow. We must also always insert a new item, or successfully
|
||||
// coalesce with an existing item, for the same reason.
|
||||
item := items[len(items)-1]
|
||||
can := udpPacketsCanCoalesce(pkt, uint8(iphLen), gsoSize, item, bufs, offset)
|
||||
var pktCSumKnownInvalid bool
|
||||
if can == coalesceAppend {
|
||||
result := coalesceUDPPackets(pkt, &item, bufs, offset, isV6)
|
||||
switch result {
|
||||
case coalesceSuccess:
|
||||
table.updateAt(item, len(items)-1)
|
||||
return groResultCoalesced
|
||||
case coalesceItemInvalidCSum:
|
||||
// If the existing item has an invalid csum we take no action. A new
|
||||
// item will be stored after it, and the existing item will never be
|
||||
// revisited as part of future coalescing candidacy checks.
|
||||
case coalescePktInvalidCSum:
|
||||
// We must insert a new item, but we also mark it as invalid csum
|
||||
// to prevent a repeat checksum validation.
|
||||
pktCSumKnownInvalid = true
|
||||
default:
|
||||
}
|
||||
}
|
||||
// failed to coalesce with any other packets; store the item in the flow
|
||||
table.insert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, pktI, pktCSumKnownInvalid)
|
||||
return groResultTableInsert
|
||||
}
|
||||
|
||||
// handleGRO evaluates bufs for GRO, and writes the indices of the resulting
|
||||
// packets into toWrite. toWrite, tcpTable, and udpTable should initially be
|
||||
// empty (but non-nil), and are passed in to save allocs as the caller may reset
|
||||
// and recycle them across vectors of packets. gro indicates if TCP and UDP GRO
|
||||
// are supported/enabled.
|
||||
func handleGRO(bufs [][]byte, offset int, tcpTable *tcpGROTable, udpTable *udpGROTable, gro groDisablementFlags, toWrite *[]int) error {
|
||||
for i := range bufs {
|
||||
if offset < virtioNetHdrLen || offset > len(bufs[i])-1 {
|
||||
return errors.New("invalid offset")
|
||||
}
|
||||
var result groResult
|
||||
switch packetIsGROCandidate(bufs[i][offset:], gro) {
|
||||
case tcp4GROCandidate:
|
||||
result = tcpGRO(bufs, offset, i, tcpTable, false)
|
||||
case tcp6GROCandidate:
|
||||
result = tcpGRO(bufs, offset, i, tcpTable, true)
|
||||
case udp4GROCandidate:
|
||||
result = udpGRO(bufs, offset, i, udpTable, false)
|
||||
case udp6GROCandidate:
|
||||
result = udpGRO(bufs, offset, i, udpTable, true)
|
||||
}
|
||||
switch result {
|
||||
case groResultNoop:
|
||||
hdr := virtioNetHdr{}
|
||||
err := hdr.encode(bufs[i][offset-virtioNetHdrLen:])
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
fallthrough
|
||||
case groResultTableInsert:
|
||||
*toWrite = append(*toWrite, i)
|
||||
}
|
||||
}
|
||||
errTCP := applyTCPCoalesceAccounting(bufs, offset, tcpTable)
|
||||
errUDP := applyUDPCoalesceAccounting(bufs, offset, udpTable)
|
||||
return errors.Join(errTCP, errUDP)
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue