freelru: Copy shared source

This commit is contained in:
世界 2024-11-09 11:36:15 +08:00
parent 524a6bd0d1
commit fcb19641e6
No known key found for this signature in database
GPG key ID: CD109927C34A63C4

View file

@ -0,0 +1,315 @@
package freelru
import (
"errors"
"fmt"
"math/bits"
"runtime"
"sync"
"time"
)
// ShardedLRU is a thread-safe, sharded, fixed size LRU cache.
// Sharding is used to reduce lock contention on high concurrency.
// The downside is that exact LRU behavior is not given (as for the LRU and SynchedLRU types).
type ShardedLRU[K comparable, V any] struct {
lrus []LRU[K, V]
mus []sync.RWMutex
hash HashKeyCallback[K]
shards uint32
mask uint32
}
var _ Cache[int, int] = (*ShardedLRU[int, int])(nil)
// SetLifetime sets the default lifetime of LRU elements.
// Lifetime 0 means "forever".
func (lru *ShardedLRU[K, V]) SetLifetime(lifetime time.Duration) {
for shard := range lru.lrus {
lru.mus[shard].Lock()
lru.lrus[shard].SetLifetime(lifetime)
lru.mus[shard].Unlock()
}
}
// SetOnEvict sets the OnEvict callback function.
// The onEvict function is called for each evicted lru entry.
func (lru *ShardedLRU[K, V]) SetOnEvict(onEvict OnEvictCallback[K, V]) {
for shard := range lru.lrus {
lru.mus[shard].Lock()
lru.lrus[shard].SetOnEvict(onEvict)
lru.mus[shard].Unlock()
}
}
func nextPowerOfTwo(val uint32) uint32 {
if bits.OnesCount32(val) != 1 {
return 1 << bits.Len32(val)
}
return val
}
// NewSharded creates a new thread-safe sharded LRU hashmap with the given capacity.
func NewSharded[K comparable, V any](capacity uint32, hash HashKeyCallback[K]) (*ShardedLRU[K, V],
error) {
size := uint32(float64(capacity) * 1.25) // 25% extra space for fewer collisions
return NewShardedWithSize[K, V](uint32(runtime.GOMAXPROCS(0)*16), capacity, size, hash)
}
func NewShardedWithSize[K comparable, V any](shards, capacity, size uint32,
hash HashKeyCallback[K]) (
*ShardedLRU[K, V], error) {
if capacity == 0 {
return nil, errors.New("capacity must be positive")
}
if size < capacity {
return nil, fmt.Errorf("size (%d) is smaller than capacity (%d)", size, capacity)
}
if size < 1<<31 {
size = nextPowerOfTwo(size) // next power of 2 so the LRUs can avoid costly divisions
} else {
size = 1 << 31 // the highest 2^N value that fits in a uint32
}
shards = nextPowerOfTwo(shards) // next power of 2 so we can avoid costly division for sharding
for shards > size/16 {
shards /= 16
}
if shards == 0 {
shards = 1
}
size /= shards // size per LRU
if size == 0 {
size = 1
}
capacity = (capacity + shards - 1) / shards // size per LRU
if capacity == 0 {
capacity = 1
}
lrus := make([]LRU[K, V], shards)
buckets := make([]uint32, size*shards)
elements := make([]element[K, V], size*shards)
from := 0
to := int(size)
for i := range lrus {
initLRU(&lrus[i], capacity, size, hash, buckets[from:to], elements[from:to])
from = to
to += int(size)
}
return &ShardedLRU[K, V]{
lrus: lrus,
mus: make([]sync.RWMutex, shards),
hash: hash,
shards: shards,
mask: shards - 1,
}, nil
}
// Len returns the number of elements stored in the cache.
func (lru *ShardedLRU[K, V]) Len() (length int) {
for shard := range lru.lrus {
lru.mus[shard].RLock()
length += lru.lrus[shard].Len()
lru.mus[shard].RUnlock()
}
return
}
// AddWithLifetime adds a key:value to the cache with a lifetime.
// Returns true, true if key was updated and eviction occurred.
func (lru *ShardedLRU[K, V]) AddWithLifetime(key K, value V,
lifetime time.Duration) (evicted bool) {
hash := lru.hash(key)
shard := (hash >> 16) & lru.mask
lru.mus[shard].Lock()
evicted = lru.lrus[shard].addWithLifetime(hash, key, value, lifetime)
lru.mus[shard].Unlock()
return
}
// Add adds a key:value to the cache.
// Returns true, true if key was updated and eviction occurred.
func (lru *ShardedLRU[K, V]) Add(key K, value V) (evicted bool) {
hash := lru.hash(key)
shard := (hash >> 16) & lru.mask
lru.mus[shard].Lock()
evicted = lru.lrus[shard].add(hash, key, value)
lru.mus[shard].Unlock()
return
}
// Get returns the value associated with the key, setting it as the most
// recently used item.
// If the found cache item is already expired, the evict function is called
// and the return value indicates that the key was not found.
func (lru *ShardedLRU[K, V]) Get(key K) (value V, ok bool) {
hash := lru.hash(key)
shard := (hash >> 16) & lru.mask
lru.mus[shard].Lock()
value, ok = lru.lrus[shard].get(hash, key)
lru.mus[shard].Unlock()
return
}
// Peek looks up a key's value from the cache, without changing its recent-ness.
// If the found entry is already expired, the evict function is called.
func (lru *ShardedLRU[K, V]) Peek(key K) (value V, ok bool) {
hash := lru.hash(key)
shard := (hash >> 16) & lru.mask
lru.mus[shard].Lock()
value, ok = lru.lrus[shard].peek(hash, key)
lru.mus[shard].Unlock()
return
}
// Contains checks for the existence of a key, without changing its recent-ness.
// If the found entry is already expired, the evict function is called.
func (lru *ShardedLRU[K, V]) Contains(key K) (ok bool) {
hash := lru.hash(key)
shard := (hash >> 16) & lru.mask
lru.mus[shard].Lock()
ok = lru.lrus[shard].contains(hash, key)
lru.mus[shard].Unlock()
return
}
// Remove removes the key from the cache.
// The return value indicates whether the key existed or not.
// The evict function is called for the removed entry.
func (lru *ShardedLRU[K, V]) Remove(key K) (removed bool) {
hash := lru.hash(key)
shard := (hash >> 16) & lru.mask
lru.mus[shard].Lock()
removed = lru.lrus[shard].remove(hash, key)
lru.mus[shard].Unlock()
return
}
// RemoveOldest removes the oldest entry from the cache.
// Key, value and an indicator of whether the entry has been removed is returned.
// The evict function is called for the removed entry.
func (lru *ShardedLRU[K, V]) RemoveOldest() (key K, value V, removed bool) {
hash := lru.hash(key)
shard := (hash >> 16) & lru.mask
lru.mus[shard].Lock()
key, value, removed = lru.lrus[shard].RemoveOldest()
lru.mus[shard].Unlock()
return
}
// Keys returns a slice of the keys in the cache, from oldest to newest.
// Expired entries are not included.
// The evict function is called for each expired item.
func (lru *ShardedLRU[K, V]) Keys() []K {
keys := make([]K, 0, lru.shards*lru.lrus[0].cap)
for shard := range lru.lrus {
lru.mus[shard].Lock()
keys = append(keys, lru.lrus[shard].Keys()...)
lru.mus[shard].Unlock()
}
return keys
}
// Purge purges all data (key and value) from the LRU.
// The evict function is called for each expired item.
// The LRU metrics are reset.
func (lru *ShardedLRU[K, V]) Purge() {
for shard := range lru.lrus {
lru.mus[shard].Lock()
lru.lrus[shard].Purge()
lru.mus[shard].Unlock()
}
}
// PurgeExpired purges all expired items from the LRU.
// The evict function is called for each expired item.
func (lru *ShardedLRU[K, V]) PurgeExpired() {
for shard := range lru.lrus {
lru.mus[shard].Lock()
lru.lrus[shard].PurgeExpired()
lru.mus[shard].Unlock()
}
}
// Metrics returns the metrics of the cache.
func (lru *ShardedLRU[K, V]) Metrics() Metrics {
metrics := Metrics{}
for shard := range lru.lrus {
lru.mus[shard].Lock()
m := lru.lrus[shard].Metrics()
lru.mus[shard].Unlock()
addMetrics(&metrics, m)
}
return metrics
}
// ResetMetrics resets the metrics of the cache and returns the previous state.
func (lru *ShardedLRU[K, V]) ResetMetrics() Metrics {
metrics := Metrics{}
for shard := range lru.lrus {
lru.mus[shard].Lock()
m := lru.lrus[shard].ResetMetrics()
lru.mus[shard].Unlock()
addMetrics(&metrics, m)
}
return metrics
}
func addMetrics(dst *Metrics, src Metrics) {
dst.Inserts += src.Inserts
dst.Collisions += src.Collisions
dst.Evictions += src.Evictions
dst.Removals += src.Removals
dst.Hits += src.Hits
dst.Misses += src.Misses
}
// just used for debugging
func (lru *ShardedLRU[K, V]) dump() {
for shard := range lru.lrus {
fmt.Printf("Shard %d:\n", shard)
lru.mus[shard].RLock()
lru.lrus[shard].dump()
lru.mus[shard].RUnlock()
fmt.Println("")
}
}
func (lru *ShardedLRU[K, V]) PrintStats() {
for shard := range lru.lrus {
fmt.Printf("Shard %d:\n", shard)
lru.mus[shard].RLock()
lru.lrus[shard].PrintStats()
lru.mus[shard].RUnlock()
fmt.Println("")
}
}