Add suport for DoH over HTTP/3

This commit is contained in:
Frank Denis 2022-07-21 18:50:10 +02:00
parent 91388b148c
commit 5977de660b
429 changed files with 87237 additions and 7 deletions

17
vendor/github.com/lucas-clemente/quic-go/.gitignore generated vendored Normal file
View file

@ -0,0 +1,17 @@
debug
debug.test
main
mockgen_tmp.go
*.qtr
*.qlog
*.txt
race.[0-9]*
fuzzing/*/*.zip
fuzzing/*/coverprofile
fuzzing/*/crashers
fuzzing/*/sonarprofile
fuzzing/*/suppressions
fuzzing/*/corpus/
gomock_reflect_*/

44
vendor/github.com/lucas-clemente/quic-go/.golangci.yml generated vendored Normal file
View file

@ -0,0 +1,44 @@
run:
skip-files:
- internal/qtls/structs_equal_test.go
linters-settings:
depguard:
type: blacklist
packages:
- github.com/marten-seemann/qtls
packages-with-error-message:
- github.com/marten-seemann/qtls: "importing qtls only allowed in internal/qtls"
misspell:
ignore-words:
- ect
linters:
disable-all: true
enable:
- asciicheck
- deadcode
- depguard
- exhaustive
- exportloopref
- goimports
- gofmt # redundant, since gofmt *should* be a no-op after gofumpt
- gofumpt
- gosimple
- ineffassign
- misspell
- prealloc
- staticcheck
- stylecheck
- structcheck
- unconvert
- unparam
- unused
- varcheck
- vet
issues:
exclude-rules:
- path: internal/qtls
linters:
- depguard

109
vendor/github.com/lucas-clemente/quic-go/Changelog.md generated vendored Normal file
View file

@ -0,0 +1,109 @@
# Changelog
## v0.22.0 (2021-07-25)
- Use `ReadBatch` to read multiple UDP packets from the socket with a single syscall
- Add a config option (`Config.DisableVersionNegotiationPackets`) to disable sending of Version Negotiation packets
- Drop support for QUIC draft versions 32 and 34
- Remove the `RetireBugBackwardsCompatibilityMode`, which was intended to mitigate a bug when retiring connection IDs in quic-go in v0.17.2 and ealier
## v0.21.2 (2021-07-15)
- Update qtls (for Go 1.15, 1.16 and 1.17rc1) to include the fix for the crypto/tls panic (see https://groups.google.com/g/golang-dev/c/5LJ2V7rd-Ag/m/YGLHVBZ6AAAJ for details)
## v0.21.0 (2021-06-01)
- quic-go now supports RFC 9000!
## v0.20.0 (2021-03-19)
- Remove the `quic.Config.HandshakeTimeout`. Introduce a `quic.Config.HandshakeIdleTimeout`.
## v0.17.1 (2020-06-20)
- Supports QUIC WG draft-29.
- Improve bundling of ACK frames (#2543).
## v0.16.0 (2020-05-31)
- Supports QUIC WG draft-28.
## v0.15.0 (2020-03-01)
- Supports QUIC WG draft-27.
- Add support for 0-RTT.
- Remove `Session.Close()`. Applications need to pass an application error code to the transport using `Session.CloseWithError()`.
- Make the TLS Cipher Suites configurable (via `tls.Config.CipherSuites`).
## v0.14.0 (2019-12-04)
- Supports QUIC WG draft-24.
## v0.13.0 (2019-11-05)
- Supports QUIC WG draft-23.
- Add an `EarlyListener` that allows sending of 0.5-RTT data.
- Add a `TokenStore` to store address validation tokens.
- Issue and use new connection IDs during a connection.
## v0.12.0 (2019-08-05)
- Implement HTTP/3.
- Rename `quic.Cookie` to `quic.Token` and `quic.Config.AcceptCookie` to `quic.Config.AcceptToken`.
- Distinguish between Retry tokens and tokens sent in NEW_TOKEN frames.
- Enforce application protocol negotiation (via `tls.Config.NextProtos`).
- Use a varint for error codes.
- Add support for [quic-trace](https://github.com/google/quic-trace).
- Add a context to `Listener.Accept`, `Session.Accept{Uni}Stream` and `Session.Open{Uni}StreamSync`.
- Implement TLS key updates.
## v0.11.0 (2019-04-05)
- Drop support for gQUIC. For qQUIC support, please switch to the *gquic* branch.
- Implement QUIC WG draft-19.
- Use [qtls](https://github.com/marten-seemann/qtls) for TLS 1.3.
- Return a `tls.ConnectionState` from `quic.Session.ConnectionState()`.
- Remove the error return values from `quic.Stream.CancelRead()` and `quic.Stream.CancelWrite()`
## v0.10.0 (2018-08-28)
- Add support for QUIC 44, drop support for QUIC 42.
## v0.9.0 (2018-08-15)
- Add a `quic.Config` option for the length of the connection ID (for IETF QUIC).
- Split Session.Close into one method for regular closing and one for closing with an error.
## v0.8.0 (2018-06-26)
- Add support for unidirectional streams (for IETF QUIC).
- Add a `quic.Config` option for the maximum number of incoming streams.
- Add support for QUIC 42 and 43.
- Add dial functions that use a context.
- Multiplex clients on a net.PacketConn, when using Dial(conn).
## v0.7.0 (2018-02-03)
- The lower boundary for packets included in ACKs is now derived, and the value sent in STOP_WAITING frames is ignored.
- Remove `DialNonFWSecure` and `DialAddrNonFWSecure`.
- Expose the `ConnectionState` in the `Session` (experimental API).
- Implement packet pacing.
## v0.6.0 (2017-12-12)
- Add support for QUIC 39, drop support for QUIC 35 - 37
- Added `quic.Config` options for maximal flow control windows
- Add a `quic.Config` option for QUIC versions
- Add a `quic.Config` option to request omission of the connection ID from a server
- Add a `quic.Config` option to configure the source address validation
- Add a `quic.Config` option to configure the handshake timeout
- Add a `quic.Config` option to configure the idle timeout
- Add a `quic.Config` option to configure keep-alive
- Rename the STK to Cookie
- Implement `net.Conn`-style deadlines for streams
- Remove the `tls.Config` from the `quic.Config`. The `tls.Config` must now be passed to the `Dial` and `Listen` functions as a separate parameter. See the [Godoc](https://godoc.org/github.com/lucas-clemente/quic-go) for details.
- Changed the log level environment variable to only accept strings ("DEBUG", "INFO", "ERROR"), see [the wiki](https://github.com/lucas-clemente/quic-go/wiki/Logging) for more details.
- Rename the `h2quic.QuicRoundTripper` to `h2quic.RoundTripper`
- Changed `h2quic.Server.Serve()` to accept a `net.PacketConn`
- Drop support for Go 1.7 and 1.8.
- Various bugfixes

21
vendor/github.com/lucas-clemente/quic-go/LICENSE generated vendored Normal file
View file

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2016 the quic-go authors & Google, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

61
vendor/github.com/lucas-clemente/quic-go/README.md generated vendored Normal file
View file

@ -0,0 +1,61 @@
# A QUIC implementation in pure Go
<img src="docs/quic.png" width=303 height=124>
[![PkgGoDev](https://pkg.go.dev/badge/github.com/lucas-clemente/quic-go)](https://pkg.go.dev/github.com/lucas-clemente/quic-go)
[![Code Coverage](https://img.shields.io/codecov/c/github/lucas-clemente/quic-go/master.svg?style=flat-square)](https://codecov.io/gh/lucas-clemente/quic-go/)
quic-go is an implementation of the [QUIC protocol, RFC 9000](https://datatracker.ietf.org/doc/html/rfc9000) protocol in Go, including the [Unreliable Datagram Extension, RFC 9221](https://datatracker.ietf.org/doc/html/rfc9221).
In addition to RFC 9000, it currently implements the [IETF QUIC draft-29](https://tools.ietf.org/html/draft-ietf-quic-transport-29). Support for draft-29 will eventually be dropped, as it is phased out of the ecosystem.
## Guides
*We currently support Go 1.16.x, Go 1.17.x, and Go 1.18.x.*
Running tests:
go test ./...
### QUIC without HTTP/3
Take a look at [this echo example](example/echo/echo.go).
## Usage
### As a server
See the [example server](example/main.go). Starting a QUIC server is very similar to the standard lib http in go:
```go
http.Handle("/", http.FileServer(http.Dir(wwwDir)))
http3.ListenAndServeQUIC("localhost:4242", "/path/to/cert/chain.pem", "/path/to/privkey.pem", nil)
```
### As a client
See the [example client](example/client/main.go). Use a `http3.RoundTripper` as a `Transport` in a `http.Client`.
```go
http.Client{
Transport: &http3.RoundTripper{},
}
```
## Projects using quic-go
| Project | Description | Stars |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------|
| [algernon](https://github.com/xyproto/algernon) | Small self-contained pure-Go web server with Lua, Markdown, HTTP/2, QUIC, Redis and PostgreSQL support | ![GitHub Repo stars](https://img.shields.io/github/stars/xyproto/algernon?style=flat-square) |
| [caddy](https://github.com/caddyserver/caddy/) | Fast, multi-platform web server with automatic HTTPS | ![GitHub Repo stars](https://img.shields.io/github/stars/caddyserver/caddy?style=flat-square) |
| [go-ipfs](https://github.com/ipfs/go-ipfs) | IPFS implementation in go | ![GitHub Repo stars](https://img.shields.io/github/stars/ipfs/go-ipfs?style=flat-square) |
| [syncthing](https://github.com/syncthing/syncthing/) | Open Source Continuous File Synchronization | ![GitHub Repo stars](https://img.shields.io/github/stars/syncthing/syncthing?style=flat-square) |
| [traefik](https://github.com/traefik/traefik) | The Cloud Native Application Proxy | ![GitHub Repo stars](https://img.shields.io/github/stars/traefik/traefik?style=flat-square) |
| [v2ray-core](https://github.com/v2fly/v2ray-core) | A platform for building proxies to bypass network restrictions | ![GitHub Repo stars](https://img.shields.io/github/stars/v2fly/v2ray-core?style=flat-square) |
| [cloudflared](https://github.com/cloudflare/cloudflared) | A tunneling daemon that proxies traffic from the Cloudflare network to your origins | ![GitHub Repo stars](https://img.shields.io/github/stars/cloudflare/cloudflared?style=flat-square) |
| [OONI Probe](https://github.com/ooni/probe-cli) | The Open Observatory of Network Interference (OONI) aims to empower decentralized efforts in documenting Internet censorship around the world. | ![GitHub Repo stars](https://img.shields.io/github/stars/ooni/probe-cli?style=flat-square) |
## Contributing
We are always happy to welcome new contributors! We have a number of self-contained issues that are suitable for first-time contributors, they are tagged with [help wanted](https://github.com/lucas-clemente/quic-go/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22). If you have any questions, please feel free to reach out by opening an issue or leaving a comment.

View file

@ -0,0 +1,80 @@
package quic
import (
"sync"
"github.com/lucas-clemente/quic-go/internal/protocol"
)
type packetBuffer struct {
Data []byte
// refCount counts how many packets Data is used in.
// It doesn't support concurrent use.
// It is > 1 when used for coalesced packet.
refCount int
}
// Split increases the refCount.
// It must be called when a packet buffer is used for more than one packet,
// e.g. when splitting coalesced packets.
func (b *packetBuffer) Split() {
b.refCount++
}
// Decrement decrements the reference counter.
// It doesn't put the buffer back into the pool.
func (b *packetBuffer) Decrement() {
b.refCount--
if b.refCount < 0 {
panic("negative packetBuffer refCount")
}
}
// MaybeRelease puts the packet buffer back into the pool,
// if the reference counter already reached 0.
func (b *packetBuffer) MaybeRelease() {
// only put the packetBuffer back if it's not used any more
if b.refCount == 0 {
b.putBack()
}
}
// Release puts back the packet buffer into the pool.
// It should be called when processing is definitely finished.
func (b *packetBuffer) Release() {
b.Decrement()
if b.refCount != 0 {
panic("packetBuffer refCount not zero")
}
b.putBack()
}
// Len returns the length of Data
func (b *packetBuffer) Len() protocol.ByteCount {
return protocol.ByteCount(len(b.Data))
}
func (b *packetBuffer) putBack() {
if cap(b.Data) != int(protocol.MaxPacketBufferSize) {
panic("putPacketBuffer called with packet of wrong size!")
}
bufferPool.Put(b)
}
var bufferPool sync.Pool
func getPacketBuffer() *packetBuffer {
buf := bufferPool.Get().(*packetBuffer)
buf.refCount = 1
buf.Data = buf.Data[:0]
return buf
}
func init() {
bufferPool.New = func() interface{} {
return &packetBuffer{
Data: make([]byte, 0, protocol.MaxPacketBufferSize),
}
}
}

339
vendor/github.com/lucas-clemente/quic-go/client.go generated vendored Normal file
View file

@ -0,0 +1,339 @@
package quic
import (
"context"
"crypto/tls"
"errors"
"fmt"
"net"
"strings"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/lucas-clemente/quic-go/logging"
)
type client struct {
sconn sendConn
// If the client is created with DialAddr, we create a packet conn.
// If it is started with Dial, we take a packet conn as a parameter.
createdPacketConn bool
use0RTT bool
packetHandlers packetHandlerManager
tlsConf *tls.Config
config *Config
srcConnID protocol.ConnectionID
destConnID protocol.ConnectionID
initialPacketNumber protocol.PacketNumber
hasNegotiatedVersion bool
version protocol.VersionNumber
handshakeChan chan struct{}
conn quicConn
tracer logging.ConnectionTracer
tracingID uint64
logger utils.Logger
}
var (
// make it possible to mock connection ID generation in the tests
generateConnectionID = protocol.GenerateConnectionID
generateConnectionIDForInitial = protocol.GenerateConnectionIDForInitial
)
// DialAddr establishes a new QUIC connection to a server.
// It uses a new UDP connection and closes this connection when the QUIC connection is closed.
// The hostname for SNI is taken from the given address.
// The tls.Config.CipherSuites allows setting of TLS 1.3 cipher suites.
func DialAddr(
addr string,
tlsConf *tls.Config,
config *Config,
) (Connection, error) {
return DialAddrContext(context.Background(), addr, tlsConf, config)
}
// DialAddrEarly establishes a new 0-RTT QUIC connection to a server.
// It uses a new UDP connection and closes this connection when the QUIC connection is closed.
// The hostname for SNI is taken from the given address.
// The tls.Config.CipherSuites allows setting of TLS 1.3 cipher suites.
func DialAddrEarly(
addr string,
tlsConf *tls.Config,
config *Config,
) (EarlyConnection, error) {
return DialAddrEarlyContext(context.Background(), addr, tlsConf, config)
}
// DialAddrEarlyContext establishes a new 0-RTT QUIC connection to a server using provided context.
// See DialAddrEarly for details
func DialAddrEarlyContext(
ctx context.Context,
addr string,
tlsConf *tls.Config,
config *Config,
) (EarlyConnection, error) {
conn, err := dialAddrContext(ctx, addr, tlsConf, config, true)
if err != nil {
return nil, err
}
utils.Logger.WithPrefix(utils.DefaultLogger, "client").Debugf("Returning early connection")
return conn, nil
}
// DialAddrContext establishes a new QUIC connection to a server using the provided context.
// See DialAddr for details.
func DialAddrContext(
ctx context.Context,
addr string,
tlsConf *tls.Config,
config *Config,
) (Connection, error) {
return dialAddrContext(ctx, addr, tlsConf, config, false)
}
func dialAddrContext(
ctx context.Context,
addr string,
tlsConf *tls.Config,
config *Config,
use0RTT bool,
) (quicConn, error) {
udpAddr, err := net.ResolveUDPAddr("udp", addr)
if err != nil {
return nil, err
}
udpConn, err := net.ListenUDP("udp", &net.UDPAddr{IP: net.IPv4zero, Port: 0})
if err != nil {
return nil, err
}
return dialContext(ctx, udpConn, udpAddr, addr, tlsConf, config, use0RTT, true)
}
// Dial establishes a new QUIC connection to a server using a net.PacketConn. If
// the PacketConn satisfies the OOBCapablePacketConn interface (as a net.UDPConn
// does), ECN and packet info support will be enabled. In this case, ReadMsgUDP
// and WriteMsgUDP will be used instead of ReadFrom and WriteTo to read/write
// packets. The same PacketConn can be used for multiple calls to Dial and
// Listen, QUIC connection IDs are used for demultiplexing the different
// connections. The host parameter is used for SNI. The tls.Config must define
// an application protocol (using NextProtos).
func Dial(
pconn net.PacketConn,
remoteAddr net.Addr,
host string,
tlsConf *tls.Config,
config *Config,
) (Connection, error) {
return dialContext(context.Background(), pconn, remoteAddr, host, tlsConf, config, false, false)
}
// DialEarly establishes a new 0-RTT QUIC connection to a server using a net.PacketConn.
// The same PacketConn can be used for multiple calls to Dial and Listen,
// QUIC connection IDs are used for demultiplexing the different connections.
// The host parameter is used for SNI.
// The tls.Config must define an application protocol (using NextProtos).
func DialEarly(
pconn net.PacketConn,
remoteAddr net.Addr,
host string,
tlsConf *tls.Config,
config *Config,
) (EarlyConnection, error) {
return DialEarlyContext(context.Background(), pconn, remoteAddr, host, tlsConf, config)
}
// DialEarlyContext establishes a new 0-RTT QUIC connection to a server using a net.PacketConn using the provided context.
// See DialEarly for details.
func DialEarlyContext(
ctx context.Context,
pconn net.PacketConn,
remoteAddr net.Addr,
host string,
tlsConf *tls.Config,
config *Config,
) (EarlyConnection, error) {
return dialContext(ctx, pconn, remoteAddr, host, tlsConf, config, true, false)
}
// DialContext establishes a new QUIC connection to a server using a net.PacketConn using the provided context.
// See Dial for details.
func DialContext(
ctx context.Context,
pconn net.PacketConn,
remoteAddr net.Addr,
host string,
tlsConf *tls.Config,
config *Config,
) (Connection, error) {
return dialContext(ctx, pconn, remoteAddr, host, tlsConf, config, false, false)
}
func dialContext(
ctx context.Context,
pconn net.PacketConn,
remoteAddr net.Addr,
host string,
tlsConf *tls.Config,
config *Config,
use0RTT bool,
createdPacketConn bool,
) (quicConn, error) {
if tlsConf == nil {
return nil, errors.New("quic: tls.Config not set")
}
if err := validateConfig(config); err != nil {
return nil, err
}
config = populateClientConfig(config, createdPacketConn)
packetHandlers, err := getMultiplexer().AddConn(pconn, config.ConnectionIDLength, config.StatelessResetKey, config.Tracer)
if err != nil {
return nil, err
}
c, err := newClient(pconn, remoteAddr, config, tlsConf, host, use0RTT, createdPacketConn)
if err != nil {
return nil, err
}
c.packetHandlers = packetHandlers
c.tracingID = nextConnTracingID()
if c.config.Tracer != nil {
c.tracer = c.config.Tracer.TracerForConnection(
context.WithValue(ctx, ConnectionTracingKey, c.tracingID),
protocol.PerspectiveClient,
c.destConnID,
)
}
if c.tracer != nil {
c.tracer.StartedConnection(c.sconn.LocalAddr(), c.sconn.RemoteAddr(), c.srcConnID, c.destConnID)
}
if err := c.dial(ctx); err != nil {
return nil, err
}
return c.conn, nil
}
func newClient(
pconn net.PacketConn,
remoteAddr net.Addr,
config *Config,
tlsConf *tls.Config,
host string,
use0RTT bool,
createdPacketConn bool,
) (*client, error) {
if tlsConf == nil {
tlsConf = &tls.Config{}
} else {
tlsConf = tlsConf.Clone()
}
if tlsConf.ServerName == "" {
sni := host
if strings.IndexByte(sni, ':') != -1 {
var err error
sni, _, err = net.SplitHostPort(sni)
if err != nil {
return nil, err
}
}
tlsConf.ServerName = sni
}
// check that all versions are actually supported
if config != nil {
for _, v := range config.Versions {
if !protocol.IsValidVersion(v) {
return nil, fmt.Errorf("%s is not a valid QUIC version", v)
}
}
}
srcConnID, err := generateConnectionID(config.ConnectionIDLength)
if err != nil {
return nil, err
}
destConnID, err := generateConnectionIDForInitial()
if err != nil {
return nil, err
}
c := &client{
srcConnID: srcConnID,
destConnID: destConnID,
sconn: newSendPconn(pconn, remoteAddr),
createdPacketConn: createdPacketConn,
use0RTT: use0RTT,
tlsConf: tlsConf,
config: config,
version: config.Versions[0],
handshakeChan: make(chan struct{}),
logger: utils.DefaultLogger.WithPrefix("client"),
}
return c, nil
}
func (c *client) dial(ctx context.Context) error {
c.logger.Infof("Starting new connection to %s (%s -> %s), source connection ID %s, destination connection ID %s, version %s", c.tlsConf.ServerName, c.sconn.LocalAddr(), c.sconn.RemoteAddr(), c.srcConnID, c.destConnID, c.version)
c.conn = newClientConnection(
c.sconn,
c.packetHandlers,
c.destConnID,
c.srcConnID,
c.config,
c.tlsConf,
c.initialPacketNumber,
c.use0RTT,
c.hasNegotiatedVersion,
c.tracer,
c.tracingID,
c.logger,
c.version,
)
c.packetHandlers.Add(c.srcConnID, c.conn)
errorChan := make(chan error, 1)
go func() {
err := c.conn.run() // returns as soon as the connection is closed
if e := (&errCloseForRecreating{}); !errors.As(err, &e) && c.createdPacketConn {
c.packetHandlers.Destroy()
}
errorChan <- err
}()
// only set when we're using 0-RTT
// Otherwise, earlyConnChan will be nil. Receiving from a nil chan blocks forever.
var earlyConnChan <-chan struct{}
if c.use0RTT {
earlyConnChan = c.conn.earlyConnReady()
}
select {
case <-ctx.Done():
c.conn.shutdown()
return ctx.Err()
case err := <-errorChan:
var recreateErr *errCloseForRecreating
if errors.As(err, &recreateErr) {
c.initialPacketNumber = recreateErr.nextPacketNumber
c.version = recreateErr.nextVersion
c.hasNegotiatedVersion = true
return c.dial(ctx)
}
return err
case <-earlyConnChan:
// ready to send 0-RTT data
return nil
case <-c.conn.HandshakeComplete().Done():
// handshake successfully completed
return nil
}
}

112
vendor/github.com/lucas-clemente/quic-go/closed_conn.go generated vendored Normal file
View file

@ -0,0 +1,112 @@
package quic
import (
"sync"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/utils"
)
// A closedLocalConn is a connection that we closed locally.
// When receiving packets for such a connection, we need to retransmit the packet containing the CONNECTION_CLOSE frame,
// with an exponential backoff.
type closedLocalConn struct {
conn sendConn
connClosePacket []byte
closeOnce sync.Once
closeChan chan struct{} // is closed when the connection is closed or destroyed
receivedPackets chan *receivedPacket
counter uint64 // number of packets received
perspective protocol.Perspective
logger utils.Logger
}
var _ packetHandler = &closedLocalConn{}
// newClosedLocalConn creates a new closedLocalConn and runs it.
func newClosedLocalConn(
conn sendConn,
connClosePacket []byte,
perspective protocol.Perspective,
logger utils.Logger,
) packetHandler {
s := &closedLocalConn{
conn: conn,
connClosePacket: connClosePacket,
perspective: perspective,
logger: logger,
closeChan: make(chan struct{}),
receivedPackets: make(chan *receivedPacket, 64),
}
go s.run()
return s
}
func (s *closedLocalConn) run() {
for {
select {
case p := <-s.receivedPackets:
s.handlePacketImpl(p)
case <-s.closeChan:
return
}
}
}
func (s *closedLocalConn) handlePacket(p *receivedPacket) {
select {
case s.receivedPackets <- p:
default:
}
}
func (s *closedLocalConn) handlePacketImpl(_ *receivedPacket) {
s.counter++
// exponential backoff
// only send a CONNECTION_CLOSE for the 1st, 2nd, 4th, 8th, 16th, ... packet arriving
for n := s.counter; n > 1; n = n / 2 {
if n%2 != 0 {
return
}
}
s.logger.Debugf("Received %d packets after sending CONNECTION_CLOSE. Retransmitting.", s.counter)
if err := s.conn.Write(s.connClosePacket); err != nil {
s.logger.Debugf("Error retransmitting CONNECTION_CLOSE: %s", err)
}
}
func (s *closedLocalConn) shutdown() {
s.destroy(nil)
}
func (s *closedLocalConn) destroy(error) {
s.closeOnce.Do(func() {
close(s.closeChan)
})
}
func (s *closedLocalConn) getPerspective() protocol.Perspective {
return s.perspective
}
// A closedRemoteConn is a connection that was closed remotely.
// For such a connection, we might receive reordered packets that were sent before the CONNECTION_CLOSE.
// We can just ignore those packets.
type closedRemoteConn struct {
perspective protocol.Perspective
}
var _ packetHandler = &closedRemoteConn{}
func newClosedRemoteConn(pers protocol.Perspective) packetHandler {
return &closedRemoteConn{perspective: pers}
}
func (s *closedRemoteConn) handlePacket(*receivedPacket) {}
func (s *closedRemoteConn) shutdown() {}
func (s *closedRemoteConn) destroy(error) {}
func (s *closedRemoteConn) getPerspective() protocol.Perspective { return s.perspective }

21
vendor/github.com/lucas-clemente/quic-go/codecov.yml generated vendored Normal file
View file

@ -0,0 +1,21 @@
coverage:
round: nearest
ignore:
- streams_map_incoming_bidi.go
- streams_map_incoming_uni.go
- streams_map_outgoing_bidi.go
- streams_map_outgoing_uni.go
- http3/gzip_reader.go
- interop/
- internal/ackhandler/packet_linkedlist.go
- internal/utils/byteinterval_linkedlist.go
- internal/utils/newconnectionid_linkedlist.go
- internal/utils/packetinterval_linkedlist.go
- internal/utils/linkedlist/linkedlist.go
- fuzzing/
- metrics/
status:
project:
default:
threshold: 0.5
patch: false

124
vendor/github.com/lucas-clemente/quic-go/config.go generated vendored Normal file
View file

@ -0,0 +1,124 @@
package quic
import (
"errors"
"time"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/lucas-clemente/quic-go/internal/protocol"
)
// Clone clones a Config
func (c *Config) Clone() *Config {
copy := *c
return &copy
}
func (c *Config) handshakeTimeout() time.Duration {
return utils.MaxDuration(protocol.DefaultHandshakeTimeout, 2*c.HandshakeIdleTimeout)
}
func validateConfig(config *Config) error {
if config == nil {
return nil
}
if config.MaxIncomingStreams > 1<<60 {
return errors.New("invalid value for Config.MaxIncomingStreams")
}
if config.MaxIncomingUniStreams > 1<<60 {
return errors.New("invalid value for Config.MaxIncomingUniStreams")
}
return nil
}
// populateServerConfig populates fields in the quic.Config with their default values, if none are set
// it may be called with nil
func populateServerConfig(config *Config) *Config {
config = populateConfig(config)
if config.ConnectionIDLength == 0 {
config.ConnectionIDLength = protocol.DefaultConnectionIDLength
}
if config.AcceptToken == nil {
config.AcceptToken = defaultAcceptToken
}
return config
}
// populateClientConfig populates fields in the quic.Config with their default values, if none are set
// it may be called with nil
func populateClientConfig(config *Config, createdPacketConn bool) *Config {
config = populateConfig(config)
if config.ConnectionIDLength == 0 && !createdPacketConn {
config.ConnectionIDLength = protocol.DefaultConnectionIDLength
}
return config
}
func populateConfig(config *Config) *Config {
if config == nil {
config = &Config{}
}
versions := config.Versions
if len(versions) == 0 {
versions = protocol.SupportedVersions
}
handshakeIdleTimeout := protocol.DefaultHandshakeIdleTimeout
if config.HandshakeIdleTimeout != 0 {
handshakeIdleTimeout = config.HandshakeIdleTimeout
}
idleTimeout := protocol.DefaultIdleTimeout
if config.MaxIdleTimeout != 0 {
idleTimeout = config.MaxIdleTimeout
}
initialStreamReceiveWindow := config.InitialStreamReceiveWindow
if initialStreamReceiveWindow == 0 {
initialStreamReceiveWindow = protocol.DefaultInitialMaxStreamData
}
maxStreamReceiveWindow := config.MaxStreamReceiveWindow
if maxStreamReceiveWindow == 0 {
maxStreamReceiveWindow = protocol.DefaultMaxReceiveStreamFlowControlWindow
}
initialConnectionReceiveWindow := config.InitialConnectionReceiveWindow
if initialConnectionReceiveWindow == 0 {
initialConnectionReceiveWindow = protocol.DefaultInitialMaxData
}
maxConnectionReceiveWindow := config.MaxConnectionReceiveWindow
if maxConnectionReceiveWindow == 0 {
maxConnectionReceiveWindow = protocol.DefaultMaxReceiveConnectionFlowControlWindow
}
maxIncomingStreams := config.MaxIncomingStreams
if maxIncomingStreams == 0 {
maxIncomingStreams = protocol.DefaultMaxIncomingStreams
} else if maxIncomingStreams < 0 {
maxIncomingStreams = 0
}
maxIncomingUniStreams := config.MaxIncomingUniStreams
if maxIncomingUniStreams == 0 {
maxIncomingUniStreams = protocol.DefaultMaxIncomingUniStreams
} else if maxIncomingUniStreams < 0 {
maxIncomingUniStreams = 0
}
return &Config{
Versions: versions,
HandshakeIdleTimeout: handshakeIdleTimeout,
MaxIdleTimeout: idleTimeout,
AcceptToken: config.AcceptToken,
KeepAlivePeriod: config.KeepAlivePeriod,
InitialStreamReceiveWindow: initialStreamReceiveWindow,
MaxStreamReceiveWindow: maxStreamReceiveWindow,
InitialConnectionReceiveWindow: initialConnectionReceiveWindow,
MaxConnectionReceiveWindow: maxConnectionReceiveWindow,
AllowConnectionWindowIncrease: config.AllowConnectionWindowIncrease,
MaxIncomingStreams: maxIncomingStreams,
MaxIncomingUniStreams: maxIncomingUniStreams,
ConnectionIDLength: config.ConnectionIDLength,
StatelessResetKey: config.StatelessResetKey,
TokenStore: config.TokenStore,
EnableDatagrams: config.EnableDatagrams,
DisablePathMTUDiscovery: config.DisablePathMTUDiscovery,
DisableVersionNegotiationPackets: config.DisableVersionNegotiationPackets,
Tracer: config.Tracer,
}
}

View file

@ -0,0 +1,140 @@
package quic
import (
"fmt"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/qerr"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/lucas-clemente/quic-go/internal/wire"
)
type connIDGenerator struct {
connIDLen int
highestSeq uint64
activeSrcConnIDs map[uint64]protocol.ConnectionID
initialClientDestConnID protocol.ConnectionID
addConnectionID func(protocol.ConnectionID)
getStatelessResetToken func(protocol.ConnectionID) protocol.StatelessResetToken
removeConnectionID func(protocol.ConnectionID)
retireConnectionID func(protocol.ConnectionID)
replaceWithClosed func(protocol.ConnectionID, packetHandler)
queueControlFrame func(wire.Frame)
version protocol.VersionNumber
}
func newConnIDGenerator(
initialConnectionID protocol.ConnectionID,
initialClientDestConnID protocol.ConnectionID, // nil for the client
addConnectionID func(protocol.ConnectionID),
getStatelessResetToken func(protocol.ConnectionID) protocol.StatelessResetToken,
removeConnectionID func(protocol.ConnectionID),
retireConnectionID func(protocol.ConnectionID),
replaceWithClosed func(protocol.ConnectionID, packetHandler),
queueControlFrame func(wire.Frame),
version protocol.VersionNumber,
) *connIDGenerator {
m := &connIDGenerator{
connIDLen: initialConnectionID.Len(),
activeSrcConnIDs: make(map[uint64]protocol.ConnectionID),
addConnectionID: addConnectionID,
getStatelessResetToken: getStatelessResetToken,
removeConnectionID: removeConnectionID,
retireConnectionID: retireConnectionID,
replaceWithClosed: replaceWithClosed,
queueControlFrame: queueControlFrame,
version: version,
}
m.activeSrcConnIDs[0] = initialConnectionID
m.initialClientDestConnID = initialClientDestConnID
return m
}
func (m *connIDGenerator) SetMaxActiveConnIDs(limit uint64) error {
if m.connIDLen == 0 {
return nil
}
// The active_connection_id_limit transport parameter is the number of
// connection IDs the peer will store. This limit includes the connection ID
// used during the handshake, and the one sent in the preferred_address
// transport parameter.
// We currently don't send the preferred_address transport parameter,
// so we can issue (limit - 1) connection IDs.
for i := uint64(len(m.activeSrcConnIDs)); i < utils.MinUint64(limit, protocol.MaxIssuedConnectionIDs); i++ {
if err := m.issueNewConnID(); err != nil {
return err
}
}
return nil
}
func (m *connIDGenerator) Retire(seq uint64, sentWithDestConnID protocol.ConnectionID) error {
if seq > m.highestSeq {
return &qerr.TransportError{
ErrorCode: qerr.ProtocolViolation,
ErrorMessage: fmt.Sprintf("retired connection ID %d (highest issued: %d)", seq, m.highestSeq),
}
}
connID, ok := m.activeSrcConnIDs[seq]
// We might already have deleted this connection ID, if this is a duplicate frame.
if !ok {
return nil
}
if connID.Equal(sentWithDestConnID) {
return &qerr.TransportError{
ErrorCode: qerr.ProtocolViolation,
ErrorMessage: fmt.Sprintf("retired connection ID %d (%s), which was used as the Destination Connection ID on this packet", seq, connID),
}
}
m.retireConnectionID(connID)
delete(m.activeSrcConnIDs, seq)
// Don't issue a replacement for the initial connection ID.
if seq == 0 {
return nil
}
return m.issueNewConnID()
}
func (m *connIDGenerator) issueNewConnID() error {
connID, err := protocol.GenerateConnectionID(m.connIDLen)
if err != nil {
return err
}
m.activeSrcConnIDs[m.highestSeq+1] = connID
m.addConnectionID(connID)
m.queueControlFrame(&wire.NewConnectionIDFrame{
SequenceNumber: m.highestSeq + 1,
ConnectionID: connID,
StatelessResetToken: m.getStatelessResetToken(connID),
})
m.highestSeq++
return nil
}
func (m *connIDGenerator) SetHandshakeComplete() {
if m.initialClientDestConnID != nil {
m.retireConnectionID(m.initialClientDestConnID)
m.initialClientDestConnID = nil
}
}
func (m *connIDGenerator) RemoveAll() {
if m.initialClientDestConnID != nil {
m.removeConnectionID(m.initialClientDestConnID)
}
for _, connID := range m.activeSrcConnIDs {
m.removeConnectionID(connID)
}
}
func (m *connIDGenerator) ReplaceWithClosed(handler packetHandler) {
if m.initialClientDestConnID != nil {
m.replaceWithClosed(m.initialClientDestConnID, handler)
}
for _, connID := range m.activeSrcConnIDs {
m.replaceWithClosed(connID, handler)
}
}

View file

@ -0,0 +1,207 @@
package quic
import (
"fmt"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/qerr"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/lucas-clemente/quic-go/internal/wire"
)
type connIDManager struct {
queue utils.NewConnectionIDList
handshakeComplete bool
activeSequenceNumber uint64
highestRetired uint64
activeConnectionID protocol.ConnectionID
activeStatelessResetToken *protocol.StatelessResetToken
// We change the connection ID after sending on average
// protocol.PacketsPerConnectionID packets. The actual value is randomized
// hide the packet loss rate from on-path observers.
rand utils.Rand
packetsSinceLastChange uint32
packetsPerConnectionID uint32
addStatelessResetToken func(protocol.StatelessResetToken)
removeStatelessResetToken func(protocol.StatelessResetToken)
queueControlFrame func(wire.Frame)
}
func newConnIDManager(
initialDestConnID protocol.ConnectionID,
addStatelessResetToken func(protocol.StatelessResetToken),
removeStatelessResetToken func(protocol.StatelessResetToken),
queueControlFrame func(wire.Frame),
) *connIDManager {
return &connIDManager{
activeConnectionID: initialDestConnID,
addStatelessResetToken: addStatelessResetToken,
removeStatelessResetToken: removeStatelessResetToken,
queueControlFrame: queueControlFrame,
}
}
func (h *connIDManager) AddFromPreferredAddress(connID protocol.ConnectionID, resetToken protocol.StatelessResetToken) error {
return h.addConnectionID(1, connID, resetToken)
}
func (h *connIDManager) Add(f *wire.NewConnectionIDFrame) error {
if err := h.add(f); err != nil {
return err
}
if h.queue.Len() >= protocol.MaxActiveConnectionIDs {
return &qerr.TransportError{ErrorCode: qerr.ConnectionIDLimitError}
}
return nil
}
func (h *connIDManager) add(f *wire.NewConnectionIDFrame) error {
// If the NEW_CONNECTION_ID frame is reordered, such that its sequence number is smaller than the currently active
// connection ID or if it was already retired, send the RETIRE_CONNECTION_ID frame immediately.
if f.SequenceNumber < h.activeSequenceNumber || f.SequenceNumber < h.highestRetired {
h.queueControlFrame(&wire.RetireConnectionIDFrame{
SequenceNumber: f.SequenceNumber,
})
return nil
}
// Retire elements in the queue.
// Doesn't retire the active connection ID.
if f.RetirePriorTo > h.highestRetired {
var next *utils.NewConnectionIDElement
for el := h.queue.Front(); el != nil; el = next {
if el.Value.SequenceNumber >= f.RetirePriorTo {
break
}
next = el.Next()
h.queueControlFrame(&wire.RetireConnectionIDFrame{
SequenceNumber: el.Value.SequenceNumber,
})
h.queue.Remove(el)
}
h.highestRetired = f.RetirePriorTo
}
if f.SequenceNumber == h.activeSequenceNumber {
return nil
}
if err := h.addConnectionID(f.SequenceNumber, f.ConnectionID, f.StatelessResetToken); err != nil {
return err
}
// Retire the active connection ID, if necessary.
if h.activeSequenceNumber < f.RetirePriorTo {
// The queue is guaranteed to have at least one element at this point.
h.updateConnectionID()
}
return nil
}
func (h *connIDManager) addConnectionID(seq uint64, connID protocol.ConnectionID, resetToken protocol.StatelessResetToken) error {
// insert a new element at the end
if h.queue.Len() == 0 || h.queue.Back().Value.SequenceNumber < seq {
h.queue.PushBack(utils.NewConnectionID{
SequenceNumber: seq,
ConnectionID: connID,
StatelessResetToken: resetToken,
})
return nil
}
// insert a new element somewhere in the middle
for el := h.queue.Front(); el != nil; el = el.Next() {
if el.Value.SequenceNumber == seq {
if !el.Value.ConnectionID.Equal(connID) {
return fmt.Errorf("received conflicting connection IDs for sequence number %d", seq)
}
if el.Value.StatelessResetToken != resetToken {
return fmt.Errorf("received conflicting stateless reset tokens for sequence number %d", seq)
}
break
}
if el.Value.SequenceNumber > seq {
h.queue.InsertBefore(utils.NewConnectionID{
SequenceNumber: seq,
ConnectionID: connID,
StatelessResetToken: resetToken,
}, el)
break
}
}
return nil
}
func (h *connIDManager) updateConnectionID() {
h.queueControlFrame(&wire.RetireConnectionIDFrame{
SequenceNumber: h.activeSequenceNumber,
})
h.highestRetired = utils.MaxUint64(h.highestRetired, h.activeSequenceNumber)
if h.activeStatelessResetToken != nil {
h.removeStatelessResetToken(*h.activeStatelessResetToken)
}
front := h.queue.Remove(h.queue.Front())
h.activeSequenceNumber = front.SequenceNumber
h.activeConnectionID = front.ConnectionID
h.activeStatelessResetToken = &front.StatelessResetToken
h.packetsSinceLastChange = 0
h.packetsPerConnectionID = protocol.PacketsPerConnectionID/2 + uint32(h.rand.Int31n(protocol.PacketsPerConnectionID))
h.addStatelessResetToken(*h.activeStatelessResetToken)
}
func (h *connIDManager) Close() {
if h.activeStatelessResetToken != nil {
h.removeStatelessResetToken(*h.activeStatelessResetToken)
}
}
// is called when the server performs a Retry
// and when the server changes the connection ID in the first Initial sent
func (h *connIDManager) ChangeInitialConnID(newConnID protocol.ConnectionID) {
if h.activeSequenceNumber != 0 {
panic("expected first connection ID to have sequence number 0")
}
h.activeConnectionID = newConnID
}
// is called when the server provides a stateless reset token in the transport parameters
func (h *connIDManager) SetStatelessResetToken(token protocol.StatelessResetToken) {
if h.activeSequenceNumber != 0 {
panic("expected first connection ID to have sequence number 0")
}
h.activeStatelessResetToken = &token
h.addStatelessResetToken(token)
}
func (h *connIDManager) SentPacket() {
h.packetsSinceLastChange++
}
func (h *connIDManager) shouldUpdateConnID() bool {
if !h.handshakeComplete {
return false
}
// initiate the first change as early as possible (after handshake completion)
if h.queue.Len() > 0 && h.activeSequenceNumber == 0 {
return true
}
// For later changes, only change if
// 1. The queue of connection IDs is filled more than 50%.
// 2. We sent at least PacketsPerConnectionID packets
return 2*h.queue.Len() >= protocol.MaxActiveConnectionIDs &&
h.packetsSinceLastChange >= h.packetsPerConnectionID
}
func (h *connIDManager) Get() protocol.ConnectionID {
if h.shouldUpdateConnID() {
h.updateConnectionID()
}
return h.activeConnectionID
}
func (h *connIDManager) SetHandshakeComplete() {
h.handshakeComplete = true
}

2006
vendor/github.com/lucas-clemente/quic-go/connection.go generated vendored Normal file

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,115 @@
package quic
import (
"fmt"
"io"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/qerr"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/lucas-clemente/quic-go/internal/wire"
)
type cryptoStream interface {
// for receiving data
HandleCryptoFrame(*wire.CryptoFrame) error
GetCryptoData() []byte
Finish() error
// for sending data
io.Writer
HasData() bool
PopCryptoFrame(protocol.ByteCount) *wire.CryptoFrame
}
type cryptoStreamImpl struct {
queue *frameSorter
msgBuf []byte
highestOffset protocol.ByteCount
finished bool
writeOffset protocol.ByteCount
writeBuf []byte
}
func newCryptoStream() cryptoStream {
return &cryptoStreamImpl{queue: newFrameSorter()}
}
func (s *cryptoStreamImpl) HandleCryptoFrame(f *wire.CryptoFrame) error {
highestOffset := f.Offset + protocol.ByteCount(len(f.Data))
if maxOffset := highestOffset; maxOffset > protocol.MaxCryptoStreamOffset {
return &qerr.TransportError{
ErrorCode: qerr.CryptoBufferExceeded,
ErrorMessage: fmt.Sprintf("received invalid offset %d on crypto stream, maximum allowed %d", maxOffset, protocol.MaxCryptoStreamOffset),
}
}
if s.finished {
if highestOffset > s.highestOffset {
// reject crypto data received after this stream was already finished
return &qerr.TransportError{
ErrorCode: qerr.ProtocolViolation,
ErrorMessage: "received crypto data after change of encryption level",
}
}
// ignore data with a smaller offset than the highest received
// could e.g. be a retransmission
return nil
}
s.highestOffset = utils.MaxByteCount(s.highestOffset, highestOffset)
if err := s.queue.Push(f.Data, f.Offset, nil); err != nil {
return err
}
for {
_, data, _ := s.queue.Pop()
if data == nil {
return nil
}
s.msgBuf = append(s.msgBuf, data...)
}
}
// GetCryptoData retrieves data that was received in CRYPTO frames
func (s *cryptoStreamImpl) GetCryptoData() []byte {
if len(s.msgBuf) < 4 {
return nil
}
msgLen := 4 + int(s.msgBuf[1])<<16 + int(s.msgBuf[2])<<8 + int(s.msgBuf[3])
if len(s.msgBuf) < msgLen {
return nil
}
msg := make([]byte, msgLen)
copy(msg, s.msgBuf[:msgLen])
s.msgBuf = s.msgBuf[msgLen:]
return msg
}
func (s *cryptoStreamImpl) Finish() error {
if s.queue.HasMoreData() {
return &qerr.TransportError{
ErrorCode: qerr.ProtocolViolation,
ErrorMessage: "encryption level changed, but crypto stream has more data to read",
}
}
s.finished = true
return nil
}
// Writes writes data that should be sent out in CRYPTO frames
func (s *cryptoStreamImpl) Write(p []byte) (int, error) {
s.writeBuf = append(s.writeBuf, p...)
return len(p), nil
}
func (s *cryptoStreamImpl) HasData() bool {
return len(s.writeBuf) > 0
}
func (s *cryptoStreamImpl) PopCryptoFrame(maxLen protocol.ByteCount) *wire.CryptoFrame {
f := &wire.CryptoFrame{Offset: s.writeOffset}
n := utils.MinByteCount(f.MaxDataLen(maxLen), protocol.ByteCount(len(s.writeBuf)))
f.Data = s.writeBuf[:n]
s.writeBuf = s.writeBuf[n:]
s.writeOffset += n
return f
}

View file

@ -0,0 +1,61 @@
package quic
import (
"fmt"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/wire"
)
type cryptoDataHandler interface {
HandleMessage([]byte, protocol.EncryptionLevel) bool
}
type cryptoStreamManager struct {
cryptoHandler cryptoDataHandler
initialStream cryptoStream
handshakeStream cryptoStream
oneRTTStream cryptoStream
}
func newCryptoStreamManager(
cryptoHandler cryptoDataHandler,
initialStream cryptoStream,
handshakeStream cryptoStream,
oneRTTStream cryptoStream,
) *cryptoStreamManager {
return &cryptoStreamManager{
cryptoHandler: cryptoHandler,
initialStream: initialStream,
handshakeStream: handshakeStream,
oneRTTStream: oneRTTStream,
}
}
func (m *cryptoStreamManager) HandleCryptoFrame(frame *wire.CryptoFrame, encLevel protocol.EncryptionLevel) (bool /* encryption level changed */, error) {
var str cryptoStream
//nolint:exhaustive // CRYPTO frames cannot be sent in 0-RTT packets.
switch encLevel {
case protocol.EncryptionInitial:
str = m.initialStream
case protocol.EncryptionHandshake:
str = m.handshakeStream
case protocol.Encryption1RTT:
str = m.oneRTTStream
default:
return false, fmt.Errorf("received CRYPTO frame with unexpected encryption level: %s", encLevel)
}
if err := str.HandleCryptoFrame(frame); err != nil {
return false, err
}
for {
data := str.GetCryptoData()
if data == nil {
return false, nil
}
if encLevelFinished := m.cryptoHandler.HandleMessage(data, encLevel); encLevelFinished {
return true, str.Finish()
}
}
}

View file

@ -0,0 +1,87 @@
package quic
import (
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/lucas-clemente/quic-go/internal/wire"
)
type datagramQueue struct {
sendQueue chan *wire.DatagramFrame
rcvQueue chan []byte
closeErr error
closed chan struct{}
hasData func()
dequeued chan struct{}
logger utils.Logger
}
func newDatagramQueue(hasData func(), logger utils.Logger) *datagramQueue {
return &datagramQueue{
hasData: hasData,
sendQueue: make(chan *wire.DatagramFrame, 1),
rcvQueue: make(chan []byte, protocol.DatagramRcvQueueLen),
dequeued: make(chan struct{}),
closed: make(chan struct{}),
logger: logger,
}
}
// AddAndWait queues a new DATAGRAM frame for sending.
// It blocks until the frame has been dequeued.
func (h *datagramQueue) AddAndWait(f *wire.DatagramFrame) error {
select {
case h.sendQueue <- f:
h.hasData()
case <-h.closed:
return h.closeErr
}
select {
case <-h.dequeued:
return nil
case <-h.closed:
return h.closeErr
}
}
// Get dequeues a DATAGRAM frame for sending.
func (h *datagramQueue) Get() *wire.DatagramFrame {
select {
case f := <-h.sendQueue:
h.dequeued <- struct{}{}
return f
default:
return nil
}
}
// HandleDatagramFrame handles a received DATAGRAM frame.
func (h *datagramQueue) HandleDatagramFrame(f *wire.DatagramFrame) {
data := make([]byte, len(f.Data))
copy(data, f.Data)
select {
case h.rcvQueue <- data:
default:
h.logger.Debugf("Discarding DATAGRAM frame (%d bytes payload)", len(f.Data))
}
}
// Receive gets a received DATAGRAM frame.
func (h *datagramQueue) Receive() ([]byte, error) {
select {
case data := <-h.rcvQueue:
return data, nil
case <-h.closed:
return nil, h.closeErr
}
}
func (h *datagramQueue) CloseWithError(e error) {
h.closeErr = e
close(h.closed)
}

58
vendor/github.com/lucas-clemente/quic-go/errors.go generated vendored Normal file
View file

@ -0,0 +1,58 @@
package quic
import (
"fmt"
"github.com/lucas-clemente/quic-go/internal/qerr"
)
type (
TransportError = qerr.TransportError
ApplicationError = qerr.ApplicationError
VersionNegotiationError = qerr.VersionNegotiationError
StatelessResetError = qerr.StatelessResetError
IdleTimeoutError = qerr.IdleTimeoutError
HandshakeTimeoutError = qerr.HandshakeTimeoutError
)
type (
TransportErrorCode = qerr.TransportErrorCode
ApplicationErrorCode = qerr.ApplicationErrorCode
StreamErrorCode = qerr.StreamErrorCode
)
const (
NoError = qerr.NoError
InternalError = qerr.InternalError
ConnectionRefused = qerr.ConnectionRefused
FlowControlError = qerr.FlowControlError
StreamLimitError = qerr.StreamLimitError
StreamStateError = qerr.StreamStateError
FinalSizeError = qerr.FinalSizeError
FrameEncodingError = qerr.FrameEncodingError
TransportParameterError = qerr.TransportParameterError
ConnectionIDLimitError = qerr.ConnectionIDLimitError
ProtocolViolation = qerr.ProtocolViolation
InvalidToken = qerr.InvalidToken
ApplicationErrorErrorCode = qerr.ApplicationErrorErrorCode
CryptoBufferExceeded = qerr.CryptoBufferExceeded
KeyUpdateError = qerr.KeyUpdateError
AEADLimitReached = qerr.AEADLimitReached
NoViablePathError = qerr.NoViablePathError
)
// A StreamError is used for Stream.CancelRead and Stream.CancelWrite.
// It is also returned from Stream.Read and Stream.Write if the peer canceled reading or writing.
type StreamError struct {
StreamID StreamID
ErrorCode StreamErrorCode
}
func (e *StreamError) Is(target error) bool {
_, ok := target.(*StreamError)
return ok
}
func (e *StreamError) Error() string {
return fmt.Sprintf("stream %d canceled with error code %d", e.StreamID, e.ErrorCode)
}

View file

@ -0,0 +1,224 @@
package quic
import (
"errors"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/utils"
)
type frameSorterEntry struct {
Data []byte
DoneCb func()
}
type frameSorter struct {
queue map[protocol.ByteCount]frameSorterEntry
readPos protocol.ByteCount
gaps *utils.ByteIntervalList
}
var errDuplicateStreamData = errors.New("duplicate stream data")
func newFrameSorter() *frameSorter {
s := frameSorter{
gaps: utils.NewByteIntervalList(),
queue: make(map[protocol.ByteCount]frameSorterEntry),
}
s.gaps.PushFront(utils.ByteInterval{Start: 0, End: protocol.MaxByteCount})
return &s
}
func (s *frameSorter) Push(data []byte, offset protocol.ByteCount, doneCb func()) error {
err := s.push(data, offset, doneCb)
if err == errDuplicateStreamData {
if doneCb != nil {
doneCb()
}
return nil
}
return err
}
func (s *frameSorter) push(data []byte, offset protocol.ByteCount, doneCb func()) error {
if len(data) == 0 {
return errDuplicateStreamData
}
start := offset
end := offset + protocol.ByteCount(len(data))
if end <= s.gaps.Front().Value.Start {
return errDuplicateStreamData
}
startGap, startsInGap := s.findStartGap(start)
endGap, endsInGap := s.findEndGap(startGap, end)
startGapEqualsEndGap := startGap == endGap
if (startGapEqualsEndGap && end <= startGap.Value.Start) ||
(!startGapEqualsEndGap && startGap.Value.End >= endGap.Value.Start && end <= startGap.Value.Start) {
return errDuplicateStreamData
}
startGapNext := startGap.Next()
startGapEnd := startGap.Value.End // save it, in case startGap is modified
endGapStart := endGap.Value.Start // save it, in case endGap is modified
endGapEnd := endGap.Value.End // save it, in case endGap is modified
var adjustedStartGapEnd bool
var wasCut bool
pos := start
var hasReplacedAtLeastOne bool
for {
oldEntry, ok := s.queue[pos]
if !ok {
break
}
oldEntryLen := protocol.ByteCount(len(oldEntry.Data))
if end-pos > oldEntryLen || (hasReplacedAtLeastOne && end-pos == oldEntryLen) {
// The existing frame is shorter than the new frame. Replace it.
delete(s.queue, pos)
pos += oldEntryLen
hasReplacedAtLeastOne = true
if oldEntry.DoneCb != nil {
oldEntry.DoneCb()
}
} else {
if !hasReplacedAtLeastOne {
return errDuplicateStreamData
}
// The existing frame is longer than the new frame.
// Cut the new frame such that the end aligns with the start of the existing frame.
data = data[:pos-start]
end = pos
wasCut = true
break
}
}
if !startsInGap && !hasReplacedAtLeastOne {
// cut the frame, such that it starts at the start of the gap
data = data[startGap.Value.Start-start:]
start = startGap.Value.Start
wasCut = true
}
if start <= startGap.Value.Start {
if end >= startGap.Value.End {
// The frame covers the whole startGap. Delete the gap.
s.gaps.Remove(startGap)
} else {
startGap.Value.Start = end
}
} else if !hasReplacedAtLeastOne {
startGap.Value.End = start
adjustedStartGapEnd = true
}
if !startGapEqualsEndGap {
s.deleteConsecutive(startGapEnd)
var nextGap *utils.ByteIntervalElement
for gap := startGapNext; gap.Value.End < endGapStart; gap = nextGap {
nextGap = gap.Next()
s.deleteConsecutive(gap.Value.End)
s.gaps.Remove(gap)
}
}
if !endsInGap && start != endGapEnd && end > endGapEnd {
// cut the frame, such that it ends at the end of the gap
data = data[:endGapEnd-start]
end = endGapEnd
wasCut = true
}
if end == endGapEnd {
if !startGapEqualsEndGap {
// The frame covers the whole endGap. Delete the gap.
s.gaps.Remove(endGap)
}
} else {
if startGapEqualsEndGap && adjustedStartGapEnd {
// The frame split the existing gap into two.
s.gaps.InsertAfter(utils.ByteInterval{Start: end, End: startGapEnd}, startGap)
} else if !startGapEqualsEndGap {
endGap.Value.Start = end
}
}
if wasCut && len(data) < protocol.MinStreamFrameBufferSize {
newData := make([]byte, len(data))
copy(newData, data)
data = newData
if doneCb != nil {
doneCb()
doneCb = nil
}
}
if s.gaps.Len() > protocol.MaxStreamFrameSorterGaps {
return errors.New("too many gaps in received data")
}
s.queue[start] = frameSorterEntry{Data: data, DoneCb: doneCb}
return nil
}
func (s *frameSorter) findStartGap(offset protocol.ByteCount) (*utils.ByteIntervalElement, bool) {
for gap := s.gaps.Front(); gap != nil; gap = gap.Next() {
if offset >= gap.Value.Start && offset <= gap.Value.End {
return gap, true
}
if offset < gap.Value.Start {
return gap, false
}
}
panic("no gap found")
}
func (s *frameSorter) findEndGap(startGap *utils.ByteIntervalElement, offset protocol.ByteCount) (*utils.ByteIntervalElement, bool) {
for gap := startGap; gap != nil; gap = gap.Next() {
if offset >= gap.Value.Start && offset < gap.Value.End {
return gap, true
}
if offset < gap.Value.Start {
return gap.Prev(), false
}
}
panic("no gap found")
}
// deleteConsecutive deletes consecutive frames from the queue, starting at pos
func (s *frameSorter) deleteConsecutive(pos protocol.ByteCount) {
for {
oldEntry, ok := s.queue[pos]
if !ok {
break
}
oldEntryLen := protocol.ByteCount(len(oldEntry.Data))
delete(s.queue, pos)
if oldEntry.DoneCb != nil {
oldEntry.DoneCb()
}
pos += oldEntryLen
}
}
func (s *frameSorter) Pop() (protocol.ByteCount, []byte, func()) {
entry, ok := s.queue[s.readPos]
if !ok {
return s.readPos, nil, nil
}
delete(s.queue, s.readPos)
offset := s.readPos
s.readPos += protocol.ByteCount(len(entry.Data))
if s.gaps.Front().Value.End <= s.readPos {
panic("frame sorter BUG: read position higher than a gap")
}
return offset, entry.Data, entry.DoneCb
}
// HasMoreData says if there is any more data queued at *any* offset.
func (s *frameSorter) HasMoreData() bool {
return len(s.queue) > 0
}

171
vendor/github.com/lucas-clemente/quic-go/framer.go generated vendored Normal file
View file

@ -0,0 +1,171 @@
package quic
import (
"errors"
"sync"
"github.com/lucas-clemente/quic-go/internal/ackhandler"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/wire"
"github.com/lucas-clemente/quic-go/quicvarint"
)
type framer interface {
HasData() bool
QueueControlFrame(wire.Frame)
AppendControlFrames([]ackhandler.Frame, protocol.ByteCount) ([]ackhandler.Frame, protocol.ByteCount)
AddActiveStream(protocol.StreamID)
AppendStreamFrames([]ackhandler.Frame, protocol.ByteCount) ([]ackhandler.Frame, protocol.ByteCount)
Handle0RTTRejection() error
}
type framerI struct {
mutex sync.Mutex
streamGetter streamGetter
version protocol.VersionNumber
activeStreams map[protocol.StreamID]struct{}
streamQueue []protocol.StreamID
controlFrameMutex sync.Mutex
controlFrames []wire.Frame
}
var _ framer = &framerI{}
func newFramer(
streamGetter streamGetter,
v protocol.VersionNumber,
) framer {
return &framerI{
streamGetter: streamGetter,
activeStreams: make(map[protocol.StreamID]struct{}),
version: v,
}
}
func (f *framerI) HasData() bool {
f.mutex.Lock()
hasData := len(f.streamQueue) > 0
f.mutex.Unlock()
if hasData {
return true
}
f.controlFrameMutex.Lock()
hasData = len(f.controlFrames) > 0
f.controlFrameMutex.Unlock()
return hasData
}
func (f *framerI) QueueControlFrame(frame wire.Frame) {
f.controlFrameMutex.Lock()
f.controlFrames = append(f.controlFrames, frame)
f.controlFrameMutex.Unlock()
}
func (f *framerI) AppendControlFrames(frames []ackhandler.Frame, maxLen protocol.ByteCount) ([]ackhandler.Frame, protocol.ByteCount) {
var length protocol.ByteCount
f.controlFrameMutex.Lock()
for len(f.controlFrames) > 0 {
frame := f.controlFrames[len(f.controlFrames)-1]
frameLen := frame.Length(f.version)
if length+frameLen > maxLen {
break
}
frames = append(frames, ackhandler.Frame{Frame: frame})
length += frameLen
f.controlFrames = f.controlFrames[:len(f.controlFrames)-1]
}
f.controlFrameMutex.Unlock()
return frames, length
}
func (f *framerI) AddActiveStream(id protocol.StreamID) {
f.mutex.Lock()
if _, ok := f.activeStreams[id]; !ok {
f.streamQueue = append(f.streamQueue, id)
f.activeStreams[id] = struct{}{}
}
f.mutex.Unlock()
}
func (f *framerI) AppendStreamFrames(frames []ackhandler.Frame, maxLen protocol.ByteCount) ([]ackhandler.Frame, protocol.ByteCount) {
var length protocol.ByteCount
var lastFrame *ackhandler.Frame
f.mutex.Lock()
// pop STREAM frames, until less than MinStreamFrameSize bytes are left in the packet
numActiveStreams := len(f.streamQueue)
for i := 0; i < numActiveStreams; i++ {
if protocol.MinStreamFrameSize+length > maxLen {
break
}
id := f.streamQueue[0]
f.streamQueue = f.streamQueue[1:]
// This should never return an error. Better check it anyway.
// The stream will only be in the streamQueue, if it enqueued itself there.
str, err := f.streamGetter.GetOrOpenSendStream(id)
// The stream can be nil if it completed after it said it had data.
if str == nil || err != nil {
delete(f.activeStreams, id)
continue
}
remainingLen := maxLen - length
// For the last STREAM frame, we'll remove the DataLen field later.
// Therefore, we can pretend to have more bytes available when popping
// the STREAM frame (which will always have the DataLen set).
remainingLen += quicvarint.Len(uint64(remainingLen))
frame, hasMoreData := str.popStreamFrame(remainingLen)
if hasMoreData { // put the stream back in the queue (at the end)
f.streamQueue = append(f.streamQueue, id)
} else { // no more data to send. Stream is not active any more
delete(f.activeStreams, id)
}
// The frame can be nil
// * if the receiveStream was canceled after it said it had data
// * the remaining size doesn't allow us to add another STREAM frame
if frame == nil {
continue
}
frames = append(frames, *frame)
length += frame.Length(f.version)
lastFrame = frame
}
f.mutex.Unlock()
if lastFrame != nil {
lastFrameLen := lastFrame.Length(f.version)
// account for the smaller size of the last STREAM frame
lastFrame.Frame.(*wire.StreamFrame).DataLenPresent = false
length += lastFrame.Length(f.version) - lastFrameLen
}
return frames, length
}
func (f *framerI) Handle0RTTRejection() error {
f.mutex.Lock()
defer f.mutex.Unlock()
f.controlFrameMutex.Lock()
f.streamQueue = f.streamQueue[:0]
for id := range f.activeStreams {
delete(f.activeStreams, id)
}
var j int
for i, frame := range f.controlFrames {
switch frame.(type) {
case *wire.MaxDataFrame, *wire.MaxStreamDataFrame, *wire.MaxStreamsFrame:
return errors.New("didn't expect MAX_DATA / MAX_STREAM_DATA / MAX_STREAMS frame to be sent in 0-RTT")
case *wire.DataBlockedFrame, *wire.StreamDataBlockedFrame, *wire.StreamsBlockedFrame:
continue
default:
f.controlFrames[j] = f.controlFrames[i]
j++
}
}
f.controlFrames = f.controlFrames[:j]
f.controlFrameMutex.Unlock()
return nil
}

130
vendor/github.com/lucas-clemente/quic-go/http3/body.go generated vendored Normal file
View file

@ -0,0 +1,130 @@
package http3
import (
"context"
"io"
"net"
"github.com/lucas-clemente/quic-go"
)
// The HTTPStreamer allows taking over a HTTP/3 stream. The interface is implemented by:
// * for the server: the http.Request.Body
// * for the client: the http.Response.Body
// On the client side, the stream will be closed for writing, unless the DontCloseRequestStream RoundTripOpt was set.
// When a stream is taken over, it's the caller's responsibility to close the stream.
type HTTPStreamer interface {
HTTPStream() Stream
}
type StreamCreator interface {
OpenStream() (quic.Stream, error)
OpenStreamSync(context.Context) (quic.Stream, error)
OpenUniStream() (quic.SendStream, error)
OpenUniStreamSync(context.Context) (quic.SendStream, error)
LocalAddr() net.Addr
RemoteAddr() net.Addr
}
var _ StreamCreator = quic.Connection(nil)
// A Hijacker allows hijacking of the stream creating part of a quic.Session from a http.Response.Body.
// It is used by WebTransport to create WebTransport streams after a session has been established.
type Hijacker interface {
StreamCreator() StreamCreator
}
// The body of a http.Request or http.Response.
type body struct {
str quic.Stream
wasHijacked bool // set when HTTPStream is called
}
var (
_ io.ReadCloser = &body{}
_ HTTPStreamer = &body{}
)
func newRequestBody(str Stream) *body {
return &body{str: str}
}
func (r *body) HTTPStream() Stream {
r.wasHijacked = true
return r.str
}
func (r *body) wasStreamHijacked() bool {
return r.wasHijacked
}
func (r *body) Read(b []byte) (int, error) {
return r.str.Read(b)
}
func (r *body) Close() error {
r.str.CancelRead(quic.StreamErrorCode(errorRequestCanceled))
return nil
}
type hijackableBody struct {
body
conn quic.Connection // only needed to implement Hijacker
// only set for the http.Response
// The channel is closed when the user is done with this response:
// either when Read() errors, or when Close() is called.
reqDone chan<- struct{}
reqDoneClosed bool
}
var (
_ Hijacker = &hijackableBody{}
_ HTTPStreamer = &hijackableBody{}
)
func newResponseBody(str Stream, conn quic.Connection, done chan<- struct{}) *hijackableBody {
return &hijackableBody{
body: body{
str: str,
},
reqDone: done,
conn: conn,
}
}
func (r *hijackableBody) StreamCreator() StreamCreator {
return r.conn
}
func (r *hijackableBody) Read(b []byte) (int, error) {
n, err := r.str.Read(b)
if err != nil {
r.requestDone()
}
return n, err
}
func (r *hijackableBody) requestDone() {
if r.reqDoneClosed || r.reqDone == nil {
return
}
close(r.reqDone)
r.reqDoneClosed = true
}
func (r *body) StreamID() quic.StreamID {
return r.str.StreamID()
}
func (r *hijackableBody) Close() error {
r.requestDone()
// If the EOF was read, CancelRead() is a no-op.
r.str.CancelRead(quic.StreamErrorCode(errorRequestCanceled))
return nil
}
func (r *hijackableBody) HTTPStream() Stream {
return r.str
}

View file

@ -0,0 +1,423 @@
package http3
import (
"bytes"
"context"
"crypto/tls"
"errors"
"fmt"
"io"
"net/http"
"strconv"
"sync"
"time"
"github.com/lucas-clemente/quic-go"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/qtls"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/lucas-clemente/quic-go/quicvarint"
"github.com/marten-seemann/qpack"
)
// MethodGet0RTT allows a GET request to be sent using 0-RTT.
// Note that 0-RTT data doesn't provide replay protection.
const MethodGet0RTT = "GET_0RTT"
const (
defaultUserAgent = "quic-go HTTP/3"
defaultMaxResponseHeaderBytes = 10 * 1 << 20 // 10 MB
)
var defaultQuicConfig = &quic.Config{
MaxIncomingStreams: -1, // don't allow the server to create bidirectional streams
KeepAlivePeriod: 10 * time.Second,
Versions: []protocol.VersionNumber{protocol.VersionTLS},
}
type dialFunc func(ctx context.Context, addr string, tlsCfg *tls.Config, cfg *quic.Config) (quic.EarlyConnection, error)
var dialAddr = quic.DialAddrEarlyContext
type roundTripperOpts struct {
DisableCompression bool
EnableDatagram bool
MaxHeaderBytes int64
AdditionalSettings map[uint64]uint64
StreamHijacker func(FrameType, quic.Connection, quic.Stream, error) (hijacked bool, err error)
UniStreamHijacker func(StreamType, quic.Connection, quic.ReceiveStream, error) (hijacked bool)
}
// client is a HTTP3 client doing requests
type client struct {
tlsConf *tls.Config
config *quic.Config
opts *roundTripperOpts
dialOnce sync.Once
dialer dialFunc
handshakeErr error
requestWriter *requestWriter
decoder *qpack.Decoder
hostname string
conn quic.EarlyConnection
logger utils.Logger
}
func newClient(hostname string, tlsConf *tls.Config, opts *roundTripperOpts, conf *quic.Config, dialer dialFunc) (*client, error) {
if conf == nil {
conf = defaultQuicConfig.Clone()
} else if len(conf.Versions) == 0 {
conf = conf.Clone()
conf.Versions = []quic.VersionNumber{defaultQuicConfig.Versions[0]}
}
if len(conf.Versions) != 1 {
return nil, errors.New("can only use a single QUIC version for dialing a HTTP/3 connection")
}
if conf.MaxIncomingStreams == 0 {
conf.MaxIncomingStreams = -1 // don't allow any bidirectional streams
}
conf.EnableDatagrams = opts.EnableDatagram
logger := utils.DefaultLogger.WithPrefix("h3 client")
if tlsConf == nil {
tlsConf = &tls.Config{}
} else {
tlsConf = tlsConf.Clone()
}
// Replace existing ALPNs by H3
tlsConf.NextProtos = []string{versionToALPN(conf.Versions[0])}
return &client{
hostname: authorityAddr("https", hostname),
tlsConf: tlsConf,
requestWriter: newRequestWriter(logger),
decoder: qpack.NewDecoder(func(hf qpack.HeaderField) {}),
config: conf,
opts: opts,
dialer: dialer,
logger: logger,
}, nil
}
func (c *client) dial(ctx context.Context) error {
var err error
if c.dialer != nil {
c.conn, err = c.dialer(ctx, c.hostname, c.tlsConf, c.config)
} else {
c.conn, err = dialAddr(ctx, c.hostname, c.tlsConf, c.config)
}
if err != nil {
return err
}
// send the SETTINGs frame, using 0-RTT data, if possible
go func() {
if err := c.setupConn(); err != nil {
c.logger.Debugf("Setting up connection failed: %s", err)
c.conn.CloseWithError(quic.ApplicationErrorCode(errorInternalError), "")
}
}()
if c.opts.StreamHijacker != nil {
go c.handleBidirectionalStreams()
}
go c.handleUnidirectionalStreams()
return nil
}
func (c *client) setupConn() error {
// open the control stream
str, err := c.conn.OpenUniStream()
if err != nil {
return err
}
buf := &bytes.Buffer{}
quicvarint.Write(buf, streamTypeControlStream)
// send the SETTINGS frame
(&settingsFrame{Datagram: c.opts.EnableDatagram, Other: c.opts.AdditionalSettings}).Write(buf)
_, err = str.Write(buf.Bytes())
return err
}
func (c *client) handleBidirectionalStreams() {
for {
str, err := c.conn.AcceptStream(context.Background())
if err != nil {
c.logger.Debugf("accepting bidirectional stream failed: %s", err)
return
}
go func(str quic.Stream) {
_, err := parseNextFrame(str, func(ft FrameType, e error) (processed bool, err error) {
return c.opts.StreamHijacker(ft, c.conn, str, e)
})
if err == errHijacked {
return
}
if err != nil {
c.logger.Debugf("error handling stream: %s", err)
}
c.conn.CloseWithError(quic.ApplicationErrorCode(errorFrameUnexpected), "received HTTP/3 frame on bidirectional stream")
}(str)
}
}
func (c *client) handleUnidirectionalStreams() {
for {
str, err := c.conn.AcceptUniStream(context.Background())
if err != nil {
c.logger.Debugf("accepting unidirectional stream failed: %s", err)
return
}
go func(str quic.ReceiveStream) {
streamType, err := quicvarint.Read(quicvarint.NewReader(str))
if err != nil {
if c.opts.UniStreamHijacker != nil && c.opts.UniStreamHijacker(StreamType(streamType), c.conn, str, err) {
return
}
c.logger.Debugf("reading stream type on stream %d failed: %s", str.StreamID(), err)
return
}
// We're only interested in the control stream here.
switch streamType {
case streamTypeControlStream:
case streamTypeQPACKEncoderStream, streamTypeQPACKDecoderStream:
// Our QPACK implementation doesn't use the dynamic table yet.
// TODO: check that only one stream of each type is opened.
return
case streamTypePushStream:
// We never increased the Push ID, so we don't expect any push streams.
c.conn.CloseWithError(quic.ApplicationErrorCode(errorIDError), "")
return
default:
if c.opts.UniStreamHijacker != nil && c.opts.UniStreamHijacker(StreamType(streamType), c.conn, str, nil) {
return
}
str.CancelRead(quic.StreamErrorCode(errorStreamCreationError))
return
}
f, err := parseNextFrame(str, nil)
if err != nil {
c.conn.CloseWithError(quic.ApplicationErrorCode(errorFrameError), "")
return
}
sf, ok := f.(*settingsFrame)
if !ok {
c.conn.CloseWithError(quic.ApplicationErrorCode(errorMissingSettings), "")
return
}
if !sf.Datagram {
return
}
// If datagram support was enabled on our side as well as on the server side,
// we can expect it to have been negotiated both on the transport and on the HTTP/3 layer.
// Note: ConnectionState() will block until the handshake is complete (relevant when using 0-RTT).
if c.opts.EnableDatagram && !c.conn.ConnectionState().SupportsDatagrams {
c.conn.CloseWithError(quic.ApplicationErrorCode(errorSettingsError), "missing QUIC Datagram support")
}
}(str)
}
}
func (c *client) Close() error {
if c.conn == nil {
return nil
}
return c.conn.CloseWithError(quic.ApplicationErrorCode(errorNoError), "")
}
func (c *client) maxHeaderBytes() uint64 {
if c.opts.MaxHeaderBytes <= 0 {
return defaultMaxResponseHeaderBytes
}
return uint64(c.opts.MaxHeaderBytes)
}
// RoundTripOpt executes a request and returns a response
func (c *client) RoundTripOpt(req *http.Request, opt RoundTripOpt) (*http.Response, error) {
if authorityAddr("https", hostnameFromRequest(req)) != c.hostname {
return nil, fmt.Errorf("http3 client BUG: RoundTripOpt called for the wrong client (expected %s, got %s)", c.hostname, req.Host)
}
c.dialOnce.Do(func() {
c.handshakeErr = c.dial(req.Context())
})
if c.handshakeErr != nil {
return nil, c.handshakeErr
}
// Immediately send out this request, if this is a 0-RTT request.
if req.Method == MethodGet0RTT {
req.Method = http.MethodGet
} else {
// wait for the handshake to complete
select {
case <-c.conn.HandshakeComplete().Done():
case <-req.Context().Done():
return nil, req.Context().Err()
}
}
str, err := c.conn.OpenStreamSync(req.Context())
if err != nil {
return nil, err
}
// Request Cancellation:
// This go routine keeps running even after RoundTripOpt() returns.
// It is shut down when the application is done processing the body.
reqDone := make(chan struct{})
go func() {
select {
case <-req.Context().Done():
str.CancelWrite(quic.StreamErrorCode(errorRequestCanceled))
str.CancelRead(quic.StreamErrorCode(errorRequestCanceled))
case <-reqDone:
}
}()
rsp, rerr := c.doRequest(req, str, opt, reqDone)
if rerr.err != nil { // if any error occurred
close(reqDone)
if rerr.streamErr != 0 { // if it was a stream error
str.CancelWrite(quic.StreamErrorCode(rerr.streamErr))
}
if rerr.connErr != 0 { // if it was a connection error
var reason string
if rerr.err != nil {
reason = rerr.err.Error()
}
c.conn.CloseWithError(quic.ApplicationErrorCode(rerr.connErr), reason)
}
}
return rsp, rerr.err
}
func (c *client) sendRequestBody(str Stream, body io.ReadCloser) error {
defer body.Close()
b := make([]byte, bodyCopyBufferSize)
for {
n, rerr := body.Read(b)
if n == 0 {
if rerr == nil {
continue
}
if rerr == io.EOF {
break
}
}
if _, err := str.Write(b[:n]); err != nil {
return err
}
if rerr != nil {
if rerr == io.EOF {
break
}
str.CancelWrite(quic.StreamErrorCode(errorRequestCanceled))
return rerr
}
}
return nil
}
func (c *client) doRequest(req *http.Request, str quic.Stream, opt RoundTripOpt, reqDone chan struct{}) (*http.Response, requestError) {
var requestGzip bool
if !c.opts.DisableCompression && req.Method != "HEAD" && req.Header.Get("Accept-Encoding") == "" && req.Header.Get("Range") == "" {
requestGzip = true
}
if err := c.requestWriter.WriteRequestHeader(str, req, requestGzip); err != nil {
return nil, newStreamError(errorInternalError, err)
}
if req.Body == nil && !opt.DontCloseRequestStream {
str.Close()
}
hstr := newStream(str, func() { c.conn.CloseWithError(quic.ApplicationErrorCode(errorFrameUnexpected), "") })
if req.Body != nil {
// send the request body asynchronously
go func() {
if err := c.sendRequestBody(hstr, req.Body); err != nil {
c.logger.Errorf("Error writing request: %s", err)
}
if !opt.DontCloseRequestStream {
hstr.Close()
}
}()
}
frame, err := parseNextFrame(str, nil)
if err != nil {
return nil, newStreamError(errorFrameError, err)
}
hf, ok := frame.(*headersFrame)
if !ok {
return nil, newConnError(errorFrameUnexpected, errors.New("expected first frame to be a HEADERS frame"))
}
if hf.Length > c.maxHeaderBytes() {
return nil, newStreamError(errorFrameError, fmt.Errorf("HEADERS frame too large: %d bytes (max: %d)", hf.Length, c.maxHeaderBytes()))
}
headerBlock := make([]byte, hf.Length)
if _, err := io.ReadFull(str, headerBlock); err != nil {
return nil, newStreamError(errorRequestIncomplete, err)
}
hfs, err := c.decoder.DecodeFull(headerBlock)
if err != nil {
// TODO: use the right error code
return nil, newConnError(errorGeneralProtocolError, err)
}
connState := qtls.ToTLSConnectionState(c.conn.ConnectionState().TLS)
res := &http.Response{
Proto: "HTTP/3.0",
ProtoMajor: 3,
Header: http.Header{},
TLS: &connState,
}
for _, hf := range hfs {
switch hf.Name {
case ":status":
status, err := strconv.Atoi(hf.Value)
if err != nil {
return nil, newStreamError(errorGeneralProtocolError, errors.New("malformed non-numeric status pseudo header"))
}
res.StatusCode = status
res.Status = hf.Value + " " + http.StatusText(status)
default:
res.Header.Add(hf.Name, hf.Value)
}
}
respBody := newResponseBody(hstr, c.conn, reqDone)
// Rules for when to set Content-Length are defined in https://tools.ietf.org/html/rfc7230#section-3.3.2.
_, hasTransferEncoding := res.Header["Transfer-Encoding"]
isInformational := res.StatusCode >= 100 && res.StatusCode < 200
isNoContent := res.StatusCode == 204
isSuccessfulConnect := req.Method == http.MethodConnect && res.StatusCode >= 200 && res.StatusCode < 300
if !hasTransferEncoding && !isInformational && !isNoContent && !isSuccessfulConnect {
res.ContentLength = -1
if clens, ok := res.Header["Content-Length"]; ok && len(clens) == 1 {
if clen64, err := strconv.ParseInt(clens[0], 10, 64); err == nil {
res.ContentLength = clen64
}
}
}
if requestGzip && res.Header.Get("Content-Encoding") == "gzip" {
res.Header.Del("Content-Encoding")
res.Header.Del("Content-Length")
res.ContentLength = -1
res.Body = newGzipReader(respBody)
res.Uncompressed = true
} else {
res.Body = respBody
}
return res, requestError{}
}

View file

@ -0,0 +1,73 @@
package http3
import (
"fmt"
"github.com/lucas-clemente/quic-go"
)
type errorCode quic.ApplicationErrorCode
const (
errorNoError errorCode = 0x100
errorGeneralProtocolError errorCode = 0x101
errorInternalError errorCode = 0x102
errorStreamCreationError errorCode = 0x103
errorClosedCriticalStream errorCode = 0x104
errorFrameUnexpected errorCode = 0x105
errorFrameError errorCode = 0x106
errorExcessiveLoad errorCode = 0x107
errorIDError errorCode = 0x108
errorSettingsError errorCode = 0x109
errorMissingSettings errorCode = 0x10a
errorRequestRejected errorCode = 0x10b
errorRequestCanceled errorCode = 0x10c
errorRequestIncomplete errorCode = 0x10d
errorMessageError errorCode = 0x10e
errorConnectError errorCode = 0x10f
errorVersionFallback errorCode = 0x110
errorDatagramError errorCode = 0x4a1268
)
func (e errorCode) String() string {
switch e {
case errorNoError:
return "H3_NO_ERROR"
case errorGeneralProtocolError:
return "H3_GENERAL_PROTOCOL_ERROR"
case errorInternalError:
return "H3_INTERNAL_ERROR"
case errorStreamCreationError:
return "H3_STREAM_CREATION_ERROR"
case errorClosedCriticalStream:
return "H3_CLOSED_CRITICAL_STREAM"
case errorFrameUnexpected:
return "H3_FRAME_UNEXPECTED"
case errorFrameError:
return "H3_FRAME_ERROR"
case errorExcessiveLoad:
return "H3_EXCESSIVE_LOAD"
case errorIDError:
return "H3_ID_ERROR"
case errorSettingsError:
return "H3_SETTINGS_ERROR"
case errorMissingSettings:
return "H3_MISSING_SETTINGS"
case errorRequestRejected:
return "H3_REQUEST_REJECTED"
case errorRequestCanceled:
return "H3_REQUEST_CANCELLED"
case errorRequestIncomplete:
return "H3_INCOMPLETE_REQUEST"
case errorMessageError:
return "H3_MESSAGE_ERROR"
case errorConnectError:
return "H3_CONNECT_ERROR"
case errorVersionFallback:
return "H3_VERSION_FALLBACK"
case errorDatagramError:
return "H3_DATAGRAM_ERROR"
default:
return fmt.Sprintf("unknown error code: %#x", uint16(e))
}
}

View file

@ -0,0 +1,164 @@
package http3
import (
"bytes"
"errors"
"fmt"
"io"
"io/ioutil"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/quicvarint"
)
// FrameType is the frame type of a HTTP/3 frame
type FrameType uint64
type unknownFrameHandlerFunc func(FrameType, error) (processed bool, err error)
type frame interface{}
var errHijacked = errors.New("hijacked")
func parseNextFrame(r io.Reader, unknownFrameHandler unknownFrameHandlerFunc) (frame, error) {
qr := quicvarint.NewReader(r)
for {
t, err := quicvarint.Read(qr)
if err != nil {
if unknownFrameHandler != nil {
hijacked, err := unknownFrameHandler(0, err)
if err != nil {
return nil, err
}
if hijacked {
return nil, errHijacked
}
}
return nil, err
}
// Call the unknownFrameHandler for frames not defined in the HTTP/3 spec
if t > 0xd && unknownFrameHandler != nil {
hijacked, err := unknownFrameHandler(FrameType(t), nil)
if err != nil {
return nil, err
}
if hijacked {
return nil, errHijacked
}
// If the unknownFrameHandler didn't process the frame, it is our responsibility to skip it.
}
l, err := quicvarint.Read(qr)
if err != nil {
return nil, err
}
switch t {
case 0x0:
return &dataFrame{Length: l}, nil
case 0x1:
return &headersFrame{Length: l}, nil
case 0x4:
return parseSettingsFrame(r, l)
case 0x3: // CANCEL_PUSH
case 0x5: // PUSH_PROMISE
case 0x7: // GOAWAY
case 0xd: // MAX_PUSH_ID
}
// skip over unknown frames
if _, err := io.CopyN(ioutil.Discard, qr, int64(l)); err != nil {
return nil, err
}
}
}
type dataFrame struct {
Length uint64
}
func (f *dataFrame) Write(b *bytes.Buffer) {
quicvarint.Write(b, 0x0)
quicvarint.Write(b, f.Length)
}
type headersFrame struct {
Length uint64
}
func (f *headersFrame) Write(b *bytes.Buffer) {
quicvarint.Write(b, 0x1)
quicvarint.Write(b, f.Length)
}
const settingDatagram = 0xffd277
type settingsFrame struct {
Datagram bool
Other map[uint64]uint64 // all settings that we don't explicitly recognize
}
func parseSettingsFrame(r io.Reader, l uint64) (*settingsFrame, error) {
if l > 8*(1<<10) {
return nil, fmt.Errorf("unexpected size for SETTINGS frame: %d", l)
}
buf := make([]byte, l)
if _, err := io.ReadFull(r, buf); err != nil {
if err == io.ErrUnexpectedEOF {
return nil, io.EOF
}
return nil, err
}
frame := &settingsFrame{}
b := bytes.NewReader(buf)
var readDatagram bool
for b.Len() > 0 {
id, err := quicvarint.Read(b)
if err != nil { // should not happen. We allocated the whole frame already.
return nil, err
}
val, err := quicvarint.Read(b)
if err != nil { // should not happen. We allocated the whole frame already.
return nil, err
}
switch id {
case settingDatagram:
if readDatagram {
return nil, fmt.Errorf("duplicate setting: %d", id)
}
readDatagram = true
if val != 0 && val != 1 {
return nil, fmt.Errorf("invalid value for H3_DATAGRAM: %d", val)
}
frame.Datagram = val == 1
default:
if _, ok := frame.Other[id]; ok {
return nil, fmt.Errorf("duplicate setting: %d", id)
}
if frame.Other == nil {
frame.Other = make(map[uint64]uint64)
}
frame.Other[id] = val
}
}
return frame, nil
}
func (f *settingsFrame) Write(b *bytes.Buffer) {
quicvarint.Write(b, 0x4)
var l protocol.ByteCount
for id, val := range f.Other {
l += quicvarint.Len(id) + quicvarint.Len(val)
}
if f.Datagram {
l += quicvarint.Len(settingDatagram) + quicvarint.Len(1)
}
quicvarint.Write(b, uint64(l))
if f.Datagram {
quicvarint.Write(b, settingDatagram)
quicvarint.Write(b, 1)
}
for id, val := range f.Other {
quicvarint.Write(b, id)
quicvarint.Write(b, val)
}
}

View file

@ -0,0 +1,39 @@
package http3
// copied from net/transport.go
// gzipReader wraps a response body so it can lazily
// call gzip.NewReader on the first call to Read
import (
"compress/gzip"
"io"
)
// call gzip.NewReader on the first call to Read
type gzipReader struct {
body io.ReadCloser // underlying Response.Body
zr *gzip.Reader // lazily-initialized gzip reader
zerr error // sticky error
}
func newGzipReader(body io.ReadCloser) io.ReadCloser {
return &gzipReader{body: body}
}
func (gz *gzipReader) Read(p []byte) (n int, err error) {
if gz.zerr != nil {
return 0, gz.zerr
}
if gz.zr == nil {
gz.zr, err = gzip.NewReader(gz.body)
if err != nil {
gz.zerr = err
return 0, err
}
}
return gz.zr.Read(p)
}
func (gz *gzipReader) Close() error {
return gz.body.Close()
}

View file

@ -0,0 +1,71 @@
package http3
import (
"bytes"
"fmt"
"github.com/lucas-clemente/quic-go"
)
// A Stream is a HTTP/3 stream.
// When writing to and reading from the stream, data is framed in HTTP/3 DATA frames.
type Stream quic.Stream
// The stream conforms to the quic.Stream interface, but instead of writing to and reading directly
// from the QUIC stream, it writes to and reads from the HTTP stream.
type stream struct {
quic.Stream
onFrameError func()
bytesRemainingInFrame uint64
}
var _ Stream = &stream{}
func newStream(str quic.Stream, onFrameError func()) *stream {
return &stream{Stream: str, onFrameError: onFrameError}
}
func (s *stream) Read(b []byte) (int, error) {
if s.bytesRemainingInFrame == 0 {
parseLoop:
for {
frame, err := parseNextFrame(s.Stream, nil)
if err != nil {
return 0, err
}
switch f := frame.(type) {
case *headersFrame:
// skip HEADERS frames
continue
case *dataFrame:
s.bytesRemainingInFrame = f.Length
break parseLoop
default:
s.onFrameError()
// parseNextFrame skips over unknown frame types
// Therefore, this condition is only entered when we parsed another known frame type.
return 0, fmt.Errorf("peer sent an unexpected frame: %T", f)
}
}
}
var n int
var err error
if s.bytesRemainingInFrame < uint64(len(b)) {
n, err = s.Stream.Read(b[:s.bytesRemainingInFrame])
} else {
n, err = s.Stream.Read(b)
}
s.bytesRemainingInFrame -= uint64(n)
return n, err
}
func (s *stream) Write(b []byte) (int, error) {
buf := &bytes.Buffer{}
(&dataFrame{Length: uint64(len(b))}).Write(buf)
if _, err := s.Stream.Write(buf.Bytes()); err != nil {
return 0, err
}
return s.Stream.Write(b)
}

View file

@ -0,0 +1,113 @@
package http3
import (
"crypto/tls"
"errors"
"net/http"
"net/url"
"strconv"
"strings"
"github.com/marten-seemann/qpack"
)
func requestFromHeaders(headers []qpack.HeaderField) (*http.Request, error) {
var path, authority, method, protocol, scheme, contentLengthStr string
httpHeaders := http.Header{}
for _, h := range headers {
switch h.Name {
case ":path":
path = h.Value
case ":method":
method = h.Value
case ":authority":
authority = h.Value
case ":protocol":
protocol = h.Value
case ":scheme":
scheme = h.Value
case "content-length":
contentLengthStr = h.Value
default:
if !h.IsPseudo() {
httpHeaders.Add(h.Name, h.Value)
}
}
}
// concatenate cookie headers, see https://tools.ietf.org/html/rfc6265#section-5.4
if len(httpHeaders["Cookie"]) > 0 {
httpHeaders.Set("Cookie", strings.Join(httpHeaders["Cookie"], "; "))
}
isConnect := method == http.MethodConnect
// Extended CONNECT, see https://datatracker.ietf.org/doc/html/rfc8441#section-4
isExtendedConnected := isConnect && protocol != ""
if isExtendedConnected {
if scheme == "" || path == "" || authority == "" {
return nil, errors.New("extended CONNECT: :scheme, :path and :authority must not be empty")
}
} else if isConnect {
if path != "" || authority == "" { // normal CONNECT
return nil, errors.New(":path must be empty and :authority must not be empty")
}
} else if len(path) == 0 || len(authority) == 0 || len(method) == 0 {
return nil, errors.New(":path, :authority and :method must not be empty")
}
var u *url.URL
var requestURI string
var err error
if isConnect {
u = &url.URL{}
if isExtendedConnected {
u, err = url.ParseRequestURI(path)
if err != nil {
return nil, err
}
} else {
u.Path = path
}
u.Scheme = scheme
u.Host = authority
requestURI = authority
} else {
protocol = "HTTP/3.0"
u, err = url.ParseRequestURI(path)
if err != nil {
return nil, err
}
requestURI = path
}
var contentLength int64
if len(contentLengthStr) > 0 {
contentLength, err = strconv.ParseInt(contentLengthStr, 10, 64)
if err != nil {
return nil, err
}
}
return &http.Request{
Method: method,
URL: u,
Proto: protocol,
ProtoMajor: 3,
ProtoMinor: 0,
Header: httpHeaders,
Body: nil,
ContentLength: contentLength,
Host: authority,
RequestURI: requestURI,
TLS: &tls.ConnectionState{},
}, nil
}
func hostnameFromRequest(req *http.Request) string {
if req.URL != nil {
return req.URL.Host
}
return ""
}

View file

@ -0,0 +1,283 @@
package http3
import (
"bytes"
"fmt"
"io"
"net"
"net/http"
"strconv"
"strings"
"sync"
"github.com/lucas-clemente/quic-go"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/marten-seemann/qpack"
"golang.org/x/net/http/httpguts"
"golang.org/x/net/http2/hpack"
"golang.org/x/net/idna"
)
const bodyCopyBufferSize = 8 * 1024
type requestWriter struct {
mutex sync.Mutex
encoder *qpack.Encoder
headerBuf *bytes.Buffer
logger utils.Logger
}
func newRequestWriter(logger utils.Logger) *requestWriter {
headerBuf := &bytes.Buffer{}
encoder := qpack.NewEncoder(headerBuf)
return &requestWriter{
encoder: encoder,
headerBuf: headerBuf,
logger: logger,
}
}
func (w *requestWriter) WriteRequestHeader(str quic.Stream, req *http.Request, gzip bool) error {
// TODO: figure out how to add support for trailers
buf := &bytes.Buffer{}
if err := w.writeHeaders(buf, req, gzip); err != nil {
return err
}
_, err := str.Write(buf.Bytes())
return err
}
func (w *requestWriter) writeHeaders(wr io.Writer, req *http.Request, gzip bool) error {
w.mutex.Lock()
defer w.mutex.Unlock()
defer w.encoder.Close()
defer w.headerBuf.Reset()
if err := w.encodeHeaders(req, gzip, "", actualContentLength(req)); err != nil {
return err
}
buf := &bytes.Buffer{}
hf := headersFrame{Length: uint64(w.headerBuf.Len())}
hf.Write(buf)
if _, err := wr.Write(buf.Bytes()); err != nil {
return err
}
_, err := wr.Write(w.headerBuf.Bytes())
return err
}
// copied from net/transport.go
// Modified to support Extended CONNECT:
// Contrary to what the godoc for the http.Request says,
// we do respect the Proto field if the method is CONNECT.
func (w *requestWriter) encodeHeaders(req *http.Request, addGzipHeader bool, trailers string, contentLength int64) error {
host := req.Host
if host == "" {
host = req.URL.Host
}
host, err := httpguts.PunycodeHostPort(host)
if err != nil {
return err
}
// http.NewRequest sets this field to HTTP/1.1
isExtendedConnect := req.Method == http.MethodConnect && req.Proto != "" && req.Proto != "HTTP/1.1"
var path string
if req.Method != http.MethodConnect || isExtendedConnect {
path = req.URL.RequestURI()
if !validPseudoPath(path) {
orig := path
path = strings.TrimPrefix(path, req.URL.Scheme+"://"+host)
if !validPseudoPath(path) {
if req.URL.Opaque != "" {
return fmt.Errorf("invalid request :path %q from URL.Opaque = %q", orig, req.URL.Opaque)
} else {
return fmt.Errorf("invalid request :path %q", orig)
}
}
}
}
// Check for any invalid headers and return an error before we
// potentially pollute our hpack state. (We want to be able to
// continue to reuse the hpack encoder for future requests)
for k, vv := range req.Header {
if !httpguts.ValidHeaderFieldName(k) {
return fmt.Errorf("invalid HTTP header name %q", k)
}
for _, v := range vv {
if !httpguts.ValidHeaderFieldValue(v) {
return fmt.Errorf("invalid HTTP header value %q for header %q", v, k)
}
}
}
enumerateHeaders := func(f func(name, value string)) {
// 8.1.2.3 Request Pseudo-Header Fields
// The :path pseudo-header field includes the path and query parts of the
// target URI (the path-absolute production and optionally a '?' character
// followed by the query production (see Sections 3.3 and 3.4 of
// [RFC3986]).
f(":authority", host)
f(":method", req.Method)
if req.Method != http.MethodConnect || isExtendedConnect {
f(":path", path)
f(":scheme", req.URL.Scheme)
}
if isExtendedConnect {
f(":protocol", req.Proto)
}
if trailers != "" {
f("trailer", trailers)
}
var didUA bool
for k, vv := range req.Header {
if strings.EqualFold(k, "host") || strings.EqualFold(k, "content-length") {
// Host is :authority, already sent.
// Content-Length is automatic, set below.
continue
} else if strings.EqualFold(k, "connection") || strings.EqualFold(k, "proxy-connection") ||
strings.EqualFold(k, "transfer-encoding") || strings.EqualFold(k, "upgrade") ||
strings.EqualFold(k, "keep-alive") {
// Per 8.1.2.2 Connection-Specific Header
// Fields, don't send connection-specific
// fields. We have already checked if any
// are error-worthy so just ignore the rest.
continue
} else if strings.EqualFold(k, "user-agent") {
// Match Go's http1 behavior: at most one
// User-Agent. If set to nil or empty string,
// then omit it. Otherwise if not mentioned,
// include the default (below).
didUA = true
if len(vv) < 1 {
continue
}
vv = vv[:1]
if vv[0] == "" {
continue
}
}
for _, v := range vv {
f(k, v)
}
}
if shouldSendReqContentLength(req.Method, contentLength) {
f("content-length", strconv.FormatInt(contentLength, 10))
}
if addGzipHeader {
f("accept-encoding", "gzip")
}
if !didUA {
f("user-agent", defaultUserAgent)
}
}
// Do a first pass over the headers counting bytes to ensure
// we don't exceed cc.peerMaxHeaderListSize. This is done as a
// separate pass before encoding the headers to prevent
// modifying the hpack state.
hlSize := uint64(0)
enumerateHeaders(func(name, value string) {
hf := hpack.HeaderField{Name: name, Value: value}
hlSize += uint64(hf.Size())
})
// TODO: check maximum header list size
// if hlSize > cc.peerMaxHeaderListSize {
// return errRequestHeaderListSize
// }
// trace := httptrace.ContextClientTrace(req.Context())
// traceHeaders := traceHasWroteHeaderField(trace)
// Header list size is ok. Write the headers.
enumerateHeaders(func(name, value string) {
name = strings.ToLower(name)
w.encoder.WriteField(qpack.HeaderField{Name: name, Value: value})
// if traceHeaders {
// traceWroteHeaderField(trace, name, value)
// }
})
return nil
}
// authorityAddr returns a given authority (a host/IP, or host:port / ip:port)
// and returns a host:port. The port 443 is added if needed.
func authorityAddr(scheme string, authority string) (addr string) {
host, port, err := net.SplitHostPort(authority)
if err != nil { // authority didn't have a port
port = "443"
if scheme == "http" {
port = "80"
}
host = authority
}
if a, err := idna.ToASCII(host); err == nil {
host = a
}
// IPv6 address literal, without a port:
if strings.HasPrefix(host, "[") && strings.HasSuffix(host, "]") {
return host + ":" + port
}
return net.JoinHostPort(host, port)
}
// validPseudoPath reports whether v is a valid :path pseudo-header
// value. It must be either:
//
// *) a non-empty string starting with '/'
// *) the string '*', for OPTIONS requests.
//
// For now this is only used a quick check for deciding when to clean
// up Opaque URLs before sending requests from the Transport.
// See golang.org/issue/16847
//
// We used to enforce that the path also didn't start with "//", but
// Google's GFE accepts such paths and Chrome sends them, so ignore
// that part of the spec. See golang.org/issue/19103.
func validPseudoPath(v string) bool {
return (len(v) > 0 && v[0] == '/') || v == "*"
}
// actualContentLength returns a sanitized version of
// req.ContentLength, where 0 actually means zero (not unknown) and -1
// means unknown.
func actualContentLength(req *http.Request) int64 {
if req.Body == nil {
return 0
}
if req.ContentLength != 0 {
return req.ContentLength
}
return -1
}
// shouldSendReqContentLength reports whether the http2.Transport should send
// a "content-length" request header. This logic is basically a copy of the net/http
// transferWriter.shouldSendContentLength.
// The contentLength is the corrected contentLength (so 0 means actually 0, not unknown).
// -1 means unknown.
func shouldSendReqContentLength(method string, contentLength int64) bool {
if contentLength > 0 {
return true
}
if contentLength < 0 {
return false
}
// For zero bodies, whether we send a content-length depends on the method.
// It also kinda doesn't matter for http2 either way, with END_STREAM.
switch method {
case "POST", "PUT", "PATCH":
return true
default:
return false
}
}

View file

@ -0,0 +1,118 @@
package http3
import (
"bufio"
"bytes"
"net/http"
"strconv"
"strings"
"github.com/lucas-clemente/quic-go"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/marten-seemann/qpack"
)
type responseWriter struct {
conn quic.Connection
bufferedStr *bufio.Writer
header http.Header
status int // status code passed to WriteHeader
headerWritten bool
logger utils.Logger
}
var (
_ http.ResponseWriter = &responseWriter{}
_ http.Flusher = &responseWriter{}
_ Hijacker = &responseWriter{}
)
func newResponseWriter(str quic.Stream, conn quic.Connection, logger utils.Logger) *responseWriter {
return &responseWriter{
header: http.Header{},
conn: conn,
bufferedStr: bufio.NewWriter(str),
logger: logger,
}
}
func (w *responseWriter) Header() http.Header {
return w.header
}
func (w *responseWriter) WriteHeader(status int) {
if w.headerWritten {
return
}
if status < 100 || status >= 200 {
w.headerWritten = true
}
w.status = status
var headers bytes.Buffer
enc := qpack.NewEncoder(&headers)
enc.WriteField(qpack.HeaderField{Name: ":status", Value: strconv.Itoa(status)})
for k, v := range w.header {
for index := range v {
enc.WriteField(qpack.HeaderField{Name: strings.ToLower(k), Value: v[index]})
}
}
buf := &bytes.Buffer{}
(&headersFrame{Length: uint64(headers.Len())}).Write(buf)
w.logger.Infof("Responding with %d", status)
if _, err := w.bufferedStr.Write(buf.Bytes()); err != nil {
w.logger.Errorf("could not write headers frame: %s", err.Error())
}
if _, err := w.bufferedStr.Write(headers.Bytes()); err != nil {
w.logger.Errorf("could not write header frame payload: %s", err.Error())
}
if !w.headerWritten {
w.Flush()
}
}
func (w *responseWriter) Write(p []byte) (int, error) {
if !w.headerWritten {
w.WriteHeader(200)
}
if !bodyAllowedForStatus(w.status) {
return 0, http.ErrBodyNotAllowed
}
df := &dataFrame{Length: uint64(len(p))}
buf := &bytes.Buffer{}
df.Write(buf)
if _, err := w.bufferedStr.Write(buf.Bytes()); err != nil {
return 0, err
}
return w.bufferedStr.Write(p)
}
func (w *responseWriter) Flush() {
if err := w.bufferedStr.Flush(); err != nil {
w.logger.Errorf("could not flush to stream: %s", err.Error())
}
}
func (w *responseWriter) StreamCreator() StreamCreator {
return w.conn
}
// copied from http2/http2.go
// bodyAllowedForStatus reports whether a given response status code
// permits a body. See RFC 2616, section 4.4.
func bodyAllowedForStatus(status int) bool {
switch {
case status >= 100 && status <= 199:
return false
case status == 204:
return false
case status == 304:
return false
}
return true
}

View file

@ -0,0 +1,221 @@
package http3
import (
"context"
"crypto/tls"
"errors"
"fmt"
"io"
"net/http"
"strings"
"sync"
"github.com/lucas-clemente/quic-go"
"golang.org/x/net/http/httpguts"
)
type roundTripCloser interface {
RoundTripOpt(*http.Request, RoundTripOpt) (*http.Response, error)
io.Closer
}
// RoundTripper implements the http.RoundTripper interface
type RoundTripper struct {
mutex sync.Mutex
// DisableCompression, if true, prevents the Transport from
// requesting compression with an "Accept-Encoding: gzip"
// request header when the Request contains no existing
// Accept-Encoding value. If the Transport requests gzip on
// its own and gets a gzipped response, it's transparently
// decoded in the Response.Body. However, if the user
// explicitly requested gzip it is not automatically
// uncompressed.
DisableCompression bool
// TLSClientConfig specifies the TLS configuration to use with
// tls.Client. If nil, the default configuration is used.
TLSClientConfig *tls.Config
// QuicConfig is the quic.Config used for dialing new connections.
// If nil, reasonable default values will be used.
QuicConfig *quic.Config
// Enable support for HTTP/3 datagrams.
// If set to true, QuicConfig.EnableDatagram will be set.
// See https://www.ietf.org/archive/id/draft-schinazi-masque-h3-datagram-02.html.
EnableDatagrams bool
// Additional HTTP/3 settings.
// It is invalid to specify any settings defined by the HTTP/3 draft and the datagram draft.
AdditionalSettings map[uint64]uint64
// When set, this callback is called for the first unknown frame parsed on a bidirectional stream.
// It is called right after parsing the frame type.
// If parsing the frame type fails, the error is passed to the callback.
// In that case, the frame type will not be set.
// Callers can either ignore the frame and return control of the stream back to HTTP/3
// (by returning hijacked false).
// Alternatively, callers can take over the QUIC stream (by returning hijacked true).
StreamHijacker func(FrameType, quic.Connection, quic.Stream, error) (hijacked bool, err error)
// When set, this callback is called for unknown unidirectional stream of unknown stream type.
// If parsing the stream type fails, the error is passed to the callback.
// In that case, the stream type will not be set.
UniStreamHijacker func(StreamType, quic.Connection, quic.ReceiveStream, error) (hijacked bool)
// Dial specifies an optional dial function for creating QUIC
// connections for requests.
// If Dial is nil, quic.DialAddrEarlyContext will be used.
Dial func(ctx context.Context, addr string, tlsCfg *tls.Config, cfg *quic.Config) (quic.EarlyConnection, error)
// MaxResponseHeaderBytes specifies a limit on how many response bytes are
// allowed in the server's response header.
// Zero means to use a default limit.
MaxResponseHeaderBytes int64
clients map[string]roundTripCloser
}
// RoundTripOpt are options for the Transport.RoundTripOpt method.
type RoundTripOpt struct {
// OnlyCachedConn controls whether the RoundTripper may create a new QUIC connection.
// If set true and no cached connection is available, RoundTripOpt will return ErrNoCachedConn.
OnlyCachedConn bool
// DontCloseRequestStream controls whether the request stream is closed after sending the request.
DontCloseRequestStream bool
}
var (
_ http.RoundTripper = &RoundTripper{}
_ io.Closer = &RoundTripper{}
)
// ErrNoCachedConn is returned when RoundTripper.OnlyCachedConn is set
var ErrNoCachedConn = errors.New("http3: no cached connection was available")
// RoundTripOpt is like RoundTrip, but takes options.
func (r *RoundTripper) RoundTripOpt(req *http.Request, opt RoundTripOpt) (*http.Response, error) {
if req.URL == nil {
closeRequestBody(req)
return nil, errors.New("http3: nil Request.URL")
}
if req.URL.Host == "" {
closeRequestBody(req)
return nil, errors.New("http3: no Host in request URL")
}
if req.Header == nil {
closeRequestBody(req)
return nil, errors.New("http3: nil Request.Header")
}
if req.URL.Scheme == "https" {
for k, vv := range req.Header {
if !httpguts.ValidHeaderFieldName(k) {
return nil, fmt.Errorf("http3: invalid http header field name %q", k)
}
for _, v := range vv {
if !httpguts.ValidHeaderFieldValue(v) {
return nil, fmt.Errorf("http3: invalid http header field value %q for key %v", v, k)
}
}
}
} else {
closeRequestBody(req)
return nil, fmt.Errorf("http3: unsupported protocol scheme: %s", req.URL.Scheme)
}
if req.Method != "" && !validMethod(req.Method) {
closeRequestBody(req)
return nil, fmt.Errorf("http3: invalid method %q", req.Method)
}
hostname := authorityAddr("https", hostnameFromRequest(req))
cl, err := r.getClient(hostname, opt.OnlyCachedConn)
if err != nil {
return nil, err
}
return cl.RoundTripOpt(req, opt)
}
// RoundTrip does a round trip.
func (r *RoundTripper) RoundTrip(req *http.Request) (*http.Response, error) {
return r.RoundTripOpt(req, RoundTripOpt{})
}
func (r *RoundTripper) getClient(hostname string, onlyCached bool) (roundTripCloser, error) {
r.mutex.Lock()
defer r.mutex.Unlock()
if r.clients == nil {
r.clients = make(map[string]roundTripCloser)
}
client, ok := r.clients[hostname]
if !ok {
if onlyCached {
return nil, ErrNoCachedConn
}
var err error
client, err = newClient(
hostname,
r.TLSClientConfig,
&roundTripperOpts{
EnableDatagram: r.EnableDatagrams,
DisableCompression: r.DisableCompression,
MaxHeaderBytes: r.MaxResponseHeaderBytes,
StreamHijacker: r.StreamHijacker,
UniStreamHijacker: r.UniStreamHijacker,
},
r.QuicConfig,
r.Dial,
)
if err != nil {
return nil, err
}
r.clients[hostname] = client
}
return client, nil
}
// Close closes the QUIC connections that this RoundTripper has used
func (r *RoundTripper) Close() error {
r.mutex.Lock()
defer r.mutex.Unlock()
for _, client := range r.clients {
if err := client.Close(); err != nil {
return err
}
}
r.clients = nil
return nil
}
func closeRequestBody(req *http.Request) {
if req.Body != nil {
req.Body.Close()
}
}
func validMethod(method string) bool {
/*
Method = "OPTIONS" ; Section 9.2
| "GET" ; Section 9.3
| "HEAD" ; Section 9.4
| "POST" ; Section 9.5
| "PUT" ; Section 9.6
| "DELETE" ; Section 9.7
| "TRACE" ; Section 9.8
| "CONNECT" ; Section 9.9
| extension-method
extension-method = token
token = 1*<any CHAR except CTLs or separators>
*/
return len(method) > 0 && strings.IndexFunc(method, isNotToken) == -1
}
// copied from net/http/http.go
func isNotToken(r rune) bool {
return !httpguts.IsTokenRune(r)
}

View file

@ -0,0 +1,742 @@
package http3
import (
"bytes"
"context"
"crypto/tls"
"errors"
"fmt"
"io"
"net"
"net/http"
"runtime"
"strings"
"sync"
"time"
"github.com/lucas-clemente/quic-go"
"github.com/lucas-clemente/quic-go/internal/handshake"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/lucas-clemente/quic-go/quicvarint"
"github.com/marten-seemann/qpack"
)
// allows mocking of quic.Listen and quic.ListenAddr
var (
quicListen = quic.ListenEarly
quicListenAddr = quic.ListenAddrEarly
)
const (
nextProtoH3Draft29 = "h3-29"
nextProtoH3 = "h3"
)
// StreamType is the stream type of a unidirectional stream.
type StreamType uint64
const (
streamTypeControlStream = 0
streamTypePushStream = 1
streamTypeQPACKEncoderStream = 2
streamTypeQPACKDecoderStream = 3
)
func versionToALPN(v protocol.VersionNumber) string {
if v == protocol.Version1 || v == protocol.Version2 {
return nextProtoH3
}
if v == protocol.VersionTLS || v == protocol.VersionDraft29 {
return nextProtoH3Draft29
}
return ""
}
// ConfigureTLSConfig creates a new tls.Config which can be used
// to create a quic.Listener meant for serving http3. The created
// tls.Config adds the functionality of detecting the used QUIC version
// in order to set the correct ALPN value for the http3 connection.
func ConfigureTLSConfig(tlsConf *tls.Config) *tls.Config {
// The tls.Config used to setup the quic.Listener needs to have the GetConfigForClient callback set.
// That way, we can get the QUIC version and set the correct ALPN value.
return &tls.Config{
GetConfigForClient: func(ch *tls.ClientHelloInfo) (*tls.Config, error) {
// determine the ALPN from the QUIC version used
proto := nextProtoH3
if qconn, ok := ch.Conn.(handshake.ConnWithVersion); ok {
proto = versionToALPN(qconn.GetQUICVersion())
}
config := tlsConf
if tlsConf.GetConfigForClient != nil {
getConfigForClient := tlsConf.GetConfigForClient
var err error
conf, err := getConfigForClient(ch)
if err != nil {
return nil, err
}
if conf != nil {
config = conf
}
}
if config == nil {
return nil, nil
}
config = config.Clone()
config.NextProtos = []string{proto}
return config, nil
},
}
}
// contextKey is a value for use with context.WithValue. It's used as
// a pointer so it fits in an interface{} without allocation.
type contextKey struct {
name string
}
func (k *contextKey) String() string { return "quic-go/http3 context value " + k.name }
// ServerContextKey is a context key. It can be used in HTTP
// handlers with Context.Value to access the server that
// started the handler. The associated value will be of
// type *http3.Server.
var ServerContextKey = &contextKey{"http3-server"}
type requestError struct {
err error
streamErr errorCode
connErr errorCode
}
func newStreamError(code errorCode, err error) requestError {
return requestError{err: err, streamErr: code}
}
func newConnError(code errorCode, err error) requestError {
return requestError{err: err, connErr: code}
}
// listenerInfo contains info about specific listener added with addListener
type listenerInfo struct {
port int // 0 means that no info about port is available
}
// Server is a HTTP/3 server.
type Server struct {
// Addr optionally specifies the UDP address for the server to listen on,
// in the form "host:port".
//
// When used by ListenAndServe and ListenAndServeTLS methods, if empty,
// ":https" (port 443) is used. See net.Dial for details of the address
// format.
//
// Otherwise, if Port is not set and underlying QUIC listeners do not
// have valid port numbers, the port part is used in Alt-Svc headers set
// with SetQuicHeaders.
Addr string
// Port is used in Alt-Svc response headers set with SetQuicHeaders. If
// needed Port can be manually set when the Server is created.
//
// This is useful when a Layer 4 firewall is redirecting UDP traffic and
// clients must use a port different from the port the Server is
// listening on.
Port int
// TLSConfig provides a TLS configuration for use by server. It must be
// set for ListenAndServe and Serve methods.
TLSConfig *tls.Config
// QuicConfig provides the parameters for QUIC connection created with
// Serve. If nil, it uses reasonable default values.
//
// Configured versions are also used in Alt-Svc response header set with
// SetQuicHeaders.
QuicConfig *quic.Config
// Handler is the HTTP request handler to use. If not set, defaults to
// http.NotFound.
Handler http.Handler
// EnableDatagrams enables support for HTTP/3 datagrams.
// If set to true, QuicConfig.EnableDatagram will be set.
// See https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram-07.
EnableDatagrams bool
// MaxHeaderBytes controls the maximum number of bytes the server will
// read parsing the request HEADERS frame. It does not limit the size of
// the request body. If zero or negative, http.DefaultMaxHeaderBytes is
// used.
MaxHeaderBytes int
// AdditionalSettings specifies additional HTTP/3 settings.
// It is invalid to specify any settings defined by the HTTP/3 draft and the datagram draft.
AdditionalSettings map[uint64]uint64
// StreamHijacker, when set, is called for the first unknown frame parsed on a bidirectional stream.
// It is called right after parsing the frame type.
// If parsing the frame type fails, the error is passed to the callback.
// In that case, the frame type will not be set.
// Callers can either ignore the frame and return control of the stream back to HTTP/3
// (by returning hijacked false).
// Alternatively, callers can take over the QUIC stream (by returning hijacked true).
StreamHijacker func(FrameType, quic.Connection, quic.Stream, error) (hijacked bool, err error)
// UniStreamHijacker, when set, is called for unknown unidirectional stream of unknown stream type.
// If parsing the stream type fails, the error is passed to the callback.
// In that case, the stream type will not be set.
UniStreamHijacker func(StreamType, quic.Connection, quic.ReceiveStream, error) (hijacked bool)
mutex sync.RWMutex
listeners map[*quic.EarlyListener]listenerInfo
closed bool
altSvcHeader string
logger utils.Logger
}
// ListenAndServe listens on the UDP address s.Addr and calls s.Handler to handle HTTP/3 requests on incoming connections.
//
// If s.Addr is blank, ":https" is used.
func (s *Server) ListenAndServe() error {
return s.serveConn(s.TLSConfig, nil)
}
// ListenAndServeTLS listens on the UDP address s.Addr and calls s.Handler to handle HTTP/3 requests on incoming connections.
//
// If s.Addr is blank, ":https" is used.
func (s *Server) ListenAndServeTLS(certFile, keyFile string) error {
var err error
certs := make([]tls.Certificate, 1)
certs[0], err = tls.LoadX509KeyPair(certFile, keyFile)
if err != nil {
return err
}
// We currently only use the cert-related stuff from tls.Config,
// so we don't need to make a full copy.
config := &tls.Config{
Certificates: certs,
}
return s.serveConn(config, nil)
}
// Serve an existing UDP connection.
// It is possible to reuse the same connection for outgoing connections.
// Closing the server does not close the packet conn.
func (s *Server) Serve(conn net.PacketConn) error {
return s.serveConn(s.TLSConfig, conn)
}
// ServeListener serves an existing QUIC listener.
// Make sure you use http3.ConfigureTLSConfig to configure a tls.Config
// and use it to construct a http3-friendly QUIC listener.
// Closing the server does close the listener.
func (s *Server) ServeListener(ln quic.EarlyListener) error {
if err := s.addListener(&ln); err != nil {
return err
}
err := s.serveListener(ln)
s.removeListener(&ln)
return err
}
var errServerWithoutTLSConfig = errors.New("use of http3.Server without TLSConfig")
func (s *Server) serveConn(tlsConf *tls.Config, conn net.PacketConn) error {
if tlsConf == nil {
return errServerWithoutTLSConfig
}
s.mutex.Lock()
closed := s.closed
s.mutex.Unlock()
if closed {
return http.ErrServerClosed
}
baseConf := ConfigureTLSConfig(tlsConf)
quicConf := s.QuicConfig
if quicConf == nil {
quicConf = &quic.Config{}
} else {
quicConf = s.QuicConfig.Clone()
}
if s.EnableDatagrams {
quicConf.EnableDatagrams = true
}
var ln quic.EarlyListener
var err error
if conn == nil {
addr := s.Addr
if addr == "" {
addr = ":https"
}
ln, err = quicListenAddr(addr, baseConf, quicConf)
} else {
ln, err = quicListen(conn, baseConf, quicConf)
}
if err != nil {
return err
}
if err := s.addListener(&ln); err != nil {
return err
}
err = s.serveListener(ln)
s.removeListener(&ln)
return err
}
func (s *Server) serveListener(ln quic.EarlyListener) error {
for {
conn, err := ln.Accept(context.Background())
if err != nil {
return err
}
go s.handleConn(conn)
}
}
func extractPort(addr string) (int, error) {
_, portStr, err := net.SplitHostPort(addr)
if err != nil {
return 0, err
}
portInt, err := net.LookupPort("tcp", portStr)
if err != nil {
return 0, err
}
return portInt, nil
}
func (s *Server) generateAltSvcHeader() {
if len(s.listeners) == 0 {
// Don't announce any ports since no one is listening for connections
s.altSvcHeader = ""
return
}
// This code assumes that we will use protocol.SupportedVersions if no quic.Config is passed.
supportedVersions := protocol.SupportedVersions
if s.QuicConfig != nil && len(s.QuicConfig.Versions) > 0 {
supportedVersions = s.QuicConfig.Versions
}
// keep track of which have been seen so we don't yield duplicate values
seen := make(map[string]struct{}, len(supportedVersions))
var versionStrings []string
for _, version := range supportedVersions {
if v := versionToALPN(version); len(v) > 0 {
if _, ok := seen[v]; !ok {
versionStrings = append(versionStrings, v)
seen[v] = struct{}{}
}
}
}
var altSvc []string
addPort := func(port int) {
for _, v := range versionStrings {
altSvc = append(altSvc, fmt.Sprintf(`%s=":%d"; ma=2592000`, v, port))
}
}
if s.Port != 0 {
// if Port is specified, we must use it instead of the
// listener addresses since there's a reason it's specified.
addPort(s.Port)
} else {
// if we have some listeners assigned, try to find ports
// which we can announce, otherwise nothing should be announced
validPortsFound := false
for _, info := range s.listeners {
if info.port != 0 {
addPort(info.port)
validPortsFound = true
}
}
if !validPortsFound {
if port, err := extractPort(s.Addr); err == nil {
addPort(port)
}
}
}
s.altSvcHeader = strings.Join(altSvc, ",")
}
// We store a pointer to interface in the map set. This is safe because we only
// call trackListener via Serve and can track+defer untrack the same pointer to
// local variable there. We never need to compare a Listener from another caller.
func (s *Server) addListener(l *quic.EarlyListener) error {
s.mutex.Lock()
defer s.mutex.Unlock()
if s.closed {
return http.ErrServerClosed
}
if s.logger == nil {
s.logger = utils.DefaultLogger.WithPrefix("server")
}
if s.listeners == nil {
s.listeners = make(map[*quic.EarlyListener]listenerInfo)
}
if port, err := extractPort((*l).Addr().String()); err == nil {
s.listeners[l] = listenerInfo{port}
} else {
s.logger.Errorf(
"Unable to extract port from listener %+v, will not be announced using SetQuicHeaders: %s", err)
s.listeners[l] = listenerInfo{}
}
s.generateAltSvcHeader()
return nil
}
func (s *Server) removeListener(l *quic.EarlyListener) {
s.mutex.Lock()
delete(s.listeners, l)
s.generateAltSvcHeader()
s.mutex.Unlock()
}
func (s *Server) handleConn(conn quic.EarlyConnection) {
decoder := qpack.NewDecoder(nil)
// send a SETTINGS frame
str, err := conn.OpenUniStream()
if err != nil {
s.logger.Debugf("Opening the control stream failed.")
return
}
buf := &bytes.Buffer{}
quicvarint.Write(buf, streamTypeControlStream) // stream type
(&settingsFrame{Datagram: s.EnableDatagrams, Other: s.AdditionalSettings}).Write(buf)
str.Write(buf.Bytes())
go s.handleUnidirectionalStreams(conn)
// Process all requests immediately.
// It's the client's responsibility to decide which requests are eligible for 0-RTT.
for {
str, err := conn.AcceptStream(context.Background())
if err != nil {
s.logger.Debugf("Accepting stream failed: %s", err)
return
}
go func() {
rerr := s.handleRequest(conn, str, decoder, func() {
conn.CloseWithError(quic.ApplicationErrorCode(errorFrameUnexpected), "")
})
if rerr.err == errHijacked {
return
}
if rerr.err != nil || rerr.streamErr != 0 || rerr.connErr != 0 {
s.logger.Debugf("Handling request failed: %s", err)
if rerr.streamErr != 0 {
str.CancelWrite(quic.StreamErrorCode(rerr.streamErr))
}
if rerr.connErr != 0 {
var reason string
if rerr.err != nil {
reason = rerr.err.Error()
}
conn.CloseWithError(quic.ApplicationErrorCode(rerr.connErr), reason)
}
return
}
str.Close()
}()
}
}
func (s *Server) handleUnidirectionalStreams(conn quic.EarlyConnection) {
for {
str, err := conn.AcceptUniStream(context.Background())
if err != nil {
s.logger.Debugf("accepting unidirectional stream failed: %s", err)
return
}
go func(str quic.ReceiveStream) {
streamType, err := quicvarint.Read(quicvarint.NewReader(str))
if err != nil {
if s.UniStreamHijacker != nil && s.UniStreamHijacker(StreamType(streamType), conn, str, err) {
return
}
s.logger.Debugf("reading stream type on stream %d failed: %s", str.StreamID(), err)
return
}
// We're only interested in the control stream here.
switch streamType {
case streamTypeControlStream:
case streamTypeQPACKEncoderStream, streamTypeQPACKDecoderStream:
// Our QPACK implementation doesn't use the dynamic table yet.
// TODO: check that only one stream of each type is opened.
return
case streamTypePushStream: // only the server can push
conn.CloseWithError(quic.ApplicationErrorCode(errorStreamCreationError), "")
return
default:
if s.UniStreamHijacker != nil && s.UniStreamHijacker(StreamType(streamType), conn, str, nil) {
return
}
str.CancelRead(quic.StreamErrorCode(errorStreamCreationError))
return
}
f, err := parseNextFrame(str, nil)
if err != nil {
conn.CloseWithError(quic.ApplicationErrorCode(errorFrameError), "")
return
}
sf, ok := f.(*settingsFrame)
if !ok {
conn.CloseWithError(quic.ApplicationErrorCode(errorMissingSettings), "")
return
}
if !sf.Datagram {
return
}
// If datagram support was enabled on our side as well as on the client side,
// we can expect it to have been negotiated both on the transport and on the HTTP/3 layer.
// Note: ConnectionState() will block until the handshake is complete (relevant when using 0-RTT).
if s.EnableDatagrams && !conn.ConnectionState().SupportsDatagrams {
conn.CloseWithError(quic.ApplicationErrorCode(errorSettingsError), "missing QUIC Datagram support")
}
}(str)
}
}
func (s *Server) maxHeaderBytes() uint64 {
if s.MaxHeaderBytes <= 0 {
return http.DefaultMaxHeaderBytes
}
return uint64(s.MaxHeaderBytes)
}
func (s *Server) handleRequest(conn quic.Connection, str quic.Stream, decoder *qpack.Decoder, onFrameError func()) requestError {
var ufh unknownFrameHandlerFunc
if s.StreamHijacker != nil {
ufh = func(ft FrameType, e error) (processed bool, err error) { return s.StreamHijacker(ft, conn, str, e) }
}
frame, err := parseNextFrame(str, ufh)
if err != nil {
if err == errHijacked {
return requestError{err: errHijacked}
}
return newStreamError(errorRequestIncomplete, err)
}
hf, ok := frame.(*headersFrame)
if !ok {
return newConnError(errorFrameUnexpected, errors.New("expected first frame to be a HEADERS frame"))
}
if hf.Length > s.maxHeaderBytes() {
return newStreamError(errorFrameError, fmt.Errorf("HEADERS frame too large: %d bytes (max: %d)", hf.Length, s.maxHeaderBytes()))
}
headerBlock := make([]byte, hf.Length)
if _, err := io.ReadFull(str, headerBlock); err != nil {
return newStreamError(errorRequestIncomplete, err)
}
hfs, err := decoder.DecodeFull(headerBlock)
if err != nil {
// TODO: use the right error code
return newConnError(errorGeneralProtocolError, err)
}
req, err := requestFromHeaders(hfs)
if err != nil {
// TODO: use the right error code
return newStreamError(errorGeneralProtocolError, err)
}
req.RemoteAddr = conn.RemoteAddr().String()
body := newRequestBody(newStream(str, onFrameError))
req.Body = body
if s.logger.Debug() {
s.logger.Infof("%s %s%s, on stream %d", req.Method, req.Host, req.RequestURI, str.StreamID())
} else {
s.logger.Infof("%s %s%s", req.Method, req.Host, req.RequestURI)
}
ctx := str.Context()
ctx = context.WithValue(ctx, ServerContextKey, s)
ctx = context.WithValue(ctx, http.LocalAddrContextKey, conn.LocalAddr())
req = req.WithContext(ctx)
r := newResponseWriter(str, conn, s.logger)
defer r.Flush()
handler := s.Handler
if handler == nil {
handler = http.DefaultServeMux
}
var panicked bool
func() {
defer func() {
if p := recover(); p != nil {
// Copied from net/http/server.go
const size = 64 << 10
buf := make([]byte, size)
buf = buf[:runtime.Stack(buf, false)]
s.logger.Errorf("http: panic serving: %v\n%s", p, buf)
panicked = true
}
}()
handler.ServeHTTP(r, req)
}()
if body.wasStreamHijacked() {
return requestError{err: errHijacked}
}
if panicked {
r.WriteHeader(500)
} else {
r.WriteHeader(200)
}
// If the EOF was read by the handler, CancelRead() is a no-op.
str.CancelRead(quic.StreamErrorCode(errorNoError))
return requestError{}
}
// Close the server immediately, aborting requests and sending CONNECTION_CLOSE frames to connected clients.
// Close in combination with ListenAndServe() (instead of Serve()) may race if it is called before a UDP socket is established.
func (s *Server) Close() error {
s.mutex.Lock()
defer s.mutex.Unlock()
s.closed = true
var err error
for ln := range s.listeners {
if cerr := (*ln).Close(); cerr != nil && err == nil {
err = cerr
}
}
return err
}
// CloseGracefully shuts down the server gracefully. The server sends a GOAWAY frame first, then waits for either timeout to trigger, or for all running requests to complete.
// CloseGracefully in combination with ListenAndServe() (instead of Serve()) may race if it is called before a UDP socket is established.
func (s *Server) CloseGracefully(timeout time.Duration) error {
// TODO: implement
return nil
}
// ErrNoAltSvcPort is the error returned by SetQuicHeaders when no port was found
// for Alt-Svc to announce. This can happen if listening on a PacketConn without a port
// (UNIX socket, for example) and no port is specified in Server.Port or Server.Addr.
var ErrNoAltSvcPort = errors.New("no port can be announced, specify it explicitly using Server.Port or Server.Addr")
// SetQuicHeaders can be used to set the proper headers that announce that this server supports HTTP/3.
// The values set by default advertise all of the ports the server is listening on, but can be
// changed to a specific port by setting Server.Port before launching the serverr.
// If no listener's Addr().String() returns an address with a valid port, Server.Addr will be used
// to extract the port, if specified.
// For example, a server launched using ListenAndServe on an address with port 443 would set:
// Alt-Svc: h3=":443"; ma=2592000,h3-29=":443"; ma=2592000
func (s *Server) SetQuicHeaders(hdr http.Header) error {
s.mutex.RLock()
defer s.mutex.RUnlock()
if s.altSvcHeader == "" {
return ErrNoAltSvcPort
}
// use the map directly to avoid constant canonicalization
// since the key is already canonicalized
hdr["Alt-Svc"] = append(hdr["Alt-Svc"], s.altSvcHeader)
return nil
}
// ListenAndServeQUIC listens on the UDP network address addr and calls the
// handler for HTTP/3 requests on incoming connections. http.DefaultServeMux is
// used when handler is nil.
func ListenAndServeQUIC(addr, certFile, keyFile string, handler http.Handler) error {
server := &Server{
Addr: addr,
Handler: handler,
}
return server.ListenAndServeTLS(certFile, keyFile)
}
// ListenAndServe listens on the given network address for both, TLS and QUIC
// connections in parallel. It returns if one of the two returns an error.
// http.DefaultServeMux is used when handler is nil.
// The correct Alt-Svc headers for QUIC are set.
func ListenAndServe(addr, certFile, keyFile string, handler http.Handler) error {
// Load certs
var err error
certs := make([]tls.Certificate, 1)
certs[0], err = tls.LoadX509KeyPair(certFile, keyFile)
if err != nil {
return err
}
// We currently only use the cert-related stuff from tls.Config,
// so we don't need to make a full copy.
config := &tls.Config{
Certificates: certs,
}
if addr == "" {
addr = ":https"
}
// Open the listeners
udpAddr, err := net.ResolveUDPAddr("udp", addr)
if err != nil {
return err
}
udpConn, err := net.ListenUDP("udp", udpAddr)
if err != nil {
return err
}
defer udpConn.Close()
tcpAddr, err := net.ResolveTCPAddr("tcp", addr)
if err != nil {
return err
}
tcpConn, err := net.ListenTCP("tcp", tcpAddr)
if err != nil {
return err
}
defer tcpConn.Close()
tlsConn := tls.NewListener(tcpConn, config)
defer tlsConn.Close()
// Start the servers
httpServer := &http.Server{}
quicServer := &Server{
TLSConfig: config,
}
if handler == nil {
handler = http.DefaultServeMux
}
httpServer.Handler = http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
quicServer.SetQuicHeaders(w.Header())
handler.ServeHTTP(w, r)
})
hErr := make(chan error)
qErr := make(chan error)
go func() {
hErr <- httpServer.Serve(tlsConn)
}()
go func() {
qErr <- quicServer.Serve(udpConn)
}()
select {
case err := <-hErr:
quicServer.Close()
return err
case err := <-qErr:
// Cannot close the HTTP server or wait for requests to complete properly :/
return err
}
}

328
vendor/github.com/lucas-clemente/quic-go/interface.go generated vendored Normal file
View file

@ -0,0 +1,328 @@
package quic
import (
"context"
"errors"
"io"
"net"
"time"
"github.com/lucas-clemente/quic-go/internal/handshake"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/logging"
)
// The StreamID is the ID of a QUIC stream.
type StreamID = protocol.StreamID
// A VersionNumber is a QUIC version number.
type VersionNumber = protocol.VersionNumber
const (
// VersionDraft29 is IETF QUIC draft-29
VersionDraft29 = protocol.VersionDraft29
// Version1 is RFC 9000
Version1 = protocol.Version1
Version2 = protocol.Version2
)
// A Token can be used to verify the ownership of the client address.
type Token struct {
// IsRetryToken encodes how the client received the token. There are two ways:
// * In a Retry packet sent when trying to establish a new connection.
// * In a NEW_TOKEN frame on a previous connection.
IsRetryToken bool
RemoteAddr string
SentTime time.Time
}
// A ClientToken is a token received by the client.
// It can be used to skip address validation on future connection attempts.
type ClientToken struct {
data []byte
}
type TokenStore interface {
// Pop searches for a ClientToken associated with the given key.
// Since tokens are not supposed to be reused, it must remove the token from the cache.
// It returns nil when no token is found.
Pop(key string) (token *ClientToken)
// Put adds a token to the cache with the given key. It might get called
// multiple times in a connection.
Put(key string, token *ClientToken)
}
// Err0RTTRejected is the returned from:
// * Open{Uni}Stream{Sync}
// * Accept{Uni}Stream
// * Stream.Read and Stream.Write
// when the server rejects a 0-RTT connection attempt.
var Err0RTTRejected = errors.New("0-RTT rejected")
// ConnectionTracingKey can be used to associate a ConnectionTracer with a Connection.
// It is set on the Connection.Context() context,
// as well as on the context passed to logging.Tracer.NewConnectionTracer.
var ConnectionTracingKey = connTracingCtxKey{}
type connTracingCtxKey struct{}
// Stream is the interface implemented by QUIC streams
// In addition to the errors listed on the Connection,
// calls to stream functions can return a StreamError if the stream is canceled.
type Stream interface {
ReceiveStream
SendStream
// SetDeadline sets the read and write deadlines associated
// with the connection. It is equivalent to calling both
// SetReadDeadline and SetWriteDeadline.
SetDeadline(t time.Time) error
}
// A ReceiveStream is a unidirectional Receive Stream.
type ReceiveStream interface {
// StreamID returns the stream ID.
StreamID() StreamID
// Read reads data from the stream.
// Read can be made to time out and return a net.Error with Timeout() == true
// after a fixed time limit; see SetDeadline and SetReadDeadline.
// If the stream was canceled by the peer, the error implements the StreamError
// interface, and Canceled() == true.
// If the connection was closed due to a timeout, the error satisfies
// the net.Error interface, and Timeout() will be true.
io.Reader
// CancelRead aborts receiving on this stream.
// It will ask the peer to stop transmitting stream data.
// Read will unblock immediately, and future Read calls will fail.
// When called multiple times or after reading the io.EOF it is a no-op.
CancelRead(StreamErrorCode)
// SetReadDeadline sets the deadline for future Read calls and
// any currently-blocked Read call.
// A zero value for t means Read will not time out.
SetReadDeadline(t time.Time) error
}
// A SendStream is a unidirectional Send Stream.
type SendStream interface {
// StreamID returns the stream ID.
StreamID() StreamID
// Write writes data to the stream.
// Write can be made to time out and return a net.Error with Timeout() == true
// after a fixed time limit; see SetDeadline and SetWriteDeadline.
// If the stream was canceled by the peer, the error implements the StreamError
// interface, and Canceled() == true.
// If the connection was closed due to a timeout, the error satisfies
// the net.Error interface, and Timeout() will be true.
io.Writer
// Close closes the write-direction of the stream.
// Future calls to Write are not permitted after calling Close.
// It must not be called concurrently with Write.
// It must not be called after calling CancelWrite.
io.Closer
// CancelWrite aborts sending on this stream.
// Data already written, but not yet delivered to the peer is not guaranteed to be delivered reliably.
// Write will unblock immediately, and future calls to Write will fail.
// When called multiple times or after closing the stream it is a no-op.
CancelWrite(StreamErrorCode)
// The Context is canceled as soon as the write-side of the stream is closed.
// This happens when Close() or CancelWrite() is called, or when the peer
// cancels the read-side of their stream.
Context() context.Context
// SetWriteDeadline sets the deadline for future Write calls
// and any currently-blocked Write call.
// Even if write times out, it may return n > 0, indicating that
// some data was successfully written.
// A zero value for t means Write will not time out.
SetWriteDeadline(t time.Time) error
}
// A Connection is a QUIC connection between two peers.
// Calls to the connection (and to streams) can return the following types of errors:
// * ApplicationError: for errors triggered by the application running on top of QUIC
// * TransportError: for errors triggered by the QUIC transport (in many cases a misbehaving peer)
// * IdleTimeoutError: when the peer goes away unexpectedly (this is a net.Error timeout error)
// * HandshakeTimeoutError: when the cryptographic handshake takes too long (this is a net.Error timeout error)
// * StatelessResetError: when we receive a stateless reset (this is a net.Error temporary error)
// * VersionNegotiationError: returned by the client, when there's no version overlap between the peers
type Connection interface {
// AcceptStream returns the next stream opened by the peer, blocking until one is available.
// If the connection was closed due to a timeout, the error satisfies
// the net.Error interface, and Timeout() will be true.
AcceptStream(context.Context) (Stream, error)
// AcceptUniStream returns the next unidirectional stream opened by the peer, blocking until one is available.
// If the connection was closed due to a timeout, the error satisfies
// the net.Error interface, and Timeout() will be true.
AcceptUniStream(context.Context) (ReceiveStream, error)
// OpenStream opens a new bidirectional QUIC stream.
// There is no signaling to the peer about new streams:
// The peer can only accept the stream after data has been sent on the stream.
// If the error is non-nil, it satisfies the net.Error interface.
// When reaching the peer's stream limit, err.Temporary() will be true.
// If the connection was closed due to a timeout, Timeout() will be true.
OpenStream() (Stream, error)
// OpenStreamSync opens a new bidirectional QUIC stream.
// It blocks until a new stream can be opened.
// If the error is non-nil, it satisfies the net.Error interface.
// If the connection was closed due to a timeout, Timeout() will be true.
OpenStreamSync(context.Context) (Stream, error)
// OpenUniStream opens a new outgoing unidirectional QUIC stream.
// If the error is non-nil, it satisfies the net.Error interface.
// When reaching the peer's stream limit, Temporary() will be true.
// If the connection was closed due to a timeout, Timeout() will be true.
OpenUniStream() (SendStream, error)
// OpenUniStreamSync opens a new outgoing unidirectional QUIC stream.
// It blocks until a new stream can be opened.
// If the error is non-nil, it satisfies the net.Error interface.
// If the connection was closed due to a timeout, Timeout() will be true.
OpenUniStreamSync(context.Context) (SendStream, error)
// LocalAddr returns the local address.
LocalAddr() net.Addr
// RemoteAddr returns the address of the peer.
RemoteAddr() net.Addr
// CloseWithError closes the connection with an error.
// The error string will be sent to the peer.
CloseWithError(ApplicationErrorCode, string) error
// The context is cancelled when the connection is closed.
Context() context.Context
// ConnectionState returns basic details about the QUIC connection.
// It blocks until the handshake completes.
// Warning: This API should not be considered stable and might change soon.
ConnectionState() ConnectionState
// SendMessage sends a message as a datagram, as specified in RFC 9221.
SendMessage([]byte) error
// ReceiveMessage gets a message received in a datagram, as specified in RFC 9221.
ReceiveMessage() ([]byte, error)
}
// An EarlyConnection is a connection that is handshaking.
// Data sent during the handshake is encrypted using the forward secure keys.
// When using client certificates, the client's identity is only verified
// after completion of the handshake.
type EarlyConnection interface {
Connection
// HandshakeComplete blocks until the handshake completes (or fails).
// Data sent before completion of the handshake is encrypted with 1-RTT keys.
// Note that the client's identity hasn't been verified yet.
HandshakeComplete() context.Context
NextConnection() Connection
}
// Config contains all configuration data needed for a QUIC server or client.
type Config struct {
// The QUIC versions that can be negotiated.
// If not set, it uses all versions available.
Versions []VersionNumber
// The length of the connection ID in bytes.
// It can be 0, or any value between 4 and 18.
// If not set, the interpretation depends on where the Config is used:
// If used for dialing an address, a 0 byte connection ID will be used.
// If used for a server, or dialing on a packet conn, a 4 byte connection ID will be used.
// When dialing on a packet conn, the ConnectionIDLength value must be the same for every Dial call.
ConnectionIDLength int
// HandshakeIdleTimeout is the idle timeout before completion of the handshake.
// Specifically, if we don't receive any packet from the peer within this time, the connection attempt is aborted.
// If this value is zero, the timeout is set to 5 seconds.
HandshakeIdleTimeout time.Duration
// MaxIdleTimeout is the maximum duration that may pass without any incoming network activity.
// The actual value for the idle timeout is the minimum of this value and the peer's.
// This value only applies after the handshake has completed.
// If the timeout is exceeded, the connection is closed.
// If this value is zero, the timeout is set to 30 seconds.
MaxIdleTimeout time.Duration
// AcceptToken determines if a Token is accepted.
// It is called with token = nil if the client didn't send a token.
// If not set, a default verification function is used:
// * it verifies that the address matches, and
// * if the token is a retry token, that it was issued within the last 5 seconds
// * else, that it was issued within the last 24 hours.
// This option is only valid for the server.
AcceptToken func(clientAddr net.Addr, token *Token) bool
// The TokenStore stores tokens received from the server.
// Tokens are used to skip address validation on future connection attempts.
// The key used to store tokens is the ServerName from the tls.Config, if set
// otherwise the token is associated with the server's IP address.
TokenStore TokenStore
// InitialStreamReceiveWindow is the initial size of the stream-level flow control window for receiving data.
// If the application is consuming data quickly enough, the flow control auto-tuning algorithm
// will increase the window up to MaxStreamReceiveWindow.
// If this value is zero, it will default to 512 KB.
InitialStreamReceiveWindow uint64
// MaxStreamReceiveWindow is the maximum stream-level flow control window for receiving data.
// If this value is zero, it will default to 6 MB.
MaxStreamReceiveWindow uint64
// InitialConnectionReceiveWindow is the initial size of the stream-level flow control window for receiving data.
// If the application is consuming data quickly enough, the flow control auto-tuning algorithm
// will increase the window up to MaxConnectionReceiveWindow.
// If this value is zero, it will default to 512 KB.
InitialConnectionReceiveWindow uint64
// MaxConnectionReceiveWindow is the connection-level flow control window for receiving data.
// If this value is zero, it will default to 15 MB.
MaxConnectionReceiveWindow uint64
// AllowConnectionWindowIncrease is called every time the connection flow controller attempts
// to increase the connection flow control window.
// If set, the caller can prevent an increase of the window. Typically, it would do so to
// limit the memory usage.
// To avoid deadlocks, it is not valid to call other functions on the connection or on streams
// in this callback.
AllowConnectionWindowIncrease func(sess Connection, delta uint64) bool
// MaxIncomingStreams is the maximum number of concurrent bidirectional streams that a peer is allowed to open.
// Values above 2^60 are invalid.
// If not set, it will default to 100.
// If set to a negative value, it doesn't allow any bidirectional streams.
MaxIncomingStreams int64
// MaxIncomingUniStreams is the maximum number of concurrent unidirectional streams that a peer is allowed to open.
// Values above 2^60 are invalid.
// If not set, it will default to 100.
// If set to a negative value, it doesn't allow any unidirectional streams.
MaxIncomingUniStreams int64
// The StatelessResetKey is used to generate stateless reset tokens.
// If no key is configured, sending of stateless resets is disabled.
StatelessResetKey []byte
// KeepAlivePeriod defines whether this peer will periodically send a packet to keep the connection alive.
// If set to 0, then no keep alive is sent. Otherwise, the keep alive is sent on that period (or at most
// every half of MaxIdleTimeout, whichever is smaller).
KeepAlivePeriod time.Duration
// DisablePathMTUDiscovery disables Path MTU Discovery (RFC 8899).
// Packets will then be at most 1252 (IPv4) / 1232 (IPv6) bytes in size.
// Note that if Path MTU discovery is causing issues on your system, please open a new issue
DisablePathMTUDiscovery bool
// DisableVersionNegotiationPackets disables the sending of Version Negotiation packets.
// This can be useful if version information is exchanged out-of-band.
// It has no effect for a client.
DisableVersionNegotiationPackets bool
// See https://datatracker.ietf.org/doc/draft-ietf-quic-datagram/.
// Datagrams will only be available when both peers enable datagram support.
EnableDatagrams bool
Tracer logging.Tracer
}
// ConnectionState records basic details about a QUIC connection
type ConnectionState struct {
TLS handshake.ConnectionState
SupportsDatagrams bool
}
// A Listener for incoming QUIC connections
type Listener interface {
// Close the server. All active connections will be closed.
Close() error
// Addr returns the local network addr that the server is listening on.
Addr() net.Addr
// Accept returns new connections. It should be called in a loop.
Accept(context.Context) (Connection, error)
}
// An EarlyListener listens for incoming QUIC connections,
// and returns them before the handshake completes.
type EarlyListener interface {
// Close the server. All active connections will be closed.
Close() error
// Addr returns the local network addr that the server is listening on.
Addr() net.Addr
// Accept returns new early connections. It should be called in a loop.
Accept(context.Context) (EarlyConnection, error)
}

View file

@ -0,0 +1,20 @@
package ackhandler
import "github.com/lucas-clemente/quic-go/internal/wire"
// IsFrameAckEliciting returns true if the frame is ack-eliciting.
func IsFrameAckEliciting(f wire.Frame) bool {
_, isAck := f.(*wire.AckFrame)
_, isConnectionClose := f.(*wire.ConnectionCloseFrame)
return !isAck && !isConnectionClose
}
// HasAckElicitingFrames returns true if at least one frame is ack-eliciting.
func HasAckElicitingFrames(fs []Frame) bool {
for _, f := range fs {
if IsFrameAckEliciting(f.Frame) {
return true
}
}
return false
}

View file

@ -0,0 +1,21 @@
package ackhandler
import (
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/lucas-clemente/quic-go/logging"
)
// NewAckHandler creates a new SentPacketHandler and a new ReceivedPacketHandler
func NewAckHandler(
initialPacketNumber protocol.PacketNumber,
initialMaxDatagramSize protocol.ByteCount,
rttStats *utils.RTTStats,
pers protocol.Perspective,
tracer logging.ConnectionTracer,
logger utils.Logger,
version protocol.VersionNumber,
) (SentPacketHandler, ReceivedPacketHandler) {
sph := newSentPacketHandler(initialPacketNumber, initialMaxDatagramSize, rttStats, pers, tracer, logger)
return sph, newReceivedPacketHandler(sph, rttStats, logger, version)
}

View file

@ -0,0 +1,9 @@
package ackhandler
import "github.com/lucas-clemente/quic-go/internal/wire"
type Frame struct {
wire.Frame // nil if the frame has already been acknowledged in another packet
OnLost func(wire.Frame)
OnAcked func(wire.Frame)
}

View file

@ -0,0 +1,3 @@
package ackhandler
//go:generate genny -pkg ackhandler -in ../utils/linkedlist/linkedlist.go -out packet_linkedlist.go gen Item=Packet

View file

@ -0,0 +1,68 @@
package ackhandler
import (
"time"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/wire"
)
// A Packet is a packet
type Packet struct {
PacketNumber protocol.PacketNumber
Frames []Frame
LargestAcked protocol.PacketNumber // InvalidPacketNumber if the packet doesn't contain an ACK
Length protocol.ByteCount
EncryptionLevel protocol.EncryptionLevel
SendTime time.Time
IsPathMTUProbePacket bool // We don't report the loss of Path MTU probe packets to the congestion controller.
includedInBytesInFlight bool
declaredLost bool
skippedPacket bool
}
// SentPacketHandler handles ACKs received for outgoing packets
type SentPacketHandler interface {
// SentPacket may modify the packet
SentPacket(packet *Packet)
ReceivedAck(ackFrame *wire.AckFrame, encLevel protocol.EncryptionLevel, recvTime time.Time) (bool /* 1-RTT packet acked */, error)
ReceivedBytes(protocol.ByteCount)
DropPackets(protocol.EncryptionLevel)
ResetForRetry() error
SetHandshakeConfirmed()
// The SendMode determines if and what kind of packets can be sent.
SendMode() SendMode
// TimeUntilSend is the time when the next packet should be sent.
// It is used for pacing packets.
TimeUntilSend() time.Time
// HasPacingBudget says if the pacer allows sending of a (full size) packet at this moment.
HasPacingBudget() bool
SetMaxDatagramSize(count protocol.ByteCount)
// only to be called once the handshake is complete
QueueProbePacket(protocol.EncryptionLevel) bool /* was a packet queued */
PeekPacketNumber(protocol.EncryptionLevel) (protocol.PacketNumber, protocol.PacketNumberLen)
PopPacketNumber(protocol.EncryptionLevel) protocol.PacketNumber
GetLossDetectionTimeout() time.Time
OnLossDetectionTimeout() error
}
type sentPacketTracker interface {
GetLowestPacketNotConfirmedAcked() protocol.PacketNumber
ReceivedPacket(protocol.EncryptionLevel)
}
// ReceivedPacketHandler handles ACKs needed to send for incoming packets
type ReceivedPacketHandler interface {
IsPotentiallyDuplicate(protocol.PacketNumber, protocol.EncryptionLevel) bool
ReceivedPacket(pn protocol.PacketNumber, ecn protocol.ECN, encLevel protocol.EncryptionLevel, rcvTime time.Time, shouldInstigateAck bool) error
DropPackets(protocol.EncryptionLevel)
GetAlarmTimeout() time.Time
GetAckFrame(encLevel protocol.EncryptionLevel, onlyIfQueued bool) *wire.AckFrame
}

View file

@ -0,0 +1,3 @@
package ackhandler
//go:generate sh -c "../../mockgen_private.sh ackhandler mock_sent_packet_tracker_test.go github.com/lucas-clemente/quic-go/internal/ackhandler sentPacketTracker"

View file

@ -0,0 +1,217 @@
// This file was automatically generated by genny.
// Any changes will be lost if this file is regenerated.
// see https://github.com/cheekybits/genny
package ackhandler
// Linked list implementation from the Go standard library.
// PacketElement is an element of a linked list.
type PacketElement struct {
// Next and previous pointers in the doubly-linked list of elements.
// To simplify the implementation, internally a list l is implemented
// as a ring, such that &l.root is both the next element of the last
// list element (l.Back()) and the previous element of the first list
// element (l.Front()).
next, prev *PacketElement
// The list to which this element belongs.
list *PacketList
// The value stored with this element.
Value Packet
}
// Next returns the next list element or nil.
func (e *PacketElement) Next() *PacketElement {
if p := e.next; e.list != nil && p != &e.list.root {
return p
}
return nil
}
// Prev returns the previous list element or nil.
func (e *PacketElement) Prev() *PacketElement {
if p := e.prev; e.list != nil && p != &e.list.root {
return p
}
return nil
}
// PacketList is a linked list of Packets.
type PacketList struct {
root PacketElement // sentinel list element, only &root, root.prev, and root.next are used
len int // current list length excluding (this) sentinel element
}
// Init initializes or clears list l.
func (l *PacketList) Init() *PacketList {
l.root.next = &l.root
l.root.prev = &l.root
l.len = 0
return l
}
// NewPacketList returns an initialized list.
func NewPacketList() *PacketList { return new(PacketList).Init() }
// Len returns the number of elements of list l.
// The complexity is O(1).
func (l *PacketList) Len() int { return l.len }
// Front returns the first element of list l or nil if the list is empty.
func (l *PacketList) Front() *PacketElement {
if l.len == 0 {
return nil
}
return l.root.next
}
// Back returns the last element of list l or nil if the list is empty.
func (l *PacketList) Back() *PacketElement {
if l.len == 0 {
return nil
}
return l.root.prev
}
// lazyInit lazily initializes a zero List value.
func (l *PacketList) lazyInit() {
if l.root.next == nil {
l.Init()
}
}
// insert inserts e after at, increments l.len, and returns e.
func (l *PacketList) insert(e, at *PacketElement) *PacketElement {
n := at.next
at.next = e
e.prev = at
e.next = n
n.prev = e
e.list = l
l.len++
return e
}
// insertValue is a convenience wrapper for insert(&Element{Value: v}, at).
func (l *PacketList) insertValue(v Packet, at *PacketElement) *PacketElement {
return l.insert(&PacketElement{Value: v}, at)
}
// remove removes e from its list, decrements l.len, and returns e.
func (l *PacketList) remove(e *PacketElement) *PacketElement {
e.prev.next = e.next
e.next.prev = e.prev
e.next = nil // avoid memory leaks
e.prev = nil // avoid memory leaks
e.list = nil
l.len--
return e
}
// Remove removes e from l if e is an element of list l.
// It returns the element value e.Value.
// The element must not be nil.
func (l *PacketList) Remove(e *PacketElement) Packet {
if e.list == l {
// if e.list == l, l must have been initialized when e was inserted
// in l or l == nil (e is a zero Element) and l.remove will crash
l.remove(e)
}
return e.Value
}
// PushFront inserts a new element e with value v at the front of list l and returns e.
func (l *PacketList) PushFront(v Packet) *PacketElement {
l.lazyInit()
return l.insertValue(v, &l.root)
}
// PushBack inserts a new element e with value v at the back of list l and returns e.
func (l *PacketList) PushBack(v Packet) *PacketElement {
l.lazyInit()
return l.insertValue(v, l.root.prev)
}
// InsertBefore inserts a new element e with value v immediately before mark and returns e.
// If mark is not an element of l, the list is not modified.
// The mark must not be nil.
func (l *PacketList) InsertBefore(v Packet, mark *PacketElement) *PacketElement {
if mark.list != l {
return nil
}
// see comment in List.Remove about initialization of l
return l.insertValue(v, mark.prev)
}
// InsertAfter inserts a new element e with value v immediately after mark and returns e.
// If mark is not an element of l, the list is not modified.
// The mark must not be nil.
func (l *PacketList) InsertAfter(v Packet, mark *PacketElement) *PacketElement {
if mark.list != l {
return nil
}
// see comment in List.Remove about initialization of l
return l.insertValue(v, mark)
}
// MoveToFront moves element e to the front of list l.
// If e is not an element of l, the list is not modified.
// The element must not be nil.
func (l *PacketList) MoveToFront(e *PacketElement) {
if e.list != l || l.root.next == e {
return
}
// see comment in List.Remove about initialization of l
l.insert(l.remove(e), &l.root)
}
// MoveToBack moves element e to the back of list l.
// If e is not an element of l, the list is not modified.
// The element must not be nil.
func (l *PacketList) MoveToBack(e *PacketElement) {
if e.list != l || l.root.prev == e {
return
}
// see comment in List.Remove about initialization of l
l.insert(l.remove(e), l.root.prev)
}
// MoveBefore moves element e to its new position before mark.
// If e or mark is not an element of l, or e == mark, the list is not modified.
// The element and mark must not be nil.
func (l *PacketList) MoveBefore(e, mark *PacketElement) {
if e.list != l || e == mark || mark.list != l {
return
}
l.insert(l.remove(e), mark.prev)
}
// MoveAfter moves element e to its new position after mark.
// If e or mark is not an element of l, or e == mark, the list is not modified.
// The element and mark must not be nil.
func (l *PacketList) MoveAfter(e, mark *PacketElement) {
if e.list != l || e == mark || mark.list != l {
return
}
l.insert(l.remove(e), mark)
}
// PushBackList inserts a copy of an other list at the back of list l.
// The lists l and other may be the same. They must not be nil.
func (l *PacketList) PushBackList(other *PacketList) {
l.lazyInit()
for i, e := other.Len(), other.Front(); i > 0; i, e = i-1, e.Next() {
l.insertValue(e.Value, l.root.prev)
}
}
// PushFrontList inserts a copy of an other list at the front of list l.
// The lists l and other may be the same. They must not be nil.
func (l *PacketList) PushFrontList(other *PacketList) {
l.lazyInit()
for i, e := other.Len(), other.Back(); i > 0; i, e = i-1, e.Prev() {
l.insertValue(e.Value, &l.root)
}
}

View file

@ -0,0 +1,76 @@
package ackhandler
import (
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/utils"
)
type packetNumberGenerator interface {
Peek() protocol.PacketNumber
Pop() protocol.PacketNumber
}
type sequentialPacketNumberGenerator struct {
next protocol.PacketNumber
}
var _ packetNumberGenerator = &sequentialPacketNumberGenerator{}
func newSequentialPacketNumberGenerator(initial protocol.PacketNumber) packetNumberGenerator {
return &sequentialPacketNumberGenerator{next: initial}
}
func (p *sequentialPacketNumberGenerator) Peek() protocol.PacketNumber {
return p.next
}
func (p *sequentialPacketNumberGenerator) Pop() protocol.PacketNumber {
next := p.next
p.next++
return next
}
// The skippingPacketNumberGenerator generates the packet number for the next packet
// it randomly skips a packet number every averagePeriod packets (on average).
// It is guaranteed to never skip two consecutive packet numbers.
type skippingPacketNumberGenerator struct {
period protocol.PacketNumber
maxPeriod protocol.PacketNumber
next protocol.PacketNumber
nextToSkip protocol.PacketNumber
rng utils.Rand
}
var _ packetNumberGenerator = &skippingPacketNumberGenerator{}
func newSkippingPacketNumberGenerator(initial, initialPeriod, maxPeriod protocol.PacketNumber) packetNumberGenerator {
g := &skippingPacketNumberGenerator{
next: initial,
period: initialPeriod,
maxPeriod: maxPeriod,
}
g.generateNewSkip()
return g
}
func (p *skippingPacketNumberGenerator) Peek() protocol.PacketNumber {
return p.next
}
func (p *skippingPacketNumberGenerator) Pop() protocol.PacketNumber {
next := p.next
p.next++ // generate a new packet number for the next packet
if p.next == p.nextToSkip {
p.next++
p.generateNewSkip()
}
return next
}
func (p *skippingPacketNumberGenerator) generateNewSkip() {
// make sure that there are never two consecutive packet numbers that are skipped
p.nextToSkip = p.next + 2 + protocol.PacketNumber(p.rng.Int31n(int32(2*p.period)))
p.period = utils.MinPacketNumber(2*p.period, p.maxPeriod)
}

View file

@ -0,0 +1,136 @@
package ackhandler
import (
"fmt"
"time"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/lucas-clemente/quic-go/internal/wire"
)
type receivedPacketHandler struct {
sentPackets sentPacketTracker
initialPackets *receivedPacketTracker
handshakePackets *receivedPacketTracker
appDataPackets *receivedPacketTracker
lowest1RTTPacket protocol.PacketNumber
}
var _ ReceivedPacketHandler = &receivedPacketHandler{}
func newReceivedPacketHandler(
sentPackets sentPacketTracker,
rttStats *utils.RTTStats,
logger utils.Logger,
version protocol.VersionNumber,
) ReceivedPacketHandler {
return &receivedPacketHandler{
sentPackets: sentPackets,
initialPackets: newReceivedPacketTracker(rttStats, logger, version),
handshakePackets: newReceivedPacketTracker(rttStats, logger, version),
appDataPackets: newReceivedPacketTracker(rttStats, logger, version),
lowest1RTTPacket: protocol.InvalidPacketNumber,
}
}
func (h *receivedPacketHandler) ReceivedPacket(
pn protocol.PacketNumber,
ecn protocol.ECN,
encLevel protocol.EncryptionLevel,
rcvTime time.Time,
shouldInstigateAck bool,
) error {
h.sentPackets.ReceivedPacket(encLevel)
switch encLevel {
case protocol.EncryptionInitial:
h.initialPackets.ReceivedPacket(pn, ecn, rcvTime, shouldInstigateAck)
case protocol.EncryptionHandshake:
h.handshakePackets.ReceivedPacket(pn, ecn, rcvTime, shouldInstigateAck)
case protocol.Encryption0RTT:
if h.lowest1RTTPacket != protocol.InvalidPacketNumber && pn > h.lowest1RTTPacket {
return fmt.Errorf("received packet number %d on a 0-RTT packet after receiving %d on a 1-RTT packet", pn, h.lowest1RTTPacket)
}
h.appDataPackets.ReceivedPacket(pn, ecn, rcvTime, shouldInstigateAck)
case protocol.Encryption1RTT:
if h.lowest1RTTPacket == protocol.InvalidPacketNumber || pn < h.lowest1RTTPacket {
h.lowest1RTTPacket = pn
}
h.appDataPackets.IgnoreBelow(h.sentPackets.GetLowestPacketNotConfirmedAcked())
h.appDataPackets.ReceivedPacket(pn, ecn, rcvTime, shouldInstigateAck)
default:
panic(fmt.Sprintf("received packet with unknown encryption level: %s", encLevel))
}
return nil
}
func (h *receivedPacketHandler) DropPackets(encLevel protocol.EncryptionLevel) {
//nolint:exhaustive // 1-RTT packet number space is never dropped.
switch encLevel {
case protocol.EncryptionInitial:
h.initialPackets = nil
case protocol.EncryptionHandshake:
h.handshakePackets = nil
case protocol.Encryption0RTT:
// Nothing to do here.
// If we are rejecting 0-RTT, no 0-RTT packets will have been decrypted.
default:
panic(fmt.Sprintf("Cannot drop keys for encryption level %s", encLevel))
}
}
func (h *receivedPacketHandler) GetAlarmTimeout() time.Time {
var initialAlarm, handshakeAlarm time.Time
if h.initialPackets != nil {
initialAlarm = h.initialPackets.GetAlarmTimeout()
}
if h.handshakePackets != nil {
handshakeAlarm = h.handshakePackets.GetAlarmTimeout()
}
oneRTTAlarm := h.appDataPackets.GetAlarmTimeout()
return utils.MinNonZeroTime(utils.MinNonZeroTime(initialAlarm, handshakeAlarm), oneRTTAlarm)
}
func (h *receivedPacketHandler) GetAckFrame(encLevel protocol.EncryptionLevel, onlyIfQueued bool) *wire.AckFrame {
var ack *wire.AckFrame
//nolint:exhaustive // 0-RTT packets can't contain ACK frames.
switch encLevel {
case protocol.EncryptionInitial:
if h.initialPackets != nil {
ack = h.initialPackets.GetAckFrame(onlyIfQueued)
}
case protocol.EncryptionHandshake:
if h.handshakePackets != nil {
ack = h.handshakePackets.GetAckFrame(onlyIfQueued)
}
case protocol.Encryption1RTT:
// 0-RTT packets can't contain ACK frames
return h.appDataPackets.GetAckFrame(onlyIfQueued)
default:
return nil
}
// For Initial and Handshake ACKs, the delay time is ignored by the receiver.
// Set it to 0 in order to save bytes.
if ack != nil {
ack.DelayTime = 0
}
return ack
}
func (h *receivedPacketHandler) IsPotentiallyDuplicate(pn protocol.PacketNumber, encLevel protocol.EncryptionLevel) bool {
switch encLevel {
case protocol.EncryptionInitial:
if h.initialPackets != nil {
return h.initialPackets.IsPotentiallyDuplicate(pn)
}
case protocol.EncryptionHandshake:
if h.handshakePackets != nil {
return h.handshakePackets.IsPotentiallyDuplicate(pn)
}
case protocol.Encryption0RTT, protocol.Encryption1RTT:
return h.appDataPackets.IsPotentiallyDuplicate(pn)
}
panic("unexpected encryption level")
}

View file

@ -0,0 +1,142 @@
package ackhandler
import (
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/lucas-clemente/quic-go/internal/wire"
)
// The receivedPacketHistory stores if a packet number has already been received.
// It generates ACK ranges which can be used to assemble an ACK frame.
// It does not store packet contents.
type receivedPacketHistory struct {
ranges *utils.PacketIntervalList
deletedBelow protocol.PacketNumber
}
func newReceivedPacketHistory() *receivedPacketHistory {
return &receivedPacketHistory{
ranges: utils.NewPacketIntervalList(),
}
}
// ReceivedPacket registers a packet with PacketNumber p and updates the ranges
func (h *receivedPacketHistory) ReceivedPacket(p protocol.PacketNumber) bool /* is a new packet (and not a duplicate / delayed packet) */ {
// ignore delayed packets, if we already deleted the range
if p < h.deletedBelow {
return false
}
isNew := h.addToRanges(p)
h.maybeDeleteOldRanges()
return isNew
}
func (h *receivedPacketHistory) addToRanges(p protocol.PacketNumber) bool /* is a new packet (and not a duplicate / delayed packet) */ {
if h.ranges.Len() == 0 {
h.ranges.PushBack(utils.PacketInterval{Start: p, End: p})
return true
}
for el := h.ranges.Back(); el != nil; el = el.Prev() {
// p already included in an existing range. Nothing to do here
if p >= el.Value.Start && p <= el.Value.End {
return false
}
if el.Value.End == p-1 { // extend a range at the end
el.Value.End = p
return true
}
if el.Value.Start == p+1 { // extend a range at the beginning
el.Value.Start = p
prev := el.Prev()
if prev != nil && prev.Value.End+1 == el.Value.Start { // merge two ranges
prev.Value.End = el.Value.End
h.ranges.Remove(el)
}
return true
}
// create a new range at the end
if p > el.Value.End {
h.ranges.InsertAfter(utils.PacketInterval{Start: p, End: p}, el)
return true
}
}
// create a new range at the beginning
h.ranges.InsertBefore(utils.PacketInterval{Start: p, End: p}, h.ranges.Front())
return true
}
// Delete old ranges, if we're tracking more than 500 of them.
// This is a DoS defense against a peer that sends us too many gaps.
func (h *receivedPacketHistory) maybeDeleteOldRanges() {
for h.ranges.Len() > protocol.MaxNumAckRanges {
h.ranges.Remove(h.ranges.Front())
}
}
// DeleteBelow deletes all entries below (but not including) p
func (h *receivedPacketHistory) DeleteBelow(p protocol.PacketNumber) {
if p < h.deletedBelow {
return
}
h.deletedBelow = p
nextEl := h.ranges.Front()
for el := h.ranges.Front(); nextEl != nil; el = nextEl {
nextEl = el.Next()
if el.Value.End < p { // delete a whole range
h.ranges.Remove(el)
} else if p > el.Value.Start && p <= el.Value.End {
el.Value.Start = p
return
} else { // no ranges affected. Nothing to do
return
}
}
}
// GetAckRanges gets a slice of all AckRanges that can be used in an AckFrame
func (h *receivedPacketHistory) GetAckRanges() []wire.AckRange {
if h.ranges.Len() == 0 {
return nil
}
ackRanges := make([]wire.AckRange, h.ranges.Len())
i := 0
for el := h.ranges.Back(); el != nil; el = el.Prev() {
ackRanges[i] = wire.AckRange{Smallest: el.Value.Start, Largest: el.Value.End}
i++
}
return ackRanges
}
func (h *receivedPacketHistory) GetHighestAckRange() wire.AckRange {
ackRange := wire.AckRange{}
if h.ranges.Len() > 0 {
r := h.ranges.Back().Value
ackRange.Smallest = r.Start
ackRange.Largest = r.End
}
return ackRange
}
func (h *receivedPacketHistory) IsPotentiallyDuplicate(p protocol.PacketNumber) bool {
if p < h.deletedBelow {
return true
}
for el := h.ranges.Back(); el != nil; el = el.Prev() {
if p > el.Value.End {
return false
}
if p <= el.Value.End && p >= el.Value.Start {
return true
}
}
return false
}

View file

@ -0,0 +1,196 @@
package ackhandler
import (
"time"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/lucas-clemente/quic-go/internal/wire"
)
// number of ack-eliciting packets received before sending an ack.
const packetsBeforeAck = 2
type receivedPacketTracker struct {
largestObserved protocol.PacketNumber
ignoreBelow protocol.PacketNumber
largestObservedReceivedTime time.Time
ect0, ect1, ecnce uint64
packetHistory *receivedPacketHistory
maxAckDelay time.Duration
rttStats *utils.RTTStats
hasNewAck bool // true as soon as we received an ack-eliciting new packet
ackQueued bool // true once we received more than 2 (or later in the connection 10) ack-eliciting packets
ackElicitingPacketsReceivedSinceLastAck int
ackAlarm time.Time
lastAck *wire.AckFrame
logger utils.Logger
version protocol.VersionNumber
}
func newReceivedPacketTracker(
rttStats *utils.RTTStats,
logger utils.Logger,
version protocol.VersionNumber,
) *receivedPacketTracker {
return &receivedPacketTracker{
packetHistory: newReceivedPacketHistory(),
maxAckDelay: protocol.MaxAckDelay,
rttStats: rttStats,
logger: logger,
version: version,
}
}
func (h *receivedPacketTracker) ReceivedPacket(packetNumber protocol.PacketNumber, ecn protocol.ECN, rcvTime time.Time, shouldInstigateAck bool) {
if packetNumber < h.ignoreBelow {
return
}
isMissing := h.isMissing(packetNumber)
if packetNumber >= h.largestObserved {
h.largestObserved = packetNumber
h.largestObservedReceivedTime = rcvTime
}
if isNew := h.packetHistory.ReceivedPacket(packetNumber); isNew && shouldInstigateAck {
h.hasNewAck = true
}
if shouldInstigateAck {
h.maybeQueueAck(packetNumber, rcvTime, isMissing)
}
switch ecn {
case protocol.ECNNon:
case protocol.ECT0:
h.ect0++
case protocol.ECT1:
h.ect1++
case protocol.ECNCE:
h.ecnce++
}
}
// IgnoreBelow sets a lower limit for acknowledging packets.
// Packets with packet numbers smaller than p will not be acked.
func (h *receivedPacketTracker) IgnoreBelow(p protocol.PacketNumber) {
if p <= h.ignoreBelow {
return
}
h.ignoreBelow = p
h.packetHistory.DeleteBelow(p)
if h.logger.Debug() {
h.logger.Debugf("\tIgnoring all packets below %d.", p)
}
}
// isMissing says if a packet was reported missing in the last ACK.
func (h *receivedPacketTracker) isMissing(p protocol.PacketNumber) bool {
if h.lastAck == nil || p < h.ignoreBelow {
return false
}
return p < h.lastAck.LargestAcked() && !h.lastAck.AcksPacket(p)
}
func (h *receivedPacketTracker) hasNewMissingPackets() bool {
if h.lastAck == nil {
return false
}
highestRange := h.packetHistory.GetHighestAckRange()
return highestRange.Smallest > h.lastAck.LargestAcked()+1 && highestRange.Len() == 1
}
// maybeQueueAck queues an ACK, if necessary.
func (h *receivedPacketTracker) maybeQueueAck(pn protocol.PacketNumber, rcvTime time.Time, wasMissing bool) {
// always acknowledge the first packet
if h.lastAck == nil {
if !h.ackQueued {
h.logger.Debugf("\tQueueing ACK because the first packet should be acknowledged.")
}
h.ackQueued = true
return
}
if h.ackQueued {
return
}
h.ackElicitingPacketsReceivedSinceLastAck++
// Send an ACK if this packet was reported missing in an ACK sent before.
// Ack decimation with reordering relies on the timer to send an ACK, but if
// missing packets we reported in the previous ack, send an ACK immediately.
if wasMissing {
if h.logger.Debug() {
h.logger.Debugf("\tQueueing ACK because packet %d was missing before.", pn)
}
h.ackQueued = true
}
// send an ACK every 2 ack-eliciting packets
if h.ackElicitingPacketsReceivedSinceLastAck >= packetsBeforeAck {
if h.logger.Debug() {
h.logger.Debugf("\tQueueing ACK because packet %d packets were received after the last ACK (using initial threshold: %d).", h.ackElicitingPacketsReceivedSinceLastAck, packetsBeforeAck)
}
h.ackQueued = true
} else if h.ackAlarm.IsZero() {
if h.logger.Debug() {
h.logger.Debugf("\tSetting ACK timer to max ack delay: %s", h.maxAckDelay)
}
h.ackAlarm = rcvTime.Add(h.maxAckDelay)
}
// Queue an ACK if there are new missing packets to report.
if h.hasNewMissingPackets() {
h.logger.Debugf("\tQueuing ACK because there's a new missing packet to report.")
h.ackQueued = true
}
if h.ackQueued {
// cancel the ack alarm
h.ackAlarm = time.Time{}
}
}
func (h *receivedPacketTracker) GetAckFrame(onlyIfQueued bool) *wire.AckFrame {
if !h.hasNewAck {
return nil
}
now := time.Now()
if onlyIfQueued {
if !h.ackQueued && (h.ackAlarm.IsZero() || h.ackAlarm.After(now)) {
return nil
}
if h.logger.Debug() && !h.ackQueued && !h.ackAlarm.IsZero() {
h.logger.Debugf("Sending ACK because the ACK timer expired.")
}
}
ack := &wire.AckFrame{
AckRanges: h.packetHistory.GetAckRanges(),
// Make sure that the DelayTime is always positive.
// This is not guaranteed on systems that don't have a monotonic clock.
DelayTime: utils.MaxDuration(0, now.Sub(h.largestObservedReceivedTime)),
ECT0: h.ect0,
ECT1: h.ect1,
ECNCE: h.ecnce,
}
h.lastAck = ack
h.ackAlarm = time.Time{}
h.ackQueued = false
h.hasNewAck = false
h.ackElicitingPacketsReceivedSinceLastAck = 0
return ack
}
func (h *receivedPacketTracker) GetAlarmTimeout() time.Time { return h.ackAlarm }
func (h *receivedPacketTracker) IsPotentiallyDuplicate(pn protocol.PacketNumber) bool {
return h.packetHistory.IsPotentiallyDuplicate(pn)
}

View file

@ -0,0 +1,40 @@
package ackhandler
import "fmt"
// The SendMode says what kind of packets can be sent.
type SendMode uint8
const (
// SendNone means that no packets should be sent
SendNone SendMode = iota
// SendAck means an ACK-only packet should be sent
SendAck
// SendPTOInitial means that an Initial probe packet should be sent
SendPTOInitial
// SendPTOHandshake means that a Handshake probe packet should be sent
SendPTOHandshake
// SendPTOAppData means that an Application data probe packet should be sent
SendPTOAppData
// SendAny means that any packet should be sent
SendAny
)
func (s SendMode) String() string {
switch s {
case SendNone:
return "none"
case SendAck:
return "ack"
case SendPTOInitial:
return "pto (Initial)"
case SendPTOHandshake:
return "pto (Handshake)"
case SendPTOAppData:
return "pto (Application Data)"
case SendAny:
return "any"
default:
return fmt.Sprintf("invalid send mode: %d", s)
}
}

View file

@ -0,0 +1,838 @@
package ackhandler
import (
"errors"
"fmt"
"time"
"github.com/lucas-clemente/quic-go/internal/congestion"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/qerr"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/lucas-clemente/quic-go/internal/wire"
"github.com/lucas-clemente/quic-go/logging"
)
const (
// Maximum reordering in time space before time based loss detection considers a packet lost.
// Specified as an RTT multiplier.
timeThreshold = 9.0 / 8
// Maximum reordering in packets before packet threshold loss detection considers a packet lost.
packetThreshold = 3
// Before validating the client's address, the server won't send more than 3x bytes than it received.
amplificationFactor = 3
// We use Retry packets to derive an RTT estimate. Make sure we don't set the RTT to a super low value yet.
minRTTAfterRetry = 5 * time.Millisecond
)
type packetNumberSpace struct {
history *sentPacketHistory
pns packetNumberGenerator
lossTime time.Time
lastAckElicitingPacketTime time.Time
largestAcked protocol.PacketNumber
largestSent protocol.PacketNumber
}
func newPacketNumberSpace(initialPN protocol.PacketNumber, skipPNs bool, rttStats *utils.RTTStats) *packetNumberSpace {
var pns packetNumberGenerator
if skipPNs {
pns = newSkippingPacketNumberGenerator(initialPN, protocol.SkipPacketInitialPeriod, protocol.SkipPacketMaxPeriod)
} else {
pns = newSequentialPacketNumberGenerator(initialPN)
}
return &packetNumberSpace{
history: newSentPacketHistory(rttStats),
pns: pns,
largestSent: protocol.InvalidPacketNumber,
largestAcked: protocol.InvalidPacketNumber,
}
}
type sentPacketHandler struct {
initialPackets *packetNumberSpace
handshakePackets *packetNumberSpace
appDataPackets *packetNumberSpace
// Do we know that the peer completed address validation yet?
// Always true for the server.
peerCompletedAddressValidation bool
bytesReceived protocol.ByteCount
bytesSent protocol.ByteCount
// Have we validated the peer's address yet?
// Always true for the client.
peerAddressValidated bool
handshakeConfirmed bool
// lowestNotConfirmedAcked is the lowest packet number that we sent an ACK for, but haven't received confirmation, that this ACK actually arrived
// example: we send an ACK for packets 90-100 with packet number 20
// once we receive an ACK from the peer for packet 20, the lowestNotConfirmedAcked is 101
// Only applies to the application-data packet number space.
lowestNotConfirmedAcked protocol.PacketNumber
ackedPackets []*Packet // to avoid allocations in detectAndRemoveAckedPackets
bytesInFlight protocol.ByteCount
congestion congestion.SendAlgorithmWithDebugInfos
rttStats *utils.RTTStats
// The number of times a PTO has been sent without receiving an ack.
ptoCount uint32
ptoMode SendMode
// The number of PTO probe packets that should be sent.
// Only applies to the application-data packet number space.
numProbesToSend int
// The alarm timeout
alarm time.Time
perspective protocol.Perspective
tracer logging.ConnectionTracer
logger utils.Logger
}
var (
_ SentPacketHandler = &sentPacketHandler{}
_ sentPacketTracker = &sentPacketHandler{}
)
func newSentPacketHandler(
initialPN protocol.PacketNumber,
initialMaxDatagramSize protocol.ByteCount,
rttStats *utils.RTTStats,
pers protocol.Perspective,
tracer logging.ConnectionTracer,
logger utils.Logger,
) *sentPacketHandler {
congestion := congestion.NewCubicSender(
congestion.DefaultClock{},
rttStats,
initialMaxDatagramSize,
true, // use Reno
tracer,
)
return &sentPacketHandler{
peerCompletedAddressValidation: pers == protocol.PerspectiveServer,
peerAddressValidated: pers == protocol.PerspectiveClient,
initialPackets: newPacketNumberSpace(initialPN, false, rttStats),
handshakePackets: newPacketNumberSpace(0, false, rttStats),
appDataPackets: newPacketNumberSpace(0, true, rttStats),
rttStats: rttStats,
congestion: congestion,
perspective: pers,
tracer: tracer,
logger: logger,
}
}
func (h *sentPacketHandler) DropPackets(encLevel protocol.EncryptionLevel) {
if h.perspective == protocol.PerspectiveClient && encLevel == protocol.EncryptionInitial {
// This function is called when the crypto setup seals a Handshake packet.
// If this Handshake packet is coalesced behind an Initial packet, we would drop the Initial packet number space
// before SentPacket() was called for that Initial packet.
return
}
h.dropPackets(encLevel)
}
func (h *sentPacketHandler) removeFromBytesInFlight(p *Packet) {
if p.includedInBytesInFlight {
if p.Length > h.bytesInFlight {
panic("negative bytes_in_flight")
}
h.bytesInFlight -= p.Length
p.includedInBytesInFlight = false
}
}
func (h *sentPacketHandler) dropPackets(encLevel protocol.EncryptionLevel) {
// The server won't await address validation after the handshake is confirmed.
// This applies even if we didn't receive an ACK for a Handshake packet.
if h.perspective == protocol.PerspectiveClient && encLevel == protocol.EncryptionHandshake {
h.peerCompletedAddressValidation = true
}
// remove outstanding packets from bytes_in_flight
if encLevel == protocol.EncryptionInitial || encLevel == protocol.EncryptionHandshake {
pnSpace := h.getPacketNumberSpace(encLevel)
pnSpace.history.Iterate(func(p *Packet) (bool, error) {
h.removeFromBytesInFlight(p)
return true, nil
})
}
// drop the packet history
//nolint:exhaustive // Not every packet number space can be dropped.
switch encLevel {
case protocol.EncryptionInitial:
h.initialPackets = nil
case protocol.EncryptionHandshake:
h.handshakePackets = nil
case protocol.Encryption0RTT:
// This function is only called when 0-RTT is rejected,
// and not when the client drops 0-RTT keys when the handshake completes.
// When 0-RTT is rejected, all application data sent so far becomes invalid.
// Delete the packets from the history and remove them from bytes_in_flight.
h.appDataPackets.history.Iterate(func(p *Packet) (bool, error) {
if p.EncryptionLevel != protocol.Encryption0RTT {
return false, nil
}
h.removeFromBytesInFlight(p)
h.appDataPackets.history.Remove(p.PacketNumber)
return true, nil
})
default:
panic(fmt.Sprintf("Cannot drop keys for encryption level %s", encLevel))
}
if h.tracer != nil && h.ptoCount != 0 {
h.tracer.UpdatedPTOCount(0)
}
h.ptoCount = 0
h.numProbesToSend = 0
h.ptoMode = SendNone
h.setLossDetectionTimer()
}
func (h *sentPacketHandler) ReceivedBytes(n protocol.ByteCount) {
wasAmplificationLimit := h.isAmplificationLimited()
h.bytesReceived += n
if wasAmplificationLimit && !h.isAmplificationLimited() {
h.setLossDetectionTimer()
}
}
func (h *sentPacketHandler) ReceivedPacket(l protocol.EncryptionLevel) {
if h.perspective == protocol.PerspectiveServer && l == protocol.EncryptionHandshake && !h.peerAddressValidated {
h.peerAddressValidated = true
h.setLossDetectionTimer()
}
}
func (h *sentPacketHandler) packetsInFlight() int {
packetsInFlight := h.appDataPackets.history.Len()
if h.handshakePackets != nil {
packetsInFlight += h.handshakePackets.history.Len()
}
if h.initialPackets != nil {
packetsInFlight += h.initialPackets.history.Len()
}
return packetsInFlight
}
func (h *sentPacketHandler) SentPacket(packet *Packet) {
h.bytesSent += packet.Length
// For the client, drop the Initial packet number space when the first Handshake packet is sent.
if h.perspective == protocol.PerspectiveClient && packet.EncryptionLevel == protocol.EncryptionHandshake && h.initialPackets != nil {
h.dropPackets(protocol.EncryptionInitial)
}
isAckEliciting := h.sentPacketImpl(packet)
h.getPacketNumberSpace(packet.EncryptionLevel).history.SentPacket(packet, isAckEliciting)
if h.tracer != nil && isAckEliciting {
h.tracer.UpdatedMetrics(h.rttStats, h.congestion.GetCongestionWindow(), h.bytesInFlight, h.packetsInFlight())
}
if isAckEliciting || !h.peerCompletedAddressValidation {
h.setLossDetectionTimer()
}
}
func (h *sentPacketHandler) getPacketNumberSpace(encLevel protocol.EncryptionLevel) *packetNumberSpace {
switch encLevel {
case protocol.EncryptionInitial:
return h.initialPackets
case protocol.EncryptionHandshake:
return h.handshakePackets
case protocol.Encryption0RTT, protocol.Encryption1RTT:
return h.appDataPackets
default:
panic("invalid packet number space")
}
}
func (h *sentPacketHandler) sentPacketImpl(packet *Packet) bool /* is ack-eliciting */ {
pnSpace := h.getPacketNumberSpace(packet.EncryptionLevel)
if h.logger.Debug() && pnSpace.history.HasOutstandingPackets() {
for p := utils.MaxPacketNumber(0, pnSpace.largestSent+1); p < packet.PacketNumber; p++ {
h.logger.Debugf("Skipping packet number %d", p)
}
}
pnSpace.largestSent = packet.PacketNumber
isAckEliciting := len(packet.Frames) > 0
if isAckEliciting {
pnSpace.lastAckElicitingPacketTime = packet.SendTime
packet.includedInBytesInFlight = true
h.bytesInFlight += packet.Length
if h.numProbesToSend > 0 {
h.numProbesToSend--
}
}
h.congestion.OnPacketSent(packet.SendTime, h.bytesInFlight, packet.PacketNumber, packet.Length, isAckEliciting)
return isAckEliciting
}
func (h *sentPacketHandler) ReceivedAck(ack *wire.AckFrame, encLevel protocol.EncryptionLevel, rcvTime time.Time) (bool /* contained 1-RTT packet */, error) {
pnSpace := h.getPacketNumberSpace(encLevel)
largestAcked := ack.LargestAcked()
if largestAcked > pnSpace.largestSent {
return false, &qerr.TransportError{
ErrorCode: qerr.ProtocolViolation,
ErrorMessage: "received ACK for an unsent packet",
}
}
pnSpace.largestAcked = utils.MaxPacketNumber(pnSpace.largestAcked, largestAcked)
// Servers complete address validation when a protected packet is received.
if h.perspective == protocol.PerspectiveClient && !h.peerCompletedAddressValidation &&
(encLevel == protocol.EncryptionHandshake || encLevel == protocol.Encryption1RTT) {
h.peerCompletedAddressValidation = true
h.logger.Debugf("Peer doesn't await address validation any longer.")
// Make sure that the timer is reset, even if this ACK doesn't acknowledge any (ack-eliciting) packets.
h.setLossDetectionTimer()
}
priorInFlight := h.bytesInFlight
ackedPackets, err := h.detectAndRemoveAckedPackets(ack, encLevel)
if err != nil || len(ackedPackets) == 0 {
return false, err
}
// update the RTT, if the largest acked is newly acknowledged
if len(ackedPackets) > 0 {
if p := ackedPackets[len(ackedPackets)-1]; p.PacketNumber == ack.LargestAcked() {
// don't use the ack delay for Initial and Handshake packets
var ackDelay time.Duration
if encLevel == protocol.Encryption1RTT {
ackDelay = utils.MinDuration(ack.DelayTime, h.rttStats.MaxAckDelay())
}
h.rttStats.UpdateRTT(rcvTime.Sub(p.SendTime), ackDelay, rcvTime)
if h.logger.Debug() {
h.logger.Debugf("\tupdated RTT: %s (σ: %s)", h.rttStats.SmoothedRTT(), h.rttStats.MeanDeviation())
}
h.congestion.MaybeExitSlowStart()
}
}
if err := h.detectLostPackets(rcvTime, encLevel); err != nil {
return false, err
}
var acked1RTTPacket bool
for _, p := range ackedPackets {
if p.includedInBytesInFlight && !p.declaredLost {
h.congestion.OnPacketAcked(p.PacketNumber, p.Length, priorInFlight, rcvTime)
}
if p.EncryptionLevel == protocol.Encryption1RTT {
acked1RTTPacket = true
}
h.removeFromBytesInFlight(p)
}
// Reset the pto_count unless the client is unsure if the server has validated the client's address.
if h.peerCompletedAddressValidation {
if h.tracer != nil && h.ptoCount != 0 {
h.tracer.UpdatedPTOCount(0)
}
h.ptoCount = 0
}
h.numProbesToSend = 0
if h.tracer != nil {
h.tracer.UpdatedMetrics(h.rttStats, h.congestion.GetCongestionWindow(), h.bytesInFlight, h.packetsInFlight())
}
pnSpace.history.DeleteOldPackets(rcvTime)
h.setLossDetectionTimer()
return acked1RTTPacket, nil
}
func (h *sentPacketHandler) GetLowestPacketNotConfirmedAcked() protocol.PacketNumber {
return h.lowestNotConfirmedAcked
}
// Packets are returned in ascending packet number order.
func (h *sentPacketHandler) detectAndRemoveAckedPackets(ack *wire.AckFrame, encLevel protocol.EncryptionLevel) ([]*Packet, error) {
pnSpace := h.getPacketNumberSpace(encLevel)
h.ackedPackets = h.ackedPackets[:0]
ackRangeIndex := 0
lowestAcked := ack.LowestAcked()
largestAcked := ack.LargestAcked()
err := pnSpace.history.Iterate(func(p *Packet) (bool, error) {
// Ignore packets below the lowest acked
if p.PacketNumber < lowestAcked {
return true, nil
}
// Break after largest acked is reached
if p.PacketNumber > largestAcked {
return false, nil
}
if ack.HasMissingRanges() {
ackRange := ack.AckRanges[len(ack.AckRanges)-1-ackRangeIndex]
for p.PacketNumber > ackRange.Largest && ackRangeIndex < len(ack.AckRanges)-1 {
ackRangeIndex++
ackRange = ack.AckRanges[len(ack.AckRanges)-1-ackRangeIndex]
}
if p.PacketNumber < ackRange.Smallest { // packet not contained in ACK range
return true, nil
}
if p.PacketNumber > ackRange.Largest {
return false, fmt.Errorf("BUG: ackhandler would have acked wrong packet %d, while evaluating range %d -> %d", p.PacketNumber, ackRange.Smallest, ackRange.Largest)
}
}
if p.skippedPacket {
return false, &qerr.TransportError{
ErrorCode: qerr.ProtocolViolation,
ErrorMessage: fmt.Sprintf("received an ACK for skipped packet number: %d (%s)", p.PacketNumber, encLevel),
}
}
h.ackedPackets = append(h.ackedPackets, p)
return true, nil
})
if h.logger.Debug() && len(h.ackedPackets) > 0 {
pns := make([]protocol.PacketNumber, len(h.ackedPackets))
for i, p := range h.ackedPackets {
pns[i] = p.PacketNumber
}
h.logger.Debugf("\tnewly acked packets (%d): %d", len(pns), pns)
}
for _, p := range h.ackedPackets {
if p.LargestAcked != protocol.InvalidPacketNumber && encLevel == protocol.Encryption1RTT {
h.lowestNotConfirmedAcked = utils.MaxPacketNumber(h.lowestNotConfirmedAcked, p.LargestAcked+1)
}
for _, f := range p.Frames {
if f.OnAcked != nil {
f.OnAcked(f.Frame)
}
}
if err := pnSpace.history.Remove(p.PacketNumber); err != nil {
return nil, err
}
if h.tracer != nil {
h.tracer.AcknowledgedPacket(encLevel, p.PacketNumber)
}
}
return h.ackedPackets, err
}
func (h *sentPacketHandler) getLossTimeAndSpace() (time.Time, protocol.EncryptionLevel) {
var encLevel protocol.EncryptionLevel
var lossTime time.Time
if h.initialPackets != nil {
lossTime = h.initialPackets.lossTime
encLevel = protocol.EncryptionInitial
}
if h.handshakePackets != nil && (lossTime.IsZero() || (!h.handshakePackets.lossTime.IsZero() && h.handshakePackets.lossTime.Before(lossTime))) {
lossTime = h.handshakePackets.lossTime
encLevel = protocol.EncryptionHandshake
}
if lossTime.IsZero() || (!h.appDataPackets.lossTime.IsZero() && h.appDataPackets.lossTime.Before(lossTime)) {
lossTime = h.appDataPackets.lossTime
encLevel = protocol.Encryption1RTT
}
return lossTime, encLevel
}
// same logic as getLossTimeAndSpace, but for lastAckElicitingPacketTime instead of lossTime
func (h *sentPacketHandler) getPTOTimeAndSpace() (pto time.Time, encLevel protocol.EncryptionLevel, ok bool) {
// We only send application data probe packets once the handshake is confirmed,
// because before that, we don't have the keys to decrypt ACKs sent in 1-RTT packets.
if !h.handshakeConfirmed && !h.hasOutstandingCryptoPackets() {
if h.peerCompletedAddressValidation {
return
}
t := time.Now().Add(h.rttStats.PTO(false) << h.ptoCount)
if h.initialPackets != nil {
return t, protocol.EncryptionInitial, true
}
return t, protocol.EncryptionHandshake, true
}
if h.initialPackets != nil {
encLevel = protocol.EncryptionInitial
if t := h.initialPackets.lastAckElicitingPacketTime; !t.IsZero() {
pto = t.Add(h.rttStats.PTO(false) << h.ptoCount)
}
}
if h.handshakePackets != nil && !h.handshakePackets.lastAckElicitingPacketTime.IsZero() {
t := h.handshakePackets.lastAckElicitingPacketTime.Add(h.rttStats.PTO(false) << h.ptoCount)
if pto.IsZero() || (!t.IsZero() && t.Before(pto)) {
pto = t
encLevel = protocol.EncryptionHandshake
}
}
if h.handshakeConfirmed && !h.appDataPackets.lastAckElicitingPacketTime.IsZero() {
t := h.appDataPackets.lastAckElicitingPacketTime.Add(h.rttStats.PTO(true) << h.ptoCount)
if pto.IsZero() || (!t.IsZero() && t.Before(pto)) {
pto = t
encLevel = protocol.Encryption1RTT
}
}
return pto, encLevel, true
}
func (h *sentPacketHandler) hasOutstandingCryptoPackets() bool {
if h.initialPackets != nil && h.initialPackets.history.HasOutstandingPackets() {
return true
}
if h.handshakePackets != nil && h.handshakePackets.history.HasOutstandingPackets() {
return true
}
return false
}
func (h *sentPacketHandler) hasOutstandingPackets() bool {
return h.appDataPackets.history.HasOutstandingPackets() || h.hasOutstandingCryptoPackets()
}
func (h *sentPacketHandler) setLossDetectionTimer() {
oldAlarm := h.alarm // only needed in case tracing is enabled
lossTime, encLevel := h.getLossTimeAndSpace()
if !lossTime.IsZero() {
// Early retransmit timer or time loss detection.
h.alarm = lossTime
if h.tracer != nil && h.alarm != oldAlarm {
h.tracer.SetLossTimer(logging.TimerTypeACK, encLevel, h.alarm)
}
return
}
// Cancel the alarm if amplification limited.
if h.isAmplificationLimited() {
h.alarm = time.Time{}
if !oldAlarm.IsZero() {
h.logger.Debugf("Canceling loss detection timer. Amplification limited.")
if h.tracer != nil {
h.tracer.LossTimerCanceled()
}
}
return
}
// Cancel the alarm if no packets are outstanding
if !h.hasOutstandingPackets() && h.peerCompletedAddressValidation {
h.alarm = time.Time{}
if !oldAlarm.IsZero() {
h.logger.Debugf("Canceling loss detection timer. No packets in flight.")
if h.tracer != nil {
h.tracer.LossTimerCanceled()
}
}
return
}
// PTO alarm
ptoTime, encLevel, ok := h.getPTOTimeAndSpace()
if !ok {
if !oldAlarm.IsZero() {
h.alarm = time.Time{}
h.logger.Debugf("Canceling loss detection timer. No PTO needed..")
if h.tracer != nil {
h.tracer.LossTimerCanceled()
}
}
return
}
h.alarm = ptoTime
if h.tracer != nil && h.alarm != oldAlarm {
h.tracer.SetLossTimer(logging.TimerTypePTO, encLevel, h.alarm)
}
}
func (h *sentPacketHandler) detectLostPackets(now time.Time, encLevel protocol.EncryptionLevel) error {
pnSpace := h.getPacketNumberSpace(encLevel)
pnSpace.lossTime = time.Time{}
maxRTT := float64(utils.MaxDuration(h.rttStats.LatestRTT(), h.rttStats.SmoothedRTT()))
lossDelay := time.Duration(timeThreshold * maxRTT)
// Minimum time of granularity before packets are deemed lost.
lossDelay = utils.MaxDuration(lossDelay, protocol.TimerGranularity)
// Packets sent before this time are deemed lost.
lostSendTime := now.Add(-lossDelay)
priorInFlight := h.bytesInFlight
return pnSpace.history.Iterate(func(p *Packet) (bool, error) {
if p.PacketNumber > pnSpace.largestAcked {
return false, nil
}
if p.declaredLost || p.skippedPacket {
return true, nil
}
var packetLost bool
if p.SendTime.Before(lostSendTime) {
packetLost = true
if h.logger.Debug() {
h.logger.Debugf("\tlost packet %d (time threshold)", p.PacketNumber)
}
if h.tracer != nil {
h.tracer.LostPacket(p.EncryptionLevel, p.PacketNumber, logging.PacketLossTimeThreshold)
}
} else if pnSpace.largestAcked >= p.PacketNumber+packetThreshold {
packetLost = true
if h.logger.Debug() {
h.logger.Debugf("\tlost packet %d (reordering threshold)", p.PacketNumber)
}
if h.tracer != nil {
h.tracer.LostPacket(p.EncryptionLevel, p.PacketNumber, logging.PacketLossReorderingThreshold)
}
} else if pnSpace.lossTime.IsZero() {
// Note: This conditional is only entered once per call
lossTime := p.SendTime.Add(lossDelay)
if h.logger.Debug() {
h.logger.Debugf("\tsetting loss timer for packet %d (%s) to %s (in %s)", p.PacketNumber, encLevel, lossDelay, lossTime)
}
pnSpace.lossTime = lossTime
}
if packetLost {
p.declaredLost = true
// the bytes in flight need to be reduced no matter if the frames in this packet will be retransmitted
h.removeFromBytesInFlight(p)
h.queueFramesForRetransmission(p)
if !p.IsPathMTUProbePacket {
h.congestion.OnPacketLost(p.PacketNumber, p.Length, priorInFlight)
}
}
return true, nil
})
}
func (h *sentPacketHandler) OnLossDetectionTimeout() error {
defer h.setLossDetectionTimer()
earliestLossTime, encLevel := h.getLossTimeAndSpace()
if !earliestLossTime.IsZero() {
if h.logger.Debug() {
h.logger.Debugf("Loss detection alarm fired in loss timer mode. Loss time: %s", earliestLossTime)
}
if h.tracer != nil {
h.tracer.LossTimerExpired(logging.TimerTypeACK, encLevel)
}
// Early retransmit or time loss detection
return h.detectLostPackets(time.Now(), encLevel)
}
// PTO
// When all outstanding are acknowledged, the alarm is canceled in
// setLossDetectionTimer. This doesn't reset the timer in the session though.
// When OnAlarm is called, we therefore need to make sure that there are
// actually packets outstanding.
if h.bytesInFlight == 0 && !h.peerCompletedAddressValidation {
h.ptoCount++
h.numProbesToSend++
if h.initialPackets != nil {
h.ptoMode = SendPTOInitial
} else if h.handshakePackets != nil {
h.ptoMode = SendPTOHandshake
} else {
return errors.New("sentPacketHandler BUG: PTO fired, but bytes_in_flight is 0 and Initial and Handshake already dropped")
}
return nil
}
_, encLevel, ok := h.getPTOTimeAndSpace()
if !ok {
return nil
}
if ps := h.getPacketNumberSpace(encLevel); !ps.history.HasOutstandingPackets() && !h.peerCompletedAddressValidation {
return nil
}
h.ptoCount++
if h.logger.Debug() {
h.logger.Debugf("Loss detection alarm for %s fired in PTO mode. PTO count: %d", encLevel, h.ptoCount)
}
if h.tracer != nil {
h.tracer.LossTimerExpired(logging.TimerTypePTO, encLevel)
h.tracer.UpdatedPTOCount(h.ptoCount)
}
h.numProbesToSend += 2
//nolint:exhaustive // We never arm a PTO timer for 0-RTT packets.
switch encLevel {
case protocol.EncryptionInitial:
h.ptoMode = SendPTOInitial
case protocol.EncryptionHandshake:
h.ptoMode = SendPTOHandshake
case protocol.Encryption1RTT:
// skip a packet number in order to elicit an immediate ACK
_ = h.PopPacketNumber(protocol.Encryption1RTT)
h.ptoMode = SendPTOAppData
default:
return fmt.Errorf("PTO timer in unexpected encryption level: %s", encLevel)
}
return nil
}
func (h *sentPacketHandler) GetLossDetectionTimeout() time.Time {
return h.alarm
}
func (h *sentPacketHandler) PeekPacketNumber(encLevel protocol.EncryptionLevel) (protocol.PacketNumber, protocol.PacketNumberLen) {
pnSpace := h.getPacketNumberSpace(encLevel)
var lowestUnacked protocol.PacketNumber
if p := pnSpace.history.FirstOutstanding(); p != nil {
lowestUnacked = p.PacketNumber
} else {
lowestUnacked = pnSpace.largestAcked + 1
}
pn := pnSpace.pns.Peek()
return pn, protocol.GetPacketNumberLengthForHeader(pn, lowestUnacked)
}
func (h *sentPacketHandler) PopPacketNumber(encLevel protocol.EncryptionLevel) protocol.PacketNumber {
return h.getPacketNumberSpace(encLevel).pns.Pop()
}
func (h *sentPacketHandler) SendMode() SendMode {
numTrackedPackets := h.appDataPackets.history.Len()
if h.initialPackets != nil {
numTrackedPackets += h.initialPackets.history.Len()
}
if h.handshakePackets != nil {
numTrackedPackets += h.handshakePackets.history.Len()
}
if h.isAmplificationLimited() {
h.logger.Debugf("Amplification window limited. Received %d bytes, already sent out %d bytes", h.bytesReceived, h.bytesSent)
return SendNone
}
// Don't send any packets if we're keeping track of the maximum number of packets.
// Note that since MaxOutstandingSentPackets is smaller than MaxTrackedSentPackets,
// we will stop sending out new data when reaching MaxOutstandingSentPackets,
// but still allow sending of retransmissions and ACKs.
if numTrackedPackets >= protocol.MaxTrackedSentPackets {
if h.logger.Debug() {
h.logger.Debugf("Limited by the number of tracked packets: tracking %d packets, maximum %d", numTrackedPackets, protocol.MaxTrackedSentPackets)
}
return SendNone
}
if h.numProbesToSend > 0 {
return h.ptoMode
}
// Only send ACKs if we're congestion limited.
if !h.congestion.CanSend(h.bytesInFlight) {
if h.logger.Debug() {
h.logger.Debugf("Congestion limited: bytes in flight %d, window %d", h.bytesInFlight, h.congestion.GetCongestionWindow())
}
return SendAck
}
if numTrackedPackets >= protocol.MaxOutstandingSentPackets {
if h.logger.Debug() {
h.logger.Debugf("Max outstanding limited: tracking %d packets, maximum: %d", numTrackedPackets, protocol.MaxOutstandingSentPackets)
}
return SendAck
}
return SendAny
}
func (h *sentPacketHandler) TimeUntilSend() time.Time {
return h.congestion.TimeUntilSend(h.bytesInFlight)
}
func (h *sentPacketHandler) HasPacingBudget() bool {
return h.congestion.HasPacingBudget()
}
func (h *sentPacketHandler) SetMaxDatagramSize(s protocol.ByteCount) {
h.congestion.SetMaxDatagramSize(s)
}
func (h *sentPacketHandler) isAmplificationLimited() bool {
if h.peerAddressValidated {
return false
}
return h.bytesSent >= amplificationFactor*h.bytesReceived
}
func (h *sentPacketHandler) QueueProbePacket(encLevel protocol.EncryptionLevel) bool {
pnSpace := h.getPacketNumberSpace(encLevel)
p := pnSpace.history.FirstOutstanding()
if p == nil {
return false
}
h.queueFramesForRetransmission(p)
// TODO: don't declare the packet lost here.
// Keep track of acknowledged frames instead.
h.removeFromBytesInFlight(p)
p.declaredLost = true
return true
}
func (h *sentPacketHandler) queueFramesForRetransmission(p *Packet) {
if len(p.Frames) == 0 {
panic("no frames")
}
for _, f := range p.Frames {
f.OnLost(f.Frame)
}
p.Frames = nil
}
func (h *sentPacketHandler) ResetForRetry() error {
h.bytesInFlight = 0
var firstPacketSendTime time.Time
h.initialPackets.history.Iterate(func(p *Packet) (bool, error) {
if firstPacketSendTime.IsZero() {
firstPacketSendTime = p.SendTime
}
if p.declaredLost || p.skippedPacket {
return true, nil
}
h.queueFramesForRetransmission(p)
return true, nil
})
// All application data packets sent at this point are 0-RTT packets.
// In the case of a Retry, we can assume that the server dropped all of them.
h.appDataPackets.history.Iterate(func(p *Packet) (bool, error) {
if !p.declaredLost && !p.skippedPacket {
h.queueFramesForRetransmission(p)
}
return true, nil
})
// Only use the Retry to estimate the RTT if we didn't send any retransmission for the Initial.
// Otherwise, we don't know which Initial the Retry was sent in response to.
if h.ptoCount == 0 {
// Don't set the RTT to a value lower than 5ms here.
now := time.Now()
h.rttStats.UpdateRTT(utils.MaxDuration(minRTTAfterRetry, now.Sub(firstPacketSendTime)), 0, now)
if h.logger.Debug() {
h.logger.Debugf("\tupdated RTT: %s (σ: %s)", h.rttStats.SmoothedRTT(), h.rttStats.MeanDeviation())
}
if h.tracer != nil {
h.tracer.UpdatedMetrics(h.rttStats, h.congestion.GetCongestionWindow(), h.bytesInFlight, h.packetsInFlight())
}
}
h.initialPackets = newPacketNumberSpace(h.initialPackets.pns.Pop(), false, h.rttStats)
h.appDataPackets = newPacketNumberSpace(h.appDataPackets.pns.Pop(), true, h.rttStats)
oldAlarm := h.alarm
h.alarm = time.Time{}
if h.tracer != nil {
h.tracer.UpdatedPTOCount(0)
if !oldAlarm.IsZero() {
h.tracer.LossTimerCanceled()
}
}
h.ptoCount = 0
return nil
}
func (h *sentPacketHandler) SetHandshakeConfirmed() {
h.handshakeConfirmed = true
// We don't send PTOs for application data packets before the handshake completes.
// Make sure the timer is armed now, if necessary.
h.setLossDetectionTimer()
}

View file

@ -0,0 +1,108 @@
package ackhandler
import (
"fmt"
"time"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/utils"
)
type sentPacketHistory struct {
rttStats *utils.RTTStats
packetList *PacketList
packetMap map[protocol.PacketNumber]*PacketElement
highestSent protocol.PacketNumber
}
func newSentPacketHistory(rttStats *utils.RTTStats) *sentPacketHistory {
return &sentPacketHistory{
rttStats: rttStats,
packetList: NewPacketList(),
packetMap: make(map[protocol.PacketNumber]*PacketElement),
highestSent: protocol.InvalidPacketNumber,
}
}
func (h *sentPacketHistory) SentPacket(p *Packet, isAckEliciting bool) {
if p.PacketNumber <= h.highestSent {
panic("non-sequential packet number use")
}
// Skipped packet numbers.
for pn := h.highestSent + 1; pn < p.PacketNumber; pn++ {
el := h.packetList.PushBack(Packet{
PacketNumber: pn,
EncryptionLevel: p.EncryptionLevel,
SendTime: p.SendTime,
skippedPacket: true,
})
h.packetMap[pn] = el
}
h.highestSent = p.PacketNumber
if isAckEliciting {
el := h.packetList.PushBack(*p)
h.packetMap[p.PacketNumber] = el
}
}
// Iterate iterates through all packets.
func (h *sentPacketHistory) Iterate(cb func(*Packet) (cont bool, err error)) error {
cont := true
var next *PacketElement
for el := h.packetList.Front(); cont && el != nil; el = next {
var err error
next = el.Next()
cont, err = cb(&el.Value)
if err != nil {
return err
}
}
return nil
}
// FirstOutStanding returns the first outstanding packet.
func (h *sentPacketHistory) FirstOutstanding() *Packet {
for el := h.packetList.Front(); el != nil; el = el.Next() {
p := &el.Value
if !p.declaredLost && !p.skippedPacket && !p.IsPathMTUProbePacket {
return p
}
}
return nil
}
func (h *sentPacketHistory) Len() int {
return len(h.packetMap)
}
func (h *sentPacketHistory) Remove(p protocol.PacketNumber) error {
el, ok := h.packetMap[p]
if !ok {
return fmt.Errorf("packet %d not found in sent packet history", p)
}
h.packetList.Remove(el)
delete(h.packetMap, p)
return nil
}
func (h *sentPacketHistory) HasOutstandingPackets() bool {
return h.FirstOutstanding() != nil
}
func (h *sentPacketHistory) DeleteOldPackets(now time.Time) {
maxAge := 3 * h.rttStats.PTO(false)
var nextEl *PacketElement
for el := h.packetList.Front(); el != nil; el = nextEl {
nextEl = el.Next()
p := el.Value
if p.SendTime.After(now.Add(-maxAge)) {
break
}
if !p.skippedPacket && !p.declaredLost { // should only happen in the case of drastic RTT changes
continue
}
delete(h.packetMap, p.PacketNumber)
h.packetList.Remove(el)
}
}

View file

@ -0,0 +1,25 @@
package congestion
import (
"math"
"time"
"github.com/lucas-clemente/quic-go/internal/protocol"
)
// Bandwidth of a connection
type Bandwidth uint64
const infBandwidth Bandwidth = math.MaxUint64
const (
// BitsPerSecond is 1 bit per second
BitsPerSecond Bandwidth = 1
// BytesPerSecond is 1 byte per second
BytesPerSecond = 8 * BitsPerSecond
)
// BandwidthFromDelta calculates the bandwidth from a number of bytes and a time delta
func BandwidthFromDelta(bytes protocol.ByteCount, delta time.Duration) Bandwidth {
return Bandwidth(bytes) * Bandwidth(time.Second) / Bandwidth(delta) * BytesPerSecond
}

View file

@ -0,0 +1,18 @@
package congestion
import "time"
// A Clock returns the current time
type Clock interface {
Now() time.Time
}
// DefaultClock implements the Clock interface using the Go stdlib clock.
type DefaultClock struct{}
var _ Clock = DefaultClock{}
// Now gets the current time
func (DefaultClock) Now() time.Time {
return time.Now()
}

View file

@ -0,0 +1,214 @@
package congestion
import (
"math"
"time"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/utils"
)
// This cubic implementation is based on the one found in Chromiums's QUIC
// implementation, in the files net/quic/congestion_control/cubic.{hh,cc}.
// Constants based on TCP defaults.
// The following constants are in 2^10 fractions of a second instead of ms to
// allow a 10 shift right to divide.
// 1024*1024^3 (first 1024 is from 0.100^3)
// where 0.100 is 100 ms which is the scaling round trip time.
const (
cubeScale = 40
cubeCongestionWindowScale = 410
cubeFactor protocol.ByteCount = 1 << cubeScale / cubeCongestionWindowScale / maxDatagramSize
// TODO: when re-enabling cubic, make sure to use the actual packet size here
maxDatagramSize = protocol.ByteCount(protocol.InitialPacketSizeIPv4)
)
const defaultNumConnections = 1
// Default Cubic backoff factor
const beta float32 = 0.7
// Additional backoff factor when loss occurs in the concave part of the Cubic
// curve. This additional backoff factor is expected to give up bandwidth to
// new concurrent flows and speed up convergence.
const betaLastMax float32 = 0.85
// Cubic implements the cubic algorithm from TCP
type Cubic struct {
clock Clock
// Number of connections to simulate.
numConnections int
// Time when this cycle started, after last loss event.
epoch time.Time
// Max congestion window used just before last loss event.
// Note: to improve fairness to other streams an additional back off is
// applied to this value if the new value is below our latest value.
lastMaxCongestionWindow protocol.ByteCount
// Number of acked bytes since the cycle started (epoch).
ackedBytesCount protocol.ByteCount
// TCP Reno equivalent congestion window in packets.
estimatedTCPcongestionWindow protocol.ByteCount
// Origin point of cubic function.
originPointCongestionWindow protocol.ByteCount
// Time to origin point of cubic function in 2^10 fractions of a second.
timeToOriginPoint uint32
// Last congestion window in packets computed by cubic function.
lastTargetCongestionWindow protocol.ByteCount
}
// NewCubic returns a new Cubic instance
func NewCubic(clock Clock) *Cubic {
c := &Cubic{
clock: clock,
numConnections: defaultNumConnections,
}
c.Reset()
return c
}
// Reset is called after a timeout to reset the cubic state
func (c *Cubic) Reset() {
c.epoch = time.Time{}
c.lastMaxCongestionWindow = 0
c.ackedBytesCount = 0
c.estimatedTCPcongestionWindow = 0
c.originPointCongestionWindow = 0
c.timeToOriginPoint = 0
c.lastTargetCongestionWindow = 0
}
func (c *Cubic) alpha() float32 {
// TCPFriendly alpha is described in Section 3.3 of the CUBIC paper. Note that
// beta here is a cwnd multiplier, and is equal to 1-beta from the paper.
// We derive the equivalent alpha for an N-connection emulation as:
b := c.beta()
return 3 * float32(c.numConnections) * float32(c.numConnections) * (1 - b) / (1 + b)
}
func (c *Cubic) beta() float32 {
// kNConnectionBeta is the backoff factor after loss for our N-connection
// emulation, which emulates the effective backoff of an ensemble of N
// TCP-Reno connections on a single loss event. The effective multiplier is
// computed as:
return (float32(c.numConnections) - 1 + beta) / float32(c.numConnections)
}
func (c *Cubic) betaLastMax() float32 {
// betaLastMax is the additional backoff factor after loss for our
// N-connection emulation, which emulates the additional backoff of
// an ensemble of N TCP-Reno connections on a single loss event. The
// effective multiplier is computed as:
return (float32(c.numConnections) - 1 + betaLastMax) / float32(c.numConnections)
}
// OnApplicationLimited is called on ack arrival when sender is unable to use
// the available congestion window. Resets Cubic state during quiescence.
func (c *Cubic) OnApplicationLimited() {
// When sender is not using the available congestion window, the window does
// not grow. But to be RTT-independent, Cubic assumes that the sender has been
// using the entire window during the time since the beginning of the current
// "epoch" (the end of the last loss recovery period). Since
// application-limited periods break this assumption, we reset the epoch when
// in such a period. This reset effectively freezes congestion window growth
// through application-limited periods and allows Cubic growth to continue
// when the entire window is being used.
c.epoch = time.Time{}
}
// CongestionWindowAfterPacketLoss computes a new congestion window to use after
// a loss event. Returns the new congestion window in packets. The new
// congestion window is a multiplicative decrease of our current window.
func (c *Cubic) CongestionWindowAfterPacketLoss(currentCongestionWindow protocol.ByteCount) protocol.ByteCount {
if currentCongestionWindow+maxDatagramSize < c.lastMaxCongestionWindow {
// We never reached the old max, so assume we are competing with another
// flow. Use our extra back off factor to allow the other flow to go up.
c.lastMaxCongestionWindow = protocol.ByteCount(c.betaLastMax() * float32(currentCongestionWindow))
} else {
c.lastMaxCongestionWindow = currentCongestionWindow
}
c.epoch = time.Time{} // Reset time.
return protocol.ByteCount(float32(currentCongestionWindow) * c.beta())
}
// CongestionWindowAfterAck computes a new congestion window to use after a received ACK.
// Returns the new congestion window in packets. The new congestion window
// follows a cubic function that depends on the time passed since last
// packet loss.
func (c *Cubic) CongestionWindowAfterAck(
ackedBytes protocol.ByteCount,
currentCongestionWindow protocol.ByteCount,
delayMin time.Duration,
eventTime time.Time,
) protocol.ByteCount {
c.ackedBytesCount += ackedBytes
if c.epoch.IsZero() {
// First ACK after a loss event.
c.epoch = eventTime // Start of epoch.
c.ackedBytesCount = ackedBytes // Reset count.
// Reset estimated_tcp_congestion_window_ to be in sync with cubic.
c.estimatedTCPcongestionWindow = currentCongestionWindow
if c.lastMaxCongestionWindow <= currentCongestionWindow {
c.timeToOriginPoint = 0
c.originPointCongestionWindow = currentCongestionWindow
} else {
c.timeToOriginPoint = uint32(math.Cbrt(float64(cubeFactor * (c.lastMaxCongestionWindow - currentCongestionWindow))))
c.originPointCongestionWindow = c.lastMaxCongestionWindow
}
}
// Change the time unit from microseconds to 2^10 fractions per second. Take
// the round trip time in account. This is done to allow us to use shift as a
// divide operator.
elapsedTime := int64(eventTime.Add(delayMin).Sub(c.epoch)/time.Microsecond) << 10 / (1000 * 1000)
// Right-shifts of negative, signed numbers have implementation-dependent
// behavior, so force the offset to be positive, as is done in the kernel.
offset := int64(c.timeToOriginPoint) - elapsedTime
if offset < 0 {
offset = -offset
}
deltaCongestionWindow := protocol.ByteCount(cubeCongestionWindowScale*offset*offset*offset) * maxDatagramSize >> cubeScale
var targetCongestionWindow protocol.ByteCount
if elapsedTime > int64(c.timeToOriginPoint) {
targetCongestionWindow = c.originPointCongestionWindow + deltaCongestionWindow
} else {
targetCongestionWindow = c.originPointCongestionWindow - deltaCongestionWindow
}
// Limit the CWND increase to half the acked bytes.
targetCongestionWindow = utils.MinByteCount(targetCongestionWindow, currentCongestionWindow+c.ackedBytesCount/2)
// Increase the window by approximately Alpha * 1 MSS of bytes every
// time we ack an estimated tcp window of bytes. For small
// congestion windows (less than 25), the formula below will
// increase slightly slower than linearly per estimated tcp window
// of bytes.
c.estimatedTCPcongestionWindow += protocol.ByteCount(float32(c.ackedBytesCount) * c.alpha() * float32(maxDatagramSize) / float32(c.estimatedTCPcongestionWindow))
c.ackedBytesCount = 0
// We have a new cubic congestion window.
c.lastTargetCongestionWindow = targetCongestionWindow
// Compute target congestion_window based on cubic target and estimated TCP
// congestion_window, use highest (fastest).
if targetCongestionWindow < c.estimatedTCPcongestionWindow {
targetCongestionWindow = c.estimatedTCPcongestionWindow
}
return targetCongestionWindow
}
// SetNumConnections sets the number of emulated connections
func (c *Cubic) SetNumConnections(n int) {
c.numConnections = n
}

View file

@ -0,0 +1,316 @@
package congestion
import (
"fmt"
"time"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/lucas-clemente/quic-go/logging"
)
const (
// maxDatagramSize is the default maximum packet size used in the Linux TCP implementation.
// Used in QUIC for congestion window computations in bytes.
initialMaxDatagramSize = protocol.ByteCount(protocol.InitialPacketSizeIPv4)
maxBurstPackets = 3
renoBeta = 0.7 // Reno backoff factor.
minCongestionWindowPackets = 2
initialCongestionWindow = 32
)
type cubicSender struct {
hybridSlowStart HybridSlowStart
rttStats *utils.RTTStats
cubic *Cubic
pacer *pacer
clock Clock
reno bool
// Track the largest packet that has been sent.
largestSentPacketNumber protocol.PacketNumber
// Track the largest packet that has been acked.
largestAckedPacketNumber protocol.PacketNumber
// Track the largest packet number outstanding when a CWND cutback occurs.
largestSentAtLastCutback protocol.PacketNumber
// Whether the last loss event caused us to exit slowstart.
// Used for stats collection of slowstartPacketsLost
lastCutbackExitedSlowstart bool
// Congestion window in bytes.
congestionWindow protocol.ByteCount
// Slow start congestion window in bytes, aka ssthresh.
slowStartThreshold protocol.ByteCount
// ACK counter for the Reno implementation.
numAckedPackets uint64
initialCongestionWindow protocol.ByteCount
initialMaxCongestionWindow protocol.ByteCount
maxDatagramSize protocol.ByteCount
lastState logging.CongestionState
tracer logging.ConnectionTracer
}
var (
_ SendAlgorithm = &cubicSender{}
_ SendAlgorithmWithDebugInfos = &cubicSender{}
)
// NewCubicSender makes a new cubic sender
func NewCubicSender(
clock Clock,
rttStats *utils.RTTStats,
initialMaxDatagramSize protocol.ByteCount,
reno bool,
tracer logging.ConnectionTracer,
) *cubicSender {
return newCubicSender(
clock,
rttStats,
reno,
initialMaxDatagramSize,
initialCongestionWindow*initialMaxDatagramSize,
protocol.MaxCongestionWindowPackets*initialMaxDatagramSize,
tracer,
)
}
func newCubicSender(
clock Clock,
rttStats *utils.RTTStats,
reno bool,
initialMaxDatagramSize,
initialCongestionWindow,
initialMaxCongestionWindow protocol.ByteCount,
tracer logging.ConnectionTracer,
) *cubicSender {
c := &cubicSender{
rttStats: rttStats,
largestSentPacketNumber: protocol.InvalidPacketNumber,
largestAckedPacketNumber: protocol.InvalidPacketNumber,
largestSentAtLastCutback: protocol.InvalidPacketNumber,
initialCongestionWindow: initialCongestionWindow,
initialMaxCongestionWindow: initialMaxCongestionWindow,
congestionWindow: initialCongestionWindow,
slowStartThreshold: protocol.MaxByteCount,
cubic: NewCubic(clock),
clock: clock,
reno: reno,
tracer: tracer,
maxDatagramSize: initialMaxDatagramSize,
}
c.pacer = newPacer(c.BandwidthEstimate)
if c.tracer != nil {
c.lastState = logging.CongestionStateSlowStart
c.tracer.UpdatedCongestionState(logging.CongestionStateSlowStart)
}
return c
}
// TimeUntilSend returns when the next packet should be sent.
func (c *cubicSender) TimeUntilSend(_ protocol.ByteCount) time.Time {
return c.pacer.TimeUntilSend()
}
func (c *cubicSender) HasPacingBudget() bool {
return c.pacer.Budget(c.clock.Now()) >= c.maxDatagramSize
}
func (c *cubicSender) maxCongestionWindow() protocol.ByteCount {
return c.maxDatagramSize * protocol.MaxCongestionWindowPackets
}
func (c *cubicSender) minCongestionWindow() protocol.ByteCount {
return c.maxDatagramSize * minCongestionWindowPackets
}
func (c *cubicSender) OnPacketSent(
sentTime time.Time,
_ protocol.ByteCount,
packetNumber protocol.PacketNumber,
bytes protocol.ByteCount,
isRetransmittable bool,
) {
c.pacer.SentPacket(sentTime, bytes)
if !isRetransmittable {
return
}
c.largestSentPacketNumber = packetNumber
c.hybridSlowStart.OnPacketSent(packetNumber)
}
func (c *cubicSender) CanSend(bytesInFlight protocol.ByteCount) bool {
return bytesInFlight < c.GetCongestionWindow()
}
func (c *cubicSender) InRecovery() bool {
return c.largestAckedPacketNumber != protocol.InvalidPacketNumber && c.largestAckedPacketNumber <= c.largestSentAtLastCutback
}
func (c *cubicSender) InSlowStart() bool {
return c.GetCongestionWindow() < c.slowStartThreshold
}
func (c *cubicSender) GetCongestionWindow() protocol.ByteCount {
return c.congestionWindow
}
func (c *cubicSender) MaybeExitSlowStart() {
if c.InSlowStart() &&
c.hybridSlowStart.ShouldExitSlowStart(c.rttStats.LatestRTT(), c.rttStats.MinRTT(), c.GetCongestionWindow()/c.maxDatagramSize) {
// exit slow start
c.slowStartThreshold = c.congestionWindow
c.maybeTraceStateChange(logging.CongestionStateCongestionAvoidance)
}
}
func (c *cubicSender) OnPacketAcked(
ackedPacketNumber protocol.PacketNumber,
ackedBytes protocol.ByteCount,
priorInFlight protocol.ByteCount,
eventTime time.Time,
) {
c.largestAckedPacketNumber = utils.MaxPacketNumber(ackedPacketNumber, c.largestAckedPacketNumber)
if c.InRecovery() {
return
}
c.maybeIncreaseCwnd(ackedPacketNumber, ackedBytes, priorInFlight, eventTime)
if c.InSlowStart() {
c.hybridSlowStart.OnPacketAcked(ackedPacketNumber)
}
}
func (c *cubicSender) OnPacketLost(packetNumber protocol.PacketNumber, lostBytes, priorInFlight protocol.ByteCount) {
// TCP NewReno (RFC6582) says that once a loss occurs, any losses in packets
// already sent should be treated as a single loss event, since it's expected.
if packetNumber <= c.largestSentAtLastCutback {
return
}
c.lastCutbackExitedSlowstart = c.InSlowStart()
c.maybeTraceStateChange(logging.CongestionStateRecovery)
if c.reno {
c.congestionWindow = protocol.ByteCount(float64(c.congestionWindow) * renoBeta)
} else {
c.congestionWindow = c.cubic.CongestionWindowAfterPacketLoss(c.congestionWindow)
}
if minCwnd := c.minCongestionWindow(); c.congestionWindow < minCwnd {
c.congestionWindow = minCwnd
}
c.slowStartThreshold = c.congestionWindow
c.largestSentAtLastCutback = c.largestSentPacketNumber
// reset packet count from congestion avoidance mode. We start
// counting again when we're out of recovery.
c.numAckedPackets = 0
}
// Called when we receive an ack. Normal TCP tracks how many packets one ack
// represents, but quic has a separate ack for each packet.
func (c *cubicSender) maybeIncreaseCwnd(
_ protocol.PacketNumber,
ackedBytes protocol.ByteCount,
priorInFlight protocol.ByteCount,
eventTime time.Time,
) {
// Do not increase the congestion window unless the sender is close to using
// the current window.
if !c.isCwndLimited(priorInFlight) {
c.cubic.OnApplicationLimited()
c.maybeTraceStateChange(logging.CongestionStateApplicationLimited)
return
}
if c.congestionWindow >= c.maxCongestionWindow() {
return
}
if c.InSlowStart() {
// TCP slow start, exponential growth, increase by one for each ACK.
c.congestionWindow += c.maxDatagramSize
c.maybeTraceStateChange(logging.CongestionStateSlowStart)
return
}
// Congestion avoidance
c.maybeTraceStateChange(logging.CongestionStateCongestionAvoidance)
if c.reno {
// Classic Reno congestion avoidance.
c.numAckedPackets++
if c.numAckedPackets >= uint64(c.congestionWindow/c.maxDatagramSize) {
c.congestionWindow += c.maxDatagramSize
c.numAckedPackets = 0
}
} else {
c.congestionWindow = utils.MinByteCount(c.maxCongestionWindow(), c.cubic.CongestionWindowAfterAck(ackedBytes, c.congestionWindow, c.rttStats.MinRTT(), eventTime))
}
}
func (c *cubicSender) isCwndLimited(bytesInFlight protocol.ByteCount) bool {
congestionWindow := c.GetCongestionWindow()
if bytesInFlight >= congestionWindow {
return true
}
availableBytes := congestionWindow - bytesInFlight
slowStartLimited := c.InSlowStart() && bytesInFlight > congestionWindow/2
return slowStartLimited || availableBytes <= maxBurstPackets*c.maxDatagramSize
}
// BandwidthEstimate returns the current bandwidth estimate
func (c *cubicSender) BandwidthEstimate() Bandwidth {
srtt := c.rttStats.SmoothedRTT()
if srtt == 0 {
// If we haven't measured an rtt, the bandwidth estimate is unknown.
return infBandwidth
}
return BandwidthFromDelta(c.GetCongestionWindow(), srtt)
}
// OnRetransmissionTimeout is called on an retransmission timeout
func (c *cubicSender) OnRetransmissionTimeout(packetsRetransmitted bool) {
c.largestSentAtLastCutback = protocol.InvalidPacketNumber
if !packetsRetransmitted {
return
}
c.hybridSlowStart.Restart()
c.cubic.Reset()
c.slowStartThreshold = c.congestionWindow / 2
c.congestionWindow = c.minCongestionWindow()
}
// OnConnectionMigration is called when the connection is migrated (?)
func (c *cubicSender) OnConnectionMigration() {
c.hybridSlowStart.Restart()
c.largestSentPacketNumber = protocol.InvalidPacketNumber
c.largestAckedPacketNumber = protocol.InvalidPacketNumber
c.largestSentAtLastCutback = protocol.InvalidPacketNumber
c.lastCutbackExitedSlowstart = false
c.cubic.Reset()
c.numAckedPackets = 0
c.congestionWindow = c.initialCongestionWindow
c.slowStartThreshold = c.initialMaxCongestionWindow
}
func (c *cubicSender) maybeTraceStateChange(new logging.CongestionState) {
if c.tracer == nil || new == c.lastState {
return
}
c.tracer.UpdatedCongestionState(new)
c.lastState = new
}
func (c *cubicSender) SetMaxDatagramSize(s protocol.ByteCount) {
if s < c.maxDatagramSize {
panic(fmt.Sprintf("congestion BUG: decreased max datagram size from %d to %d", c.maxDatagramSize, s))
}
cwndIsMinCwnd := c.congestionWindow == c.minCongestionWindow()
c.maxDatagramSize = s
if cwndIsMinCwnd {
c.congestionWindow = c.minCongestionWindow()
}
c.pacer.SetMaxDatagramSize(s)
}

View file

@ -0,0 +1,113 @@
package congestion
import (
"time"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/utils"
)
// Note(pwestin): the magic clamping numbers come from the original code in
// tcp_cubic.c.
const hybridStartLowWindow = protocol.ByteCount(16)
// Number of delay samples for detecting the increase of delay.
const hybridStartMinSamples = uint32(8)
// Exit slow start if the min rtt has increased by more than 1/8th.
const hybridStartDelayFactorExp = 3 // 2^3 = 8
// The original paper specifies 2 and 8ms, but those have changed over time.
const (
hybridStartDelayMinThresholdUs = int64(4000)
hybridStartDelayMaxThresholdUs = int64(16000)
)
// HybridSlowStart implements the TCP hybrid slow start algorithm
type HybridSlowStart struct {
endPacketNumber protocol.PacketNumber
lastSentPacketNumber protocol.PacketNumber
started bool
currentMinRTT time.Duration
rttSampleCount uint32
hystartFound bool
}
// StartReceiveRound is called for the start of each receive round (burst) in the slow start phase.
func (s *HybridSlowStart) StartReceiveRound(lastSent protocol.PacketNumber) {
s.endPacketNumber = lastSent
s.currentMinRTT = 0
s.rttSampleCount = 0
s.started = true
}
// IsEndOfRound returns true if this ack is the last packet number of our current slow start round.
func (s *HybridSlowStart) IsEndOfRound(ack protocol.PacketNumber) bool {
return s.endPacketNumber < ack
}
// ShouldExitSlowStart should be called on every new ack frame, since a new
// RTT measurement can be made then.
// rtt: the RTT for this ack packet.
// minRTT: is the lowest delay (RTT) we have seen during the session.
// congestionWindow: the congestion window in packets.
func (s *HybridSlowStart) ShouldExitSlowStart(latestRTT time.Duration, minRTT time.Duration, congestionWindow protocol.ByteCount) bool {
if !s.started {
// Time to start the hybrid slow start.
s.StartReceiveRound(s.lastSentPacketNumber)
}
if s.hystartFound {
return true
}
// Second detection parameter - delay increase detection.
// Compare the minimum delay (s.currentMinRTT) of the current
// burst of packets relative to the minimum delay during the session.
// Note: we only look at the first few(8) packets in each burst, since we
// only want to compare the lowest RTT of the burst relative to previous
// bursts.
s.rttSampleCount++
if s.rttSampleCount <= hybridStartMinSamples {
if s.currentMinRTT == 0 || s.currentMinRTT > latestRTT {
s.currentMinRTT = latestRTT
}
}
// We only need to check this once per round.
if s.rttSampleCount == hybridStartMinSamples {
// Divide minRTT by 8 to get a rtt increase threshold for exiting.
minRTTincreaseThresholdUs := int64(minRTT / time.Microsecond >> hybridStartDelayFactorExp)
// Ensure the rtt threshold is never less than 2ms or more than 16ms.
minRTTincreaseThresholdUs = utils.MinInt64(minRTTincreaseThresholdUs, hybridStartDelayMaxThresholdUs)
minRTTincreaseThreshold := time.Duration(utils.MaxInt64(minRTTincreaseThresholdUs, hybridStartDelayMinThresholdUs)) * time.Microsecond
if s.currentMinRTT > (minRTT + minRTTincreaseThreshold) {
s.hystartFound = true
}
}
// Exit from slow start if the cwnd is greater than 16 and
// increasing delay is found.
return congestionWindow >= hybridStartLowWindow && s.hystartFound
}
// OnPacketSent is called when a packet was sent
func (s *HybridSlowStart) OnPacketSent(packetNumber protocol.PacketNumber) {
s.lastSentPacketNumber = packetNumber
}
// OnPacketAcked gets invoked after ShouldExitSlowStart, so it's best to end
// the round when the final packet of the burst is received and start it on
// the next incoming ack.
func (s *HybridSlowStart) OnPacketAcked(ackedPacketNumber protocol.PacketNumber) {
if s.IsEndOfRound(ackedPacketNumber) {
s.started = false
}
}
// Started returns true if started
func (s *HybridSlowStart) Started() bool {
return s.started
}
// Restart the slow start phase
func (s *HybridSlowStart) Restart() {
s.started = false
s.hystartFound = false
}

View file

@ -0,0 +1,28 @@
package congestion
import (
"time"
"github.com/lucas-clemente/quic-go/internal/protocol"
)
// A SendAlgorithm performs congestion control
type SendAlgorithm interface {
TimeUntilSend(bytesInFlight protocol.ByteCount) time.Time
HasPacingBudget() bool
OnPacketSent(sentTime time.Time, bytesInFlight protocol.ByteCount, packetNumber protocol.PacketNumber, bytes protocol.ByteCount, isRetransmittable bool)
CanSend(bytesInFlight protocol.ByteCount) bool
MaybeExitSlowStart()
OnPacketAcked(number protocol.PacketNumber, ackedBytes protocol.ByteCount, priorInFlight protocol.ByteCount, eventTime time.Time)
OnPacketLost(number protocol.PacketNumber, lostBytes protocol.ByteCount, priorInFlight protocol.ByteCount)
OnRetransmissionTimeout(packetsRetransmitted bool)
SetMaxDatagramSize(protocol.ByteCount)
}
// A SendAlgorithmWithDebugInfos is a SendAlgorithm that exposes some debug infos
type SendAlgorithmWithDebugInfos interface {
SendAlgorithm
InSlowStart() bool
InRecovery() bool
GetCongestionWindow() protocol.ByteCount
}

View file

@ -0,0 +1,77 @@
package congestion
import (
"math"
"time"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/utils"
)
const maxBurstSizePackets = 10
// The pacer implements a token bucket pacing algorithm.
type pacer struct {
budgetAtLastSent protocol.ByteCount
maxDatagramSize protocol.ByteCount
lastSentTime time.Time
getAdjustedBandwidth func() uint64 // in bytes/s
}
func newPacer(getBandwidth func() Bandwidth) *pacer {
p := &pacer{
maxDatagramSize: initialMaxDatagramSize,
getAdjustedBandwidth: func() uint64 {
// Bandwidth is in bits/s. We need the value in bytes/s.
bw := uint64(getBandwidth() / BytesPerSecond)
// Use a slightly higher value than the actual measured bandwidth.
// RTT variations then won't result in under-utilization of the congestion window.
// Ultimately, this will result in sending packets as acknowledgments are received rather than when timers fire,
// provided the congestion window is fully utilized and acknowledgments arrive at regular intervals.
return bw * 5 / 4
},
}
p.budgetAtLastSent = p.maxBurstSize()
return p
}
func (p *pacer) SentPacket(sendTime time.Time, size protocol.ByteCount) {
budget := p.Budget(sendTime)
if size > budget {
p.budgetAtLastSent = 0
} else {
p.budgetAtLastSent = budget - size
}
p.lastSentTime = sendTime
}
func (p *pacer) Budget(now time.Time) protocol.ByteCount {
if p.lastSentTime.IsZero() {
return p.maxBurstSize()
}
budget := p.budgetAtLastSent + (protocol.ByteCount(p.getAdjustedBandwidth())*protocol.ByteCount(now.Sub(p.lastSentTime).Nanoseconds()))/1e9
return utils.MinByteCount(p.maxBurstSize(), budget)
}
func (p *pacer) maxBurstSize() protocol.ByteCount {
return utils.MaxByteCount(
protocol.ByteCount(uint64((protocol.MinPacingDelay+protocol.TimerGranularity).Nanoseconds())*p.getAdjustedBandwidth())/1e9,
maxBurstSizePackets*p.maxDatagramSize,
)
}
// TimeUntilSend returns when the next packet should be sent.
// It returns the zero value of time.Time if a packet can be sent immediately.
func (p *pacer) TimeUntilSend() time.Time {
if p.budgetAtLastSent >= p.maxDatagramSize {
return time.Time{}
}
return p.lastSentTime.Add(utils.MaxDuration(
protocol.MinPacingDelay,
time.Duration(math.Ceil(float64(p.maxDatagramSize-p.budgetAtLastSent)*1e9/float64(p.getAdjustedBandwidth())))*time.Nanosecond,
))
}
func (p *pacer) SetMaxDatagramSize(s protocol.ByteCount) {
p.maxDatagramSize = s
}

View file

@ -0,0 +1,125 @@
package flowcontrol
import (
"sync"
"time"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/utils"
)
type baseFlowController struct {
// for sending data
bytesSent protocol.ByteCount
sendWindow protocol.ByteCount
lastBlockedAt protocol.ByteCount
// for receiving data
//nolint:structcheck // The mutex is used both by the stream and the connection flow controller
mutex sync.Mutex
bytesRead protocol.ByteCount
highestReceived protocol.ByteCount
receiveWindow protocol.ByteCount
receiveWindowSize protocol.ByteCount
maxReceiveWindowSize protocol.ByteCount
allowWindowIncrease func(size protocol.ByteCount) bool
epochStartTime time.Time
epochStartOffset protocol.ByteCount
rttStats *utils.RTTStats
logger utils.Logger
}
// IsNewlyBlocked says if it is newly blocked by flow control.
// For every offset, it only returns true once.
// If it is blocked, the offset is returned.
func (c *baseFlowController) IsNewlyBlocked() (bool, protocol.ByteCount) {
if c.sendWindowSize() != 0 || c.sendWindow == c.lastBlockedAt {
return false, 0
}
c.lastBlockedAt = c.sendWindow
return true, c.sendWindow
}
func (c *baseFlowController) AddBytesSent(n protocol.ByteCount) {
c.bytesSent += n
}
// UpdateSendWindow is be called after receiving a MAX_{STREAM_}DATA frame.
func (c *baseFlowController) UpdateSendWindow(offset protocol.ByteCount) {
if offset > c.sendWindow {
c.sendWindow = offset
}
}
func (c *baseFlowController) sendWindowSize() protocol.ByteCount {
// this only happens during connection establishment, when data is sent before we receive the peer's transport parameters
if c.bytesSent > c.sendWindow {
return 0
}
return c.sendWindow - c.bytesSent
}
// needs to be called with locked mutex
func (c *baseFlowController) addBytesRead(n protocol.ByteCount) {
// pretend we sent a WindowUpdate when reading the first byte
// this way auto-tuning of the window size already works for the first WindowUpdate
if c.bytesRead == 0 {
c.startNewAutoTuningEpoch(time.Now())
}
c.bytesRead += n
}
func (c *baseFlowController) hasWindowUpdate() bool {
bytesRemaining := c.receiveWindow - c.bytesRead
// update the window when more than the threshold was consumed
return bytesRemaining <= protocol.ByteCount(float64(c.receiveWindowSize)*(1-protocol.WindowUpdateThreshold))
}
// getWindowUpdate updates the receive window, if necessary
// it returns the new offset
func (c *baseFlowController) getWindowUpdate() protocol.ByteCount {
if !c.hasWindowUpdate() {
return 0
}
c.maybeAdjustWindowSize()
c.receiveWindow = c.bytesRead + c.receiveWindowSize
return c.receiveWindow
}
// maybeAdjustWindowSize increases the receiveWindowSize if we're sending updates too often.
// For details about auto-tuning, see https://docs.google.com/document/d/1SExkMmGiz8VYzV3s9E35JQlJ73vhzCekKkDi85F1qCE/edit?usp=sharing.
func (c *baseFlowController) maybeAdjustWindowSize() {
bytesReadInEpoch := c.bytesRead - c.epochStartOffset
// don't do anything if less than half the window has been consumed
if bytesReadInEpoch <= c.receiveWindowSize/2 {
return
}
rtt := c.rttStats.SmoothedRTT()
if rtt == 0 {
return
}
fraction := float64(bytesReadInEpoch) / float64(c.receiveWindowSize)
now := time.Now()
if now.Sub(c.epochStartTime) < time.Duration(4*fraction*float64(rtt)) {
// window is consumed too fast, try to increase the window size
newSize := utils.MinByteCount(2*c.receiveWindowSize, c.maxReceiveWindowSize)
if newSize > c.receiveWindowSize && (c.allowWindowIncrease == nil || c.allowWindowIncrease(newSize-c.receiveWindowSize)) {
c.receiveWindowSize = newSize
}
}
c.startNewAutoTuningEpoch(now)
}
func (c *baseFlowController) startNewAutoTuningEpoch(now time.Time) {
c.epochStartTime = now
c.epochStartOffset = c.bytesRead
}
func (c *baseFlowController) checkFlowControlViolation() bool {
return c.highestReceived > c.receiveWindow
}

View file

@ -0,0 +1,112 @@
package flowcontrol
import (
"errors"
"fmt"
"time"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/qerr"
"github.com/lucas-clemente/quic-go/internal/utils"
)
type connectionFlowController struct {
baseFlowController
queueWindowUpdate func()
}
var _ ConnectionFlowController = &connectionFlowController{}
// NewConnectionFlowController gets a new flow controller for the connection
// It is created before we receive the peer's transport parameters, thus it starts with a sendWindow of 0.
func NewConnectionFlowController(
receiveWindow protocol.ByteCount,
maxReceiveWindow protocol.ByteCount,
queueWindowUpdate func(),
allowWindowIncrease func(size protocol.ByteCount) bool,
rttStats *utils.RTTStats,
logger utils.Logger,
) ConnectionFlowController {
return &connectionFlowController{
baseFlowController: baseFlowController{
rttStats: rttStats,
receiveWindow: receiveWindow,
receiveWindowSize: receiveWindow,
maxReceiveWindowSize: maxReceiveWindow,
allowWindowIncrease: allowWindowIncrease,
logger: logger,
},
queueWindowUpdate: queueWindowUpdate,
}
}
func (c *connectionFlowController) SendWindowSize() protocol.ByteCount {
return c.baseFlowController.sendWindowSize()
}
// IncrementHighestReceived adds an increment to the highestReceived value
func (c *connectionFlowController) IncrementHighestReceived(increment protocol.ByteCount) error {
c.mutex.Lock()
defer c.mutex.Unlock()
c.highestReceived += increment
if c.checkFlowControlViolation() {
return &qerr.TransportError{
ErrorCode: qerr.FlowControlError,
ErrorMessage: fmt.Sprintf("received %d bytes for the connection, allowed %d bytes", c.highestReceived, c.receiveWindow),
}
}
return nil
}
func (c *connectionFlowController) AddBytesRead(n protocol.ByteCount) {
c.mutex.Lock()
c.baseFlowController.addBytesRead(n)
shouldQueueWindowUpdate := c.hasWindowUpdate()
c.mutex.Unlock()
if shouldQueueWindowUpdate {
c.queueWindowUpdate()
}
}
func (c *connectionFlowController) GetWindowUpdate() protocol.ByteCount {
c.mutex.Lock()
oldWindowSize := c.receiveWindowSize
offset := c.baseFlowController.getWindowUpdate()
if oldWindowSize < c.receiveWindowSize {
c.logger.Debugf("Increasing receive flow control window for the connection to %d kB", c.receiveWindowSize/(1<<10))
}
c.mutex.Unlock()
return offset
}
// EnsureMinimumWindowSize sets a minimum window size
// it should make sure that the connection-level window is increased when a stream-level window grows
func (c *connectionFlowController) EnsureMinimumWindowSize(inc protocol.ByteCount) {
c.mutex.Lock()
if inc > c.receiveWindowSize {
c.logger.Debugf("Increasing receive flow control window for the connection to %d kB, in response to stream flow control window increase", c.receiveWindowSize/(1<<10))
newSize := utils.MinByteCount(inc, c.maxReceiveWindowSize)
if delta := newSize - c.receiveWindowSize; delta > 0 && c.allowWindowIncrease(delta) {
c.receiveWindowSize = newSize
}
c.startNewAutoTuningEpoch(time.Now())
}
c.mutex.Unlock()
}
// Reset rests the flow controller. This happens when 0-RTT is rejected.
// All stream data is invalidated, it's if we had never opened a stream and never sent any data.
// At that point, we only have sent stream data, but we didn't have the keys to open 1-RTT keys yet.
func (c *connectionFlowController) Reset() error {
c.mutex.Lock()
defer c.mutex.Unlock()
if c.bytesRead > 0 || c.highestReceived > 0 || !c.epochStartTime.IsZero() {
return errors.New("flow controller reset after reading data")
}
c.bytesSent = 0
c.lastBlockedAt = 0
return nil
}

View file

@ -0,0 +1,42 @@
package flowcontrol
import "github.com/lucas-clemente/quic-go/internal/protocol"
type flowController interface {
// for sending
SendWindowSize() protocol.ByteCount
UpdateSendWindow(protocol.ByteCount)
AddBytesSent(protocol.ByteCount)
// for receiving
AddBytesRead(protocol.ByteCount)
GetWindowUpdate() protocol.ByteCount // returns 0 if no update is necessary
IsNewlyBlocked() (bool, protocol.ByteCount)
}
// A StreamFlowController is a flow controller for a QUIC stream.
type StreamFlowController interface {
flowController
// for receiving
// UpdateHighestReceived should be called when a new highest offset is received
// final has to be to true if this is the final offset of the stream,
// as contained in a STREAM frame with FIN bit, and the RESET_STREAM frame
UpdateHighestReceived(offset protocol.ByteCount, final bool) error
// Abandon should be called when reading from the stream is aborted early,
// and there won't be any further calls to AddBytesRead.
Abandon()
}
// The ConnectionFlowController is the flow controller for the connection.
type ConnectionFlowController interface {
flowController
Reset() error
}
type connectionFlowControllerI interface {
ConnectionFlowController
// The following two methods are not supposed to be called from outside this packet, but are needed internally
// for sending
EnsureMinimumWindowSize(protocol.ByteCount)
// for receiving
IncrementHighestReceived(protocol.ByteCount) error
}

View file

@ -0,0 +1,149 @@
package flowcontrol
import (
"fmt"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/qerr"
"github.com/lucas-clemente/quic-go/internal/utils"
)
type streamFlowController struct {
baseFlowController
streamID protocol.StreamID
queueWindowUpdate func()
connection connectionFlowControllerI
receivedFinalOffset bool
}
var _ StreamFlowController = &streamFlowController{}
// NewStreamFlowController gets a new flow controller for a stream
func NewStreamFlowController(
streamID protocol.StreamID,
cfc ConnectionFlowController,
receiveWindow protocol.ByteCount,
maxReceiveWindow protocol.ByteCount,
initialSendWindow protocol.ByteCount,
queueWindowUpdate func(protocol.StreamID),
rttStats *utils.RTTStats,
logger utils.Logger,
) StreamFlowController {
return &streamFlowController{
streamID: streamID,
connection: cfc.(connectionFlowControllerI),
queueWindowUpdate: func() { queueWindowUpdate(streamID) },
baseFlowController: baseFlowController{
rttStats: rttStats,
receiveWindow: receiveWindow,
receiveWindowSize: receiveWindow,
maxReceiveWindowSize: maxReceiveWindow,
sendWindow: initialSendWindow,
logger: logger,
},
}
}
// UpdateHighestReceived updates the highestReceived value, if the offset is higher.
func (c *streamFlowController) UpdateHighestReceived(offset protocol.ByteCount, final bool) error {
// If the final offset for this stream is already known, check for consistency.
if c.receivedFinalOffset {
// If we receive another final offset, check that it's the same.
if final && offset != c.highestReceived {
return &qerr.TransportError{
ErrorCode: qerr.FinalSizeError,
ErrorMessage: fmt.Sprintf("received inconsistent final offset for stream %d (old: %d, new: %d bytes)", c.streamID, c.highestReceived, offset),
}
}
// Check that the offset is below the final offset.
if offset > c.highestReceived {
return &qerr.TransportError{
ErrorCode: qerr.FinalSizeError,
ErrorMessage: fmt.Sprintf("received offset %d for stream %d, but final offset was already received at %d", offset, c.streamID, c.highestReceived),
}
}
}
if final {
c.receivedFinalOffset = true
}
if offset == c.highestReceived {
return nil
}
// A higher offset was received before.
// This can happen due to reordering.
if offset <= c.highestReceived {
if final {
return &qerr.TransportError{
ErrorCode: qerr.FinalSizeError,
ErrorMessage: fmt.Sprintf("received final offset %d for stream %d, but already received offset %d before", offset, c.streamID, c.highestReceived),
}
}
return nil
}
increment := offset - c.highestReceived
c.highestReceived = offset
if c.checkFlowControlViolation() {
return &qerr.TransportError{
ErrorCode: qerr.FlowControlError,
ErrorMessage: fmt.Sprintf("received %d bytes on stream %d, allowed %d bytes", offset, c.streamID, c.receiveWindow),
}
}
return c.connection.IncrementHighestReceived(increment)
}
func (c *streamFlowController) AddBytesRead(n protocol.ByteCount) {
c.mutex.Lock()
c.baseFlowController.addBytesRead(n)
shouldQueueWindowUpdate := c.shouldQueueWindowUpdate()
c.mutex.Unlock()
if shouldQueueWindowUpdate {
c.queueWindowUpdate()
}
c.connection.AddBytesRead(n)
}
func (c *streamFlowController) Abandon() {
c.mutex.Lock()
unread := c.highestReceived - c.bytesRead
c.mutex.Unlock()
if unread > 0 {
c.connection.AddBytesRead(unread)
}
}
func (c *streamFlowController) AddBytesSent(n protocol.ByteCount) {
c.baseFlowController.AddBytesSent(n)
c.connection.AddBytesSent(n)
}
func (c *streamFlowController) SendWindowSize() protocol.ByteCount {
return utils.MinByteCount(c.baseFlowController.sendWindowSize(), c.connection.SendWindowSize())
}
func (c *streamFlowController) shouldQueueWindowUpdate() bool {
return !c.receivedFinalOffset && c.hasWindowUpdate()
}
func (c *streamFlowController) GetWindowUpdate() protocol.ByteCount {
// If we already received the final offset for this stream, the peer won't need any additional flow control credit.
if c.receivedFinalOffset {
return 0
}
// Don't use defer for unlocking the mutex here, GetWindowUpdate() is called frequently and defer shows up in the profiler
c.mutex.Lock()
oldWindowSize := c.receiveWindowSize
offset := c.baseFlowController.getWindowUpdate()
if c.receiveWindowSize > oldWindowSize { // auto-tuning enlarged the window size
c.logger.Debugf("Increasing receive flow control window for stream %d to %d kB", c.streamID, c.receiveWindowSize/(1<<10))
c.connection.EnsureMinimumWindowSize(protocol.ByteCount(float64(c.receiveWindowSize) * protocol.ConnectionFlowControlMultiplier))
}
c.mutex.Unlock()
return offset
}

View file

@ -0,0 +1,161 @@
package handshake
import (
"crypto/cipher"
"encoding/binary"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/qtls"
"github.com/lucas-clemente/quic-go/internal/utils"
)
func createAEAD(suite *qtls.CipherSuiteTLS13, trafficSecret []byte, v protocol.VersionNumber) cipher.AEAD {
keyLabel := hkdfLabelKeyV1
ivLabel := hkdfLabelIVV1
if v == protocol.Version2 {
keyLabel = hkdfLabelKeyV2
ivLabel = hkdfLabelIVV2
}
key := hkdfExpandLabel(suite.Hash, trafficSecret, []byte{}, keyLabel, suite.KeyLen)
iv := hkdfExpandLabel(suite.Hash, trafficSecret, []byte{}, ivLabel, suite.IVLen())
return suite.AEAD(key, iv)
}
type longHeaderSealer struct {
aead cipher.AEAD
headerProtector headerProtector
// use a single slice to avoid allocations
nonceBuf []byte
}
var _ LongHeaderSealer = &longHeaderSealer{}
func newLongHeaderSealer(aead cipher.AEAD, headerProtector headerProtector) LongHeaderSealer {
return &longHeaderSealer{
aead: aead,
headerProtector: headerProtector,
nonceBuf: make([]byte, aead.NonceSize()),
}
}
func (s *longHeaderSealer) Seal(dst, src []byte, pn protocol.PacketNumber, ad []byte) []byte {
binary.BigEndian.PutUint64(s.nonceBuf[len(s.nonceBuf)-8:], uint64(pn))
// The AEAD we're using here will be the qtls.aeadAESGCM13.
// It uses the nonce provided here and XOR it with the IV.
return s.aead.Seal(dst, s.nonceBuf, src, ad)
}
func (s *longHeaderSealer) EncryptHeader(sample []byte, firstByte *byte, pnBytes []byte) {
s.headerProtector.EncryptHeader(sample, firstByte, pnBytes)
}
func (s *longHeaderSealer) Overhead() int {
return s.aead.Overhead()
}
type longHeaderOpener struct {
aead cipher.AEAD
headerProtector headerProtector
highestRcvdPN protocol.PacketNumber // highest packet number received (which could be successfully unprotected)
// use a single slice to avoid allocations
nonceBuf []byte
}
var _ LongHeaderOpener = &longHeaderOpener{}
func newLongHeaderOpener(aead cipher.AEAD, headerProtector headerProtector) LongHeaderOpener {
return &longHeaderOpener{
aead: aead,
headerProtector: headerProtector,
nonceBuf: make([]byte, aead.NonceSize()),
}
}
func (o *longHeaderOpener) DecodePacketNumber(wirePN protocol.PacketNumber, wirePNLen protocol.PacketNumberLen) protocol.PacketNumber {
return protocol.DecodePacketNumber(wirePNLen, o.highestRcvdPN, wirePN)
}
func (o *longHeaderOpener) Open(dst, src []byte, pn protocol.PacketNumber, ad []byte) ([]byte, error) {
binary.BigEndian.PutUint64(o.nonceBuf[len(o.nonceBuf)-8:], uint64(pn))
// The AEAD we're using here will be the qtls.aeadAESGCM13.
// It uses the nonce provided here and XOR it with the IV.
dec, err := o.aead.Open(dst, o.nonceBuf, src, ad)
if err == nil {
o.highestRcvdPN = utils.MaxPacketNumber(o.highestRcvdPN, pn)
} else {
err = ErrDecryptionFailed
}
return dec, err
}
func (o *longHeaderOpener) DecryptHeader(sample []byte, firstByte *byte, pnBytes []byte) {
o.headerProtector.DecryptHeader(sample, firstByte, pnBytes)
}
type handshakeSealer struct {
LongHeaderSealer
dropInitialKeys func()
dropped bool
}
func newHandshakeSealer(
aead cipher.AEAD,
headerProtector headerProtector,
dropInitialKeys func(),
perspective protocol.Perspective,
) LongHeaderSealer {
sealer := newLongHeaderSealer(aead, headerProtector)
// The client drops Initial keys when sending the first Handshake packet.
if perspective == protocol.PerspectiveServer {
return sealer
}
return &handshakeSealer{
LongHeaderSealer: sealer,
dropInitialKeys: dropInitialKeys,
}
}
func (s *handshakeSealer) Seal(dst, src []byte, pn protocol.PacketNumber, ad []byte) []byte {
data := s.LongHeaderSealer.Seal(dst, src, pn, ad)
if !s.dropped {
s.dropInitialKeys()
s.dropped = true
}
return data
}
type handshakeOpener struct {
LongHeaderOpener
dropInitialKeys func()
dropped bool
}
func newHandshakeOpener(
aead cipher.AEAD,
headerProtector headerProtector,
dropInitialKeys func(),
perspective protocol.Perspective,
) LongHeaderOpener {
opener := newLongHeaderOpener(aead, headerProtector)
// The server drops Initial keys when first successfully processing a Handshake packet.
if perspective == protocol.PerspectiveClient {
return opener
}
return &handshakeOpener{
LongHeaderOpener: opener,
dropInitialKeys: dropInitialKeys,
}
}
func (o *handshakeOpener) Open(dst, src []byte, pn protocol.PacketNumber, ad []byte) ([]byte, error) {
dec, err := o.LongHeaderOpener.Open(dst, src, pn, ad)
if err == nil && !o.dropped {
o.dropInitialKeys()
o.dropped = true
}
return dec, err
}

View file

@ -0,0 +1,819 @@
package handshake
import (
"bytes"
"crypto/tls"
"errors"
"fmt"
"io"
"net"
"sync"
"time"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/qerr"
"github.com/lucas-clemente/quic-go/internal/qtls"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/lucas-clemente/quic-go/internal/wire"
"github.com/lucas-clemente/quic-go/logging"
"github.com/lucas-clemente/quic-go/quicvarint"
)
// TLS unexpected_message alert
const alertUnexpectedMessage uint8 = 10
type messageType uint8
// TLS handshake message types.
const (
typeClientHello messageType = 1
typeServerHello messageType = 2
typeNewSessionTicket messageType = 4
typeEncryptedExtensions messageType = 8
typeCertificate messageType = 11
typeCertificateRequest messageType = 13
typeCertificateVerify messageType = 15
typeFinished messageType = 20
)
func (m messageType) String() string {
switch m {
case typeClientHello:
return "ClientHello"
case typeServerHello:
return "ServerHello"
case typeNewSessionTicket:
return "NewSessionTicket"
case typeEncryptedExtensions:
return "EncryptedExtensions"
case typeCertificate:
return "Certificate"
case typeCertificateRequest:
return "CertificateRequest"
case typeCertificateVerify:
return "CertificateVerify"
case typeFinished:
return "Finished"
default:
return fmt.Sprintf("unknown message type: %d", m)
}
}
const clientSessionStateRevision = 3
type conn struct {
localAddr, remoteAddr net.Addr
version protocol.VersionNumber
}
var _ ConnWithVersion = &conn{}
func newConn(local, remote net.Addr, version protocol.VersionNumber) ConnWithVersion {
return &conn{
localAddr: local,
remoteAddr: remote,
version: version,
}
}
var _ net.Conn = &conn{}
func (c *conn) Read([]byte) (int, error) { return 0, nil }
func (c *conn) Write([]byte) (int, error) { return 0, nil }
func (c *conn) Close() error { return nil }
func (c *conn) RemoteAddr() net.Addr { return c.remoteAddr }
func (c *conn) LocalAddr() net.Addr { return c.localAddr }
func (c *conn) SetReadDeadline(time.Time) error { return nil }
func (c *conn) SetWriteDeadline(time.Time) error { return nil }
func (c *conn) SetDeadline(time.Time) error { return nil }
func (c *conn) GetQUICVersion() protocol.VersionNumber { return c.version }
type cryptoSetup struct {
tlsConf *tls.Config
extraConf *qtls.ExtraConfig
conn *qtls.Conn
version protocol.VersionNumber
messageChan chan []byte
isReadingHandshakeMessage chan struct{}
readFirstHandshakeMessage bool
ourParams *wire.TransportParameters
peerParams *wire.TransportParameters
paramsChan <-chan []byte
runner handshakeRunner
alertChan chan uint8
// handshakeDone is closed as soon as the go routine running qtls.Handshake() returns
handshakeDone chan struct{}
// is closed when Close() is called
closeChan chan struct{}
zeroRTTParameters *wire.TransportParameters
clientHelloWritten bool
clientHelloWrittenChan chan struct{} // is closed as soon as the ClientHello is written
zeroRTTParametersChan chan<- *wire.TransportParameters
rttStats *utils.RTTStats
tracer logging.ConnectionTracer
logger utils.Logger
perspective protocol.Perspective
mutex sync.Mutex // protects all members below
handshakeCompleteTime time.Time
readEncLevel protocol.EncryptionLevel
writeEncLevel protocol.EncryptionLevel
zeroRTTOpener LongHeaderOpener // only set for the server
zeroRTTSealer LongHeaderSealer // only set for the client
initialStream io.Writer
initialOpener LongHeaderOpener
initialSealer LongHeaderSealer
handshakeStream io.Writer
handshakeOpener LongHeaderOpener
handshakeSealer LongHeaderSealer
aead *updatableAEAD
has1RTTSealer bool
has1RTTOpener bool
}
var (
_ qtls.RecordLayer = &cryptoSetup{}
_ CryptoSetup = &cryptoSetup{}
)
// NewCryptoSetupClient creates a new crypto setup for the client
func NewCryptoSetupClient(
initialStream io.Writer,
handshakeStream io.Writer,
connID protocol.ConnectionID,
localAddr net.Addr,
remoteAddr net.Addr,
tp *wire.TransportParameters,
runner handshakeRunner,
tlsConf *tls.Config,
enable0RTT bool,
rttStats *utils.RTTStats,
tracer logging.ConnectionTracer,
logger utils.Logger,
version protocol.VersionNumber,
) (CryptoSetup, <-chan *wire.TransportParameters /* ClientHello written. Receive nil for non-0-RTT */) {
cs, clientHelloWritten := newCryptoSetup(
initialStream,
handshakeStream,
connID,
tp,
runner,
tlsConf,
enable0RTT,
rttStats,
tracer,
logger,
protocol.PerspectiveClient,
version,
)
cs.conn = qtls.Client(newConn(localAddr, remoteAddr, version), cs.tlsConf, cs.extraConf)
return cs, clientHelloWritten
}
// NewCryptoSetupServer creates a new crypto setup for the server
func NewCryptoSetupServer(
initialStream io.Writer,
handshakeStream io.Writer,
connID protocol.ConnectionID,
localAddr net.Addr,
remoteAddr net.Addr,
tp *wire.TransportParameters,
runner handshakeRunner,
tlsConf *tls.Config,
enable0RTT bool,
rttStats *utils.RTTStats,
tracer logging.ConnectionTracer,
logger utils.Logger,
version protocol.VersionNumber,
) CryptoSetup {
cs, _ := newCryptoSetup(
initialStream,
handshakeStream,
connID,
tp,
runner,
tlsConf,
enable0RTT,
rttStats,
tracer,
logger,
protocol.PerspectiveServer,
version,
)
cs.conn = qtls.Server(newConn(localAddr, remoteAddr, version), cs.tlsConf, cs.extraConf)
return cs
}
func newCryptoSetup(
initialStream io.Writer,
handshakeStream io.Writer,
connID protocol.ConnectionID,
tp *wire.TransportParameters,
runner handshakeRunner,
tlsConf *tls.Config,
enable0RTT bool,
rttStats *utils.RTTStats,
tracer logging.ConnectionTracer,
logger utils.Logger,
perspective protocol.Perspective,
version protocol.VersionNumber,
) (*cryptoSetup, <-chan *wire.TransportParameters /* ClientHello written. Receive nil for non-0-RTT */) {
initialSealer, initialOpener := NewInitialAEAD(connID, perspective, version)
if tracer != nil {
tracer.UpdatedKeyFromTLS(protocol.EncryptionInitial, protocol.PerspectiveClient)
tracer.UpdatedKeyFromTLS(protocol.EncryptionInitial, protocol.PerspectiveServer)
}
extHandler := newExtensionHandler(tp.Marshal(perspective), perspective, version)
zeroRTTParametersChan := make(chan *wire.TransportParameters, 1)
cs := &cryptoSetup{
tlsConf: tlsConf,
initialStream: initialStream,
initialSealer: initialSealer,
initialOpener: initialOpener,
handshakeStream: handshakeStream,
aead: newUpdatableAEAD(rttStats, tracer, logger, version),
readEncLevel: protocol.EncryptionInitial,
writeEncLevel: protocol.EncryptionInitial,
runner: runner,
ourParams: tp,
paramsChan: extHandler.TransportParameters(),
rttStats: rttStats,
tracer: tracer,
logger: logger,
perspective: perspective,
handshakeDone: make(chan struct{}),
alertChan: make(chan uint8),
clientHelloWrittenChan: make(chan struct{}),
zeroRTTParametersChan: zeroRTTParametersChan,
messageChan: make(chan []byte, 100),
isReadingHandshakeMessage: make(chan struct{}),
closeChan: make(chan struct{}),
version: version,
}
var maxEarlyData uint32
if enable0RTT {
maxEarlyData = 0xffffffff
}
cs.extraConf = &qtls.ExtraConfig{
GetExtensions: extHandler.GetExtensions,
ReceivedExtensions: extHandler.ReceivedExtensions,
AlternativeRecordLayer: cs,
EnforceNextProtoSelection: true,
MaxEarlyData: maxEarlyData,
Accept0RTT: cs.accept0RTT,
Rejected0RTT: cs.rejected0RTT,
Enable0RTT: enable0RTT,
GetAppDataForSessionState: cs.marshalDataForSessionState,
SetAppDataFromSessionState: cs.handleDataFromSessionState,
}
return cs, zeroRTTParametersChan
}
func (h *cryptoSetup) ChangeConnectionID(id protocol.ConnectionID) {
initialSealer, initialOpener := NewInitialAEAD(id, h.perspective, h.version)
h.initialSealer = initialSealer
h.initialOpener = initialOpener
if h.tracer != nil {
h.tracer.UpdatedKeyFromTLS(protocol.EncryptionInitial, protocol.PerspectiveClient)
h.tracer.UpdatedKeyFromTLS(protocol.EncryptionInitial, protocol.PerspectiveServer)
}
}
func (h *cryptoSetup) SetLargest1RTTAcked(pn protocol.PacketNumber) error {
return h.aead.SetLargestAcked(pn)
}
func (h *cryptoSetup) RunHandshake() {
// Handle errors that might occur when HandleData() is called.
handshakeComplete := make(chan struct{})
handshakeErrChan := make(chan error, 1)
go func() {
defer close(h.handshakeDone)
if err := h.conn.Handshake(); err != nil {
handshakeErrChan <- err
return
}
close(handshakeComplete)
}()
if h.perspective == protocol.PerspectiveClient {
select {
case err := <-handshakeErrChan:
h.onError(0, err.Error())
return
case <-h.clientHelloWrittenChan:
}
}
select {
case <-handshakeComplete: // return when the handshake is done
h.mutex.Lock()
h.handshakeCompleteTime = time.Now()
h.mutex.Unlock()
h.runner.OnHandshakeComplete()
case <-h.closeChan:
// wait until the Handshake() go routine has returned
<-h.handshakeDone
case alert := <-h.alertChan:
handshakeErr := <-handshakeErrChan
h.onError(alert, handshakeErr.Error())
}
}
func (h *cryptoSetup) onError(alert uint8, message string) {
var err error
if alert == 0 {
err = &qerr.TransportError{ErrorCode: qerr.InternalError, ErrorMessage: message}
} else {
err = qerr.NewCryptoError(alert, message)
}
h.runner.OnError(err)
}
// Close closes the crypto setup.
// It aborts the handshake, if it is still running.
// It must only be called once.
func (h *cryptoSetup) Close() error {
close(h.closeChan)
// wait until qtls.Handshake() actually returned
<-h.handshakeDone
return nil
}
// handleMessage handles a TLS handshake message.
// It is called by the crypto streams when a new message is available.
// It returns if it is done with messages on the same encryption level.
func (h *cryptoSetup) HandleMessage(data []byte, encLevel protocol.EncryptionLevel) bool /* stream finished */ {
msgType := messageType(data[0])
h.logger.Debugf("Received %s message (%d bytes, encryption level: %s)", msgType, len(data), encLevel)
if err := h.checkEncryptionLevel(msgType, encLevel); err != nil {
h.onError(alertUnexpectedMessage, err.Error())
return false
}
h.messageChan <- data
if encLevel == protocol.Encryption1RTT {
h.handlePostHandshakeMessage()
return false
}
readLoop:
for {
select {
case data := <-h.paramsChan:
if data == nil {
h.onError(0x6d, "missing quic_transport_parameters extension")
} else {
h.handleTransportParameters(data)
}
case <-h.isReadingHandshakeMessage:
break readLoop
case <-h.handshakeDone:
break readLoop
case <-h.closeChan:
break readLoop
}
}
// We're done with the Initial encryption level after processing a ClientHello / ServerHello,
// but only if a handshake opener and sealer was created.
// Otherwise, a HelloRetryRequest was performed.
// We're done with the Handshake encryption level after processing the Finished message.
return ((msgType == typeClientHello || msgType == typeServerHello) && h.handshakeOpener != nil && h.handshakeSealer != nil) ||
msgType == typeFinished
}
func (h *cryptoSetup) checkEncryptionLevel(msgType messageType, encLevel protocol.EncryptionLevel) error {
var expected protocol.EncryptionLevel
switch msgType {
case typeClientHello,
typeServerHello:
expected = protocol.EncryptionInitial
case typeEncryptedExtensions,
typeCertificate,
typeCertificateRequest,
typeCertificateVerify,
typeFinished:
expected = protocol.EncryptionHandshake
case typeNewSessionTicket:
expected = protocol.Encryption1RTT
default:
return fmt.Errorf("unexpected handshake message: %d", msgType)
}
if encLevel != expected {
return fmt.Errorf("expected handshake message %s to have encryption level %s, has %s", msgType, expected, encLevel)
}
return nil
}
func (h *cryptoSetup) handleTransportParameters(data []byte) {
var tp wire.TransportParameters
if err := tp.Unmarshal(data, h.perspective.Opposite()); err != nil {
h.runner.OnError(&qerr.TransportError{
ErrorCode: qerr.TransportParameterError,
ErrorMessage: err.Error(),
})
}
h.peerParams = &tp
h.runner.OnReceivedParams(h.peerParams)
}
// must be called after receiving the transport parameters
func (h *cryptoSetup) marshalDataForSessionState() []byte {
buf := &bytes.Buffer{}
quicvarint.Write(buf, clientSessionStateRevision)
quicvarint.Write(buf, uint64(h.rttStats.SmoothedRTT().Microseconds()))
h.peerParams.MarshalForSessionTicket(buf)
return buf.Bytes()
}
func (h *cryptoSetup) handleDataFromSessionState(data []byte) {
tp, err := h.handleDataFromSessionStateImpl(data)
if err != nil {
h.logger.Debugf("Restoring of transport parameters from session ticket failed: %s", err.Error())
return
}
h.zeroRTTParameters = tp
}
func (h *cryptoSetup) handleDataFromSessionStateImpl(data []byte) (*wire.TransportParameters, error) {
r := bytes.NewReader(data)
ver, err := quicvarint.Read(r)
if err != nil {
return nil, err
}
if ver != clientSessionStateRevision {
return nil, fmt.Errorf("mismatching version. Got %d, expected %d", ver, clientSessionStateRevision)
}
rtt, err := quicvarint.Read(r)
if err != nil {
return nil, err
}
h.rttStats.SetInitialRTT(time.Duration(rtt) * time.Microsecond)
var tp wire.TransportParameters
if err := tp.UnmarshalFromSessionTicket(r); err != nil {
return nil, err
}
return &tp, nil
}
// only valid for the server
func (h *cryptoSetup) GetSessionTicket() ([]byte, error) {
var appData []byte
// Save transport parameters to the session ticket if we're allowing 0-RTT.
if h.extraConf.MaxEarlyData > 0 {
appData = (&sessionTicket{
Parameters: h.ourParams,
RTT: h.rttStats.SmoothedRTT(),
}).Marshal()
}
return h.conn.GetSessionTicket(appData)
}
// accept0RTT is called for the server when receiving the client's session ticket.
// It decides whether to accept 0-RTT.
func (h *cryptoSetup) accept0RTT(sessionTicketData []byte) bool {
var t sessionTicket
if err := t.Unmarshal(sessionTicketData); err != nil {
h.logger.Debugf("Unmarshalling transport parameters from session ticket failed: %s", err.Error())
return false
}
valid := h.ourParams.ValidFor0RTT(t.Parameters)
if valid {
h.logger.Debugf("Accepting 0-RTT. Restoring RTT from session ticket: %s", t.RTT)
h.rttStats.SetInitialRTT(t.RTT)
} else {
h.logger.Debugf("Transport parameters changed. Rejecting 0-RTT.")
}
return valid
}
// rejected0RTT is called for the client when the server rejects 0-RTT.
func (h *cryptoSetup) rejected0RTT() {
h.logger.Debugf("0-RTT was rejected. Dropping 0-RTT keys.")
h.mutex.Lock()
had0RTTKeys := h.zeroRTTSealer != nil
h.zeroRTTSealer = nil
h.mutex.Unlock()
if had0RTTKeys {
h.runner.DropKeys(protocol.Encryption0RTT)
}
}
func (h *cryptoSetup) handlePostHandshakeMessage() {
// make sure the handshake has already completed
<-h.handshakeDone
done := make(chan struct{})
defer close(done)
// h.alertChan is an unbuffered channel.
// If an error occurs during conn.HandlePostHandshakeMessage,
// it will be sent on this channel.
// Read it from a go-routine so that HandlePostHandshakeMessage doesn't deadlock.
alertChan := make(chan uint8, 1)
go func() {
<-h.isReadingHandshakeMessage
select {
case alert := <-h.alertChan:
alertChan <- alert
case <-done:
}
}()
if err := h.conn.HandlePostHandshakeMessage(); err != nil {
select {
case <-h.closeChan:
case alert := <-alertChan:
h.onError(alert, err.Error())
}
}
}
// ReadHandshakeMessage is called by TLS.
// It blocks until a new handshake message is available.
func (h *cryptoSetup) ReadHandshakeMessage() ([]byte, error) {
if !h.readFirstHandshakeMessage {
h.readFirstHandshakeMessage = true
} else {
select {
case h.isReadingHandshakeMessage <- struct{}{}:
case <-h.closeChan:
return nil, errors.New("error while handling the handshake message")
}
}
select {
case msg := <-h.messageChan:
return msg, nil
case <-h.closeChan:
return nil, errors.New("error while handling the handshake message")
}
}
func (h *cryptoSetup) SetReadKey(encLevel qtls.EncryptionLevel, suite *qtls.CipherSuiteTLS13, trafficSecret []byte) {
h.mutex.Lock()
switch encLevel {
case qtls.Encryption0RTT:
if h.perspective == protocol.PerspectiveClient {
panic("Received 0-RTT read key for the client")
}
h.zeroRTTOpener = newLongHeaderOpener(
createAEAD(suite, trafficSecret, h.version),
newHeaderProtector(suite, trafficSecret, true, h.version),
)
h.mutex.Unlock()
h.logger.Debugf("Installed 0-RTT Read keys (using %s)", tls.CipherSuiteName(suite.ID))
if h.tracer != nil {
h.tracer.UpdatedKeyFromTLS(protocol.Encryption0RTT, h.perspective.Opposite())
}
return
case qtls.EncryptionHandshake:
h.readEncLevel = protocol.EncryptionHandshake
h.handshakeOpener = newHandshakeOpener(
createAEAD(suite, trafficSecret, h.version),
newHeaderProtector(suite, trafficSecret, true, h.version),
h.dropInitialKeys,
h.perspective,
)
h.logger.Debugf("Installed Handshake Read keys (using %s)", tls.CipherSuiteName(suite.ID))
case qtls.EncryptionApplication:
h.readEncLevel = protocol.Encryption1RTT
h.aead.SetReadKey(suite, trafficSecret)
h.has1RTTOpener = true
h.logger.Debugf("Installed 1-RTT Read keys (using %s)", tls.CipherSuiteName(suite.ID))
default:
panic("unexpected read encryption level")
}
h.mutex.Unlock()
if h.tracer != nil {
h.tracer.UpdatedKeyFromTLS(h.readEncLevel, h.perspective.Opposite())
}
}
func (h *cryptoSetup) SetWriteKey(encLevel qtls.EncryptionLevel, suite *qtls.CipherSuiteTLS13, trafficSecret []byte) {
h.mutex.Lock()
switch encLevel {
case qtls.Encryption0RTT:
if h.perspective == protocol.PerspectiveServer {
panic("Received 0-RTT write key for the server")
}
h.zeroRTTSealer = newLongHeaderSealer(
createAEAD(suite, trafficSecret, h.version),
newHeaderProtector(suite, trafficSecret, true, h.version),
)
h.mutex.Unlock()
h.logger.Debugf("Installed 0-RTT Write keys (using %s)", tls.CipherSuiteName(suite.ID))
if h.tracer != nil {
h.tracer.UpdatedKeyFromTLS(protocol.Encryption0RTT, h.perspective)
}
return
case qtls.EncryptionHandshake:
h.writeEncLevel = protocol.EncryptionHandshake
h.handshakeSealer = newHandshakeSealer(
createAEAD(suite, trafficSecret, h.version),
newHeaderProtector(suite, trafficSecret, true, h.version),
h.dropInitialKeys,
h.perspective,
)
h.logger.Debugf("Installed Handshake Write keys (using %s)", tls.CipherSuiteName(suite.ID))
case qtls.EncryptionApplication:
h.writeEncLevel = protocol.Encryption1RTT
h.aead.SetWriteKey(suite, trafficSecret)
h.has1RTTSealer = true
h.logger.Debugf("Installed 1-RTT Write keys (using %s)", tls.CipherSuiteName(suite.ID))
if h.zeroRTTSealer != nil {
h.zeroRTTSealer = nil
h.logger.Debugf("Dropping 0-RTT keys.")
if h.tracer != nil {
h.tracer.DroppedEncryptionLevel(protocol.Encryption0RTT)
}
}
default:
panic("unexpected write encryption level")
}
h.mutex.Unlock()
if h.tracer != nil {
h.tracer.UpdatedKeyFromTLS(h.writeEncLevel, h.perspective)
}
}
// WriteRecord is called when TLS writes data
func (h *cryptoSetup) WriteRecord(p []byte) (int, error) {
h.mutex.Lock()
defer h.mutex.Unlock()
//nolint:exhaustive // LS records can only be written for Initial and Handshake.
switch h.writeEncLevel {
case protocol.EncryptionInitial:
// assume that the first WriteRecord call contains the ClientHello
n, err := h.initialStream.Write(p)
if !h.clientHelloWritten && h.perspective == protocol.PerspectiveClient {
h.clientHelloWritten = true
close(h.clientHelloWrittenChan)
if h.zeroRTTSealer != nil && h.zeroRTTParameters != nil {
h.logger.Debugf("Doing 0-RTT.")
h.zeroRTTParametersChan <- h.zeroRTTParameters
} else {
h.logger.Debugf("Not doing 0-RTT.")
h.zeroRTTParametersChan <- nil
}
}
return n, err
case protocol.EncryptionHandshake:
return h.handshakeStream.Write(p)
default:
panic(fmt.Sprintf("unexpected write encryption level: %s", h.writeEncLevel))
}
}
func (h *cryptoSetup) SendAlert(alert uint8) {
select {
case h.alertChan <- alert:
case <-h.closeChan:
// no need to send an alert when we've already closed
}
}
// used a callback in the handshakeSealer and handshakeOpener
func (h *cryptoSetup) dropInitialKeys() {
h.mutex.Lock()
h.initialOpener = nil
h.initialSealer = nil
h.mutex.Unlock()
h.runner.DropKeys(protocol.EncryptionInitial)
h.logger.Debugf("Dropping Initial keys.")
}
func (h *cryptoSetup) SetHandshakeConfirmed() {
h.aead.SetHandshakeConfirmed()
// drop Handshake keys
var dropped bool
h.mutex.Lock()
if h.handshakeOpener != nil {
h.handshakeOpener = nil
h.handshakeSealer = nil
dropped = true
}
h.mutex.Unlock()
if dropped {
h.runner.DropKeys(protocol.EncryptionHandshake)
h.logger.Debugf("Dropping Handshake keys.")
}
}
func (h *cryptoSetup) GetInitialSealer() (LongHeaderSealer, error) {
h.mutex.Lock()
defer h.mutex.Unlock()
if h.initialSealer == nil {
return nil, ErrKeysDropped
}
return h.initialSealer, nil
}
func (h *cryptoSetup) Get0RTTSealer() (LongHeaderSealer, error) {
h.mutex.Lock()
defer h.mutex.Unlock()
if h.zeroRTTSealer == nil {
return nil, ErrKeysDropped
}
return h.zeroRTTSealer, nil
}
func (h *cryptoSetup) GetHandshakeSealer() (LongHeaderSealer, error) {
h.mutex.Lock()
defer h.mutex.Unlock()
if h.handshakeSealer == nil {
if h.initialSealer == nil {
return nil, ErrKeysDropped
}
return nil, ErrKeysNotYetAvailable
}
return h.handshakeSealer, nil
}
func (h *cryptoSetup) Get1RTTSealer() (ShortHeaderSealer, error) {
h.mutex.Lock()
defer h.mutex.Unlock()
if !h.has1RTTSealer {
return nil, ErrKeysNotYetAvailable
}
return h.aead, nil
}
func (h *cryptoSetup) GetInitialOpener() (LongHeaderOpener, error) {
h.mutex.Lock()
defer h.mutex.Unlock()
if h.initialOpener == nil {
return nil, ErrKeysDropped
}
return h.initialOpener, nil
}
func (h *cryptoSetup) Get0RTTOpener() (LongHeaderOpener, error) {
h.mutex.Lock()
defer h.mutex.Unlock()
if h.zeroRTTOpener == nil {
if h.initialOpener != nil {
return nil, ErrKeysNotYetAvailable
}
// if the initial opener is also not available, the keys were already dropped
return nil, ErrKeysDropped
}
return h.zeroRTTOpener, nil
}
func (h *cryptoSetup) GetHandshakeOpener() (LongHeaderOpener, error) {
h.mutex.Lock()
defer h.mutex.Unlock()
if h.handshakeOpener == nil {
if h.initialOpener != nil {
return nil, ErrKeysNotYetAvailable
}
// if the initial opener is also not available, the keys were already dropped
return nil, ErrKeysDropped
}
return h.handshakeOpener, nil
}
func (h *cryptoSetup) Get1RTTOpener() (ShortHeaderOpener, error) {
h.mutex.Lock()
defer h.mutex.Unlock()
if h.zeroRTTOpener != nil && time.Since(h.handshakeCompleteTime) > 3*h.rttStats.PTO(true) {
h.zeroRTTOpener = nil
h.logger.Debugf("Dropping 0-RTT keys.")
if h.tracer != nil {
h.tracer.DroppedEncryptionLevel(protocol.Encryption0RTT)
}
}
if !h.has1RTTOpener {
return nil, ErrKeysNotYetAvailable
}
return h.aead, nil
}
func (h *cryptoSetup) ConnectionState() ConnectionState {
return qtls.GetConnectionState(h.conn)
}

View file

@ -0,0 +1,136 @@
package handshake
import (
"crypto/aes"
"crypto/cipher"
"crypto/tls"
"encoding/binary"
"fmt"
"golang.org/x/crypto/chacha20"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/qtls"
)
type headerProtector interface {
EncryptHeader(sample []byte, firstByte *byte, hdrBytes []byte)
DecryptHeader(sample []byte, firstByte *byte, hdrBytes []byte)
}
func hkdfHeaderProtectionLabel(v protocol.VersionNumber) string {
if v == protocol.Version2 {
return "quicv2 hp"
}
return "quic hp"
}
func newHeaderProtector(suite *qtls.CipherSuiteTLS13, trafficSecret []byte, isLongHeader bool, v protocol.VersionNumber) headerProtector {
hkdfLabel := hkdfHeaderProtectionLabel(v)
switch suite.ID {
case tls.TLS_AES_128_GCM_SHA256, tls.TLS_AES_256_GCM_SHA384:
return newAESHeaderProtector(suite, trafficSecret, isLongHeader, hkdfLabel)
case tls.TLS_CHACHA20_POLY1305_SHA256:
return newChaChaHeaderProtector(suite, trafficSecret, isLongHeader, hkdfLabel)
default:
panic(fmt.Sprintf("Invalid cipher suite id: %d", suite.ID))
}
}
type aesHeaderProtector struct {
mask []byte
block cipher.Block
isLongHeader bool
}
var _ headerProtector = &aesHeaderProtector{}
func newAESHeaderProtector(suite *qtls.CipherSuiteTLS13, trafficSecret []byte, isLongHeader bool, hkdfLabel string) headerProtector {
hpKey := hkdfExpandLabel(suite.Hash, trafficSecret, []byte{}, hkdfLabel, suite.KeyLen)
block, err := aes.NewCipher(hpKey)
if err != nil {
panic(fmt.Sprintf("error creating new AES cipher: %s", err))
}
return &aesHeaderProtector{
block: block,
mask: make([]byte, block.BlockSize()),
isLongHeader: isLongHeader,
}
}
func (p *aesHeaderProtector) DecryptHeader(sample []byte, firstByte *byte, hdrBytes []byte) {
p.apply(sample, firstByte, hdrBytes)
}
func (p *aesHeaderProtector) EncryptHeader(sample []byte, firstByte *byte, hdrBytes []byte) {
p.apply(sample, firstByte, hdrBytes)
}
func (p *aesHeaderProtector) apply(sample []byte, firstByte *byte, hdrBytes []byte) {
if len(sample) != len(p.mask) {
panic("invalid sample size")
}
p.block.Encrypt(p.mask, sample)
if p.isLongHeader {
*firstByte ^= p.mask[0] & 0xf
} else {
*firstByte ^= p.mask[0] & 0x1f
}
for i := range hdrBytes {
hdrBytes[i] ^= p.mask[i+1]
}
}
type chachaHeaderProtector struct {
mask [5]byte
key [32]byte
isLongHeader bool
}
var _ headerProtector = &chachaHeaderProtector{}
func newChaChaHeaderProtector(suite *qtls.CipherSuiteTLS13, trafficSecret []byte, isLongHeader bool, hkdfLabel string) headerProtector {
hpKey := hkdfExpandLabel(suite.Hash, trafficSecret, []byte{}, hkdfLabel, suite.KeyLen)
p := &chachaHeaderProtector{
isLongHeader: isLongHeader,
}
copy(p.key[:], hpKey)
return p
}
func (p *chachaHeaderProtector) DecryptHeader(sample []byte, firstByte *byte, hdrBytes []byte) {
p.apply(sample, firstByte, hdrBytes)
}
func (p *chachaHeaderProtector) EncryptHeader(sample []byte, firstByte *byte, hdrBytes []byte) {
p.apply(sample, firstByte, hdrBytes)
}
func (p *chachaHeaderProtector) apply(sample []byte, firstByte *byte, hdrBytes []byte) {
if len(sample) != 16 {
panic("invalid sample size")
}
for i := 0; i < 5; i++ {
p.mask[i] = 0
}
cipher, err := chacha20.NewUnauthenticatedCipher(p.key[:], sample[4:])
if err != nil {
panic(err)
}
cipher.SetCounter(binary.LittleEndian.Uint32(sample[:4]))
cipher.XORKeyStream(p.mask[:], p.mask[:])
p.applyMask(firstByte, hdrBytes)
}
func (p *chachaHeaderProtector) applyMask(firstByte *byte, hdrBytes []byte) {
if p.isLongHeader {
*firstByte ^= p.mask[0] & 0xf
} else {
*firstByte ^= p.mask[0] & 0x1f
}
for i := range hdrBytes {
hdrBytes[i] ^= p.mask[i+1]
}
}

View file

@ -0,0 +1,29 @@
package handshake
import (
"crypto"
"encoding/binary"
"golang.org/x/crypto/hkdf"
)
// hkdfExpandLabel HKDF expands a label.
// Since this implementation avoids using a cryptobyte.Builder, it is about 15% faster than the
// hkdfExpandLabel in the standard library.
func hkdfExpandLabel(hash crypto.Hash, secret, context []byte, label string, length int) []byte {
b := make([]byte, 3, 3+6+len(label)+1+len(context))
binary.BigEndian.PutUint16(b, uint16(length))
b[2] = uint8(6 + len(label))
b = append(b, []byte("tls13 ")...)
b = append(b, []byte(label)...)
b = b[:3+6+len(label)+1]
b[3+6+len(label)] = uint8(len(context))
b = append(b, context...)
out := make([]byte, length)
n, err := hkdf.Expand(hash.New, secret, b).Read(out)
if err != nil || n != length {
panic("quic: HKDF-Expand-Label invocation failed unexpectedly")
}
return out
}

View file

@ -0,0 +1,81 @@
package handshake
import (
"crypto"
"crypto/tls"
"golang.org/x/crypto/hkdf"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/qtls"
)
var (
quicSaltOld = []byte{0xaf, 0xbf, 0xec, 0x28, 0x99, 0x93, 0xd2, 0x4c, 0x9e, 0x97, 0x86, 0xf1, 0x9c, 0x61, 0x11, 0xe0, 0x43, 0x90, 0xa8, 0x99}
quicSaltV1 = []byte{0x38, 0x76, 0x2c, 0xf7, 0xf5, 0x59, 0x34, 0xb3, 0x4d, 0x17, 0x9a, 0xe6, 0xa4, 0xc8, 0x0c, 0xad, 0xcc, 0xbb, 0x7f, 0x0a}
quicSaltV2 = []byte{0xa7, 0x07, 0xc2, 0x03, 0xa5, 0x9b, 0x47, 0x18, 0x4a, 0x1d, 0x62, 0xca, 0x57, 0x04, 0x06, 0xea, 0x7a, 0xe3, 0xe5, 0xd3}
)
const (
hkdfLabelKeyV1 = "quic key"
hkdfLabelKeyV2 = "quicv2 key"
hkdfLabelIVV1 = "quic iv"
hkdfLabelIVV2 = "quicv2 iv"
)
func getSalt(v protocol.VersionNumber) []byte {
if v == protocol.Version2 {
return quicSaltV2
}
if v == protocol.Version1 {
return quicSaltV1
}
return quicSaltOld
}
var initialSuite = &qtls.CipherSuiteTLS13{
ID: tls.TLS_AES_128_GCM_SHA256,
KeyLen: 16,
AEAD: qtls.AEADAESGCMTLS13,
Hash: crypto.SHA256,
}
// NewInitialAEAD creates a new AEAD for Initial encryption / decryption.
func NewInitialAEAD(connID protocol.ConnectionID, pers protocol.Perspective, v protocol.VersionNumber) (LongHeaderSealer, LongHeaderOpener) {
clientSecret, serverSecret := computeSecrets(connID, v)
var mySecret, otherSecret []byte
if pers == protocol.PerspectiveClient {
mySecret = clientSecret
otherSecret = serverSecret
} else {
mySecret = serverSecret
otherSecret = clientSecret
}
myKey, myIV := computeInitialKeyAndIV(mySecret, v)
otherKey, otherIV := computeInitialKeyAndIV(otherSecret, v)
encrypter := qtls.AEADAESGCMTLS13(myKey, myIV)
decrypter := qtls.AEADAESGCMTLS13(otherKey, otherIV)
return newLongHeaderSealer(encrypter, newHeaderProtector(initialSuite, mySecret, true, v)),
newLongHeaderOpener(decrypter, newAESHeaderProtector(initialSuite, otherSecret, true, hkdfHeaderProtectionLabel(v)))
}
func computeSecrets(connID protocol.ConnectionID, v protocol.VersionNumber) (clientSecret, serverSecret []byte) {
initialSecret := hkdf.Extract(crypto.SHA256.New, connID, getSalt(v))
clientSecret = hkdfExpandLabel(crypto.SHA256, initialSecret, []byte{}, "client in", crypto.SHA256.Size())
serverSecret = hkdfExpandLabel(crypto.SHA256, initialSecret, []byte{}, "server in", crypto.SHA256.Size())
return
}
func computeInitialKeyAndIV(secret []byte, v protocol.VersionNumber) (key, iv []byte) {
keyLabel := hkdfLabelKeyV1
ivLabel := hkdfLabelIVV1
if v == protocol.Version2 {
keyLabel = hkdfLabelKeyV2
ivLabel = hkdfLabelIVV2
}
key = hkdfExpandLabel(crypto.SHA256, secret, []byte{}, keyLabel, 16)
iv = hkdfExpandLabel(crypto.SHA256, secret, []byte{}, ivLabel, 12)
return
}

View file

@ -0,0 +1,102 @@
package handshake
import (
"errors"
"io"
"net"
"time"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/qtls"
"github.com/lucas-clemente/quic-go/internal/wire"
)
var (
// ErrKeysNotYetAvailable is returned when an opener or a sealer is requested for an encryption level,
// but the corresponding opener has not yet been initialized
// This can happen when packets arrive out of order.
ErrKeysNotYetAvailable = errors.New("CryptoSetup: keys at this encryption level not yet available")
// ErrKeysDropped is returned when an opener or a sealer is requested for an encryption level,
// but the corresponding keys have already been dropped.
ErrKeysDropped = errors.New("CryptoSetup: keys were already dropped")
// ErrDecryptionFailed is returned when the AEAD fails to open the packet.
ErrDecryptionFailed = errors.New("decryption failed")
)
// ConnectionState contains information about the state of the connection.
type ConnectionState = qtls.ConnectionState
type headerDecryptor interface {
DecryptHeader(sample []byte, firstByte *byte, pnBytes []byte)
}
// LongHeaderOpener opens a long header packet
type LongHeaderOpener interface {
headerDecryptor
DecodePacketNumber(wirePN protocol.PacketNumber, wirePNLen protocol.PacketNumberLen) protocol.PacketNumber
Open(dst, src []byte, pn protocol.PacketNumber, associatedData []byte) ([]byte, error)
}
// ShortHeaderOpener opens a short header packet
type ShortHeaderOpener interface {
headerDecryptor
DecodePacketNumber(wirePN protocol.PacketNumber, wirePNLen protocol.PacketNumberLen) protocol.PacketNumber
Open(dst, src []byte, rcvTime time.Time, pn protocol.PacketNumber, kp protocol.KeyPhaseBit, associatedData []byte) ([]byte, error)
}
// LongHeaderSealer seals a long header packet
type LongHeaderSealer interface {
Seal(dst, src []byte, packetNumber protocol.PacketNumber, associatedData []byte) []byte
EncryptHeader(sample []byte, firstByte *byte, pnBytes []byte)
Overhead() int
}
// ShortHeaderSealer seals a short header packet
type ShortHeaderSealer interface {
LongHeaderSealer
KeyPhase() protocol.KeyPhaseBit
}
// A tlsExtensionHandler sends and received the QUIC TLS extension.
type tlsExtensionHandler interface {
GetExtensions(msgType uint8) []qtls.Extension
ReceivedExtensions(msgType uint8, exts []qtls.Extension)
TransportParameters() <-chan []byte
}
type handshakeRunner interface {
OnReceivedParams(*wire.TransportParameters)
OnHandshakeComplete()
OnError(error)
DropKeys(protocol.EncryptionLevel)
}
// CryptoSetup handles the handshake and protecting / unprotecting packets
type CryptoSetup interface {
RunHandshake()
io.Closer
ChangeConnectionID(protocol.ConnectionID)
GetSessionTicket() ([]byte, error)
HandleMessage([]byte, protocol.EncryptionLevel) bool
SetLargest1RTTAcked(protocol.PacketNumber) error
SetHandshakeConfirmed()
ConnectionState() ConnectionState
GetInitialOpener() (LongHeaderOpener, error)
GetHandshakeOpener() (LongHeaderOpener, error)
Get0RTTOpener() (LongHeaderOpener, error)
Get1RTTOpener() (ShortHeaderOpener, error)
GetInitialSealer() (LongHeaderSealer, error)
GetHandshakeSealer() (LongHeaderSealer, error)
Get0RTTSealer() (LongHeaderSealer, error)
Get1RTTSealer() (ShortHeaderSealer, error)
}
// ConnWithVersion is the connection used in the ClientHelloInfo.
// It can be used to determine the QUIC version in use.
type ConnWithVersion interface {
net.Conn
GetQUICVersion() protocol.VersionNumber
}

View file

@ -0,0 +1,3 @@
package handshake
//go:generate sh -c "../../mockgen_private.sh handshake mock_handshake_runner_test.go github.com/lucas-clemente/quic-go/internal/handshake handshakeRunner"

View file

@ -0,0 +1,62 @@
package handshake
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"fmt"
"sync"
"github.com/lucas-clemente/quic-go/internal/protocol"
)
var (
oldRetryAEAD cipher.AEAD // used for QUIC draft versions up to 34
retryAEAD cipher.AEAD // used for QUIC draft-34
)
func init() {
oldRetryAEAD = initAEAD([16]byte{0xcc, 0xce, 0x18, 0x7e, 0xd0, 0x9a, 0x09, 0xd0, 0x57, 0x28, 0x15, 0x5a, 0x6c, 0xb9, 0x6b, 0xe1})
retryAEAD = initAEAD([16]byte{0xbe, 0x0c, 0x69, 0x0b, 0x9f, 0x66, 0x57, 0x5a, 0x1d, 0x76, 0x6b, 0x54, 0xe3, 0x68, 0xc8, 0x4e})
}
func initAEAD(key [16]byte) cipher.AEAD {
aes, err := aes.NewCipher(key[:])
if err != nil {
panic(err)
}
aead, err := cipher.NewGCM(aes)
if err != nil {
panic(err)
}
return aead
}
var (
retryBuf bytes.Buffer
retryMutex sync.Mutex
oldRetryNonce = [12]byte{0xe5, 0x49, 0x30, 0xf9, 0x7f, 0x21, 0x36, 0xf0, 0x53, 0x0a, 0x8c, 0x1c}
retryNonce = [12]byte{0x46, 0x15, 0x99, 0xd3, 0x5d, 0x63, 0x2b, 0xf2, 0x23, 0x98, 0x25, 0xbb}
)
// GetRetryIntegrityTag calculates the integrity tag on a Retry packet
func GetRetryIntegrityTag(retry []byte, origDestConnID protocol.ConnectionID, version protocol.VersionNumber) *[16]byte {
retryMutex.Lock()
retryBuf.WriteByte(uint8(origDestConnID.Len()))
retryBuf.Write(origDestConnID.Bytes())
retryBuf.Write(retry)
var tag [16]byte
var sealed []byte
if version != protocol.Version1 {
sealed = oldRetryAEAD.Seal(tag[:0], oldRetryNonce[:], nil, retryBuf.Bytes())
} else {
sealed = retryAEAD.Seal(tag[:0], retryNonce[:], nil, retryBuf.Bytes())
}
if len(sealed) != 16 {
panic(fmt.Sprintf("unexpected Retry integrity tag length: %d", len(sealed)))
}
retryBuf.Reset()
retryMutex.Unlock()
return &tag
}

View file

@ -0,0 +1,48 @@
package handshake
import (
"bytes"
"errors"
"fmt"
"time"
"github.com/lucas-clemente/quic-go/internal/wire"
"github.com/lucas-clemente/quic-go/quicvarint"
)
const sessionTicketRevision = 2
type sessionTicket struct {
Parameters *wire.TransportParameters
RTT time.Duration // to be encoded in mus
}
func (t *sessionTicket) Marshal() []byte {
b := &bytes.Buffer{}
quicvarint.Write(b, sessionTicketRevision)
quicvarint.Write(b, uint64(t.RTT.Microseconds()))
t.Parameters.MarshalForSessionTicket(b)
return b.Bytes()
}
func (t *sessionTicket) Unmarshal(b []byte) error {
r := bytes.NewReader(b)
rev, err := quicvarint.Read(r)
if err != nil {
return errors.New("failed to read session ticket revision")
}
if rev != sessionTicketRevision {
return fmt.Errorf("unknown session ticket revision: %d", rev)
}
rtt, err := quicvarint.Read(r)
if err != nil {
return errors.New("failed to read RTT")
}
var tp wire.TransportParameters
if err := tp.UnmarshalFromSessionTicket(r); err != nil {
return fmt.Errorf("unmarshaling transport parameters from session ticket failed: %s", err.Error())
}
t.Parameters = &tp
t.RTT = time.Duration(rtt) * time.Microsecond
return nil
}

View file

@ -0,0 +1,68 @@
package handshake
import (
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/qtls"
)
const (
quicTLSExtensionTypeOldDrafts = 0xffa5
quicTLSExtensionType = 0x39
)
type extensionHandler struct {
ourParams []byte
paramsChan chan []byte
extensionType uint16
perspective protocol.Perspective
}
var _ tlsExtensionHandler = &extensionHandler{}
// newExtensionHandler creates a new extension handler
func newExtensionHandler(params []byte, pers protocol.Perspective, v protocol.VersionNumber) tlsExtensionHandler {
et := uint16(quicTLSExtensionType)
if v != protocol.Version1 {
et = quicTLSExtensionTypeOldDrafts
}
return &extensionHandler{
ourParams: params,
paramsChan: make(chan []byte),
perspective: pers,
extensionType: et,
}
}
func (h *extensionHandler) GetExtensions(msgType uint8) []qtls.Extension {
if (h.perspective == protocol.PerspectiveClient && messageType(msgType) != typeClientHello) ||
(h.perspective == protocol.PerspectiveServer && messageType(msgType) != typeEncryptedExtensions) {
return nil
}
return []qtls.Extension{{
Type: h.extensionType,
Data: h.ourParams,
}}
}
func (h *extensionHandler) ReceivedExtensions(msgType uint8, exts []qtls.Extension) {
if (h.perspective == protocol.PerspectiveClient && messageType(msgType) != typeEncryptedExtensions) ||
(h.perspective == protocol.PerspectiveServer && messageType(msgType) != typeClientHello) {
return
}
var data []byte
for _, ext := range exts {
if ext.Type == h.extensionType {
data = ext.Data
break
}
}
h.paramsChan <- data
}
func (h *extensionHandler) TransportParameters() <-chan []byte {
return h.paramsChan
}

View file

@ -0,0 +1,134 @@
package handshake
import (
"encoding/asn1"
"fmt"
"io"
"net"
"time"
"github.com/lucas-clemente/quic-go/internal/protocol"
)
const (
tokenPrefixIP byte = iota
tokenPrefixString
)
// A Token is derived from the client address and can be used to verify the ownership of this address.
type Token struct {
IsRetryToken bool
RemoteAddr string
SentTime time.Time
// only set for retry tokens
OriginalDestConnectionID protocol.ConnectionID
RetrySrcConnectionID protocol.ConnectionID
}
// token is the struct that is used for ASN1 serialization and deserialization
type token struct {
IsRetryToken bool
RemoteAddr []byte
Timestamp int64
OriginalDestConnectionID []byte
RetrySrcConnectionID []byte
}
// A TokenGenerator generates tokens
type TokenGenerator struct {
tokenProtector tokenProtector
}
// NewTokenGenerator initializes a new TookenGenerator
func NewTokenGenerator(rand io.Reader) (*TokenGenerator, error) {
tokenProtector, err := newTokenProtector(rand)
if err != nil {
return nil, err
}
return &TokenGenerator{
tokenProtector: tokenProtector,
}, nil
}
// NewRetryToken generates a new token for a Retry for a given source address
func (g *TokenGenerator) NewRetryToken(
raddr net.Addr,
origDestConnID protocol.ConnectionID,
retrySrcConnID protocol.ConnectionID,
) ([]byte, error) {
data, err := asn1.Marshal(token{
IsRetryToken: true,
RemoteAddr: encodeRemoteAddr(raddr),
OriginalDestConnectionID: origDestConnID,
RetrySrcConnectionID: retrySrcConnID,
Timestamp: time.Now().UnixNano(),
})
if err != nil {
return nil, err
}
return g.tokenProtector.NewToken(data)
}
// NewToken generates a new token to be sent in a NEW_TOKEN frame
func (g *TokenGenerator) NewToken(raddr net.Addr) ([]byte, error) {
data, err := asn1.Marshal(token{
RemoteAddr: encodeRemoteAddr(raddr),
Timestamp: time.Now().UnixNano(),
})
if err != nil {
return nil, err
}
return g.tokenProtector.NewToken(data)
}
// DecodeToken decodes a token
func (g *TokenGenerator) DecodeToken(encrypted []byte) (*Token, error) {
// if the client didn't send any token, DecodeToken will be called with a nil-slice
if len(encrypted) == 0 {
return nil, nil
}
data, err := g.tokenProtector.DecodeToken(encrypted)
if err != nil {
return nil, err
}
t := &token{}
rest, err := asn1.Unmarshal(data, t)
if err != nil {
return nil, err
}
if len(rest) != 0 {
return nil, fmt.Errorf("rest when unpacking token: %d", len(rest))
}
token := &Token{
IsRetryToken: t.IsRetryToken,
RemoteAddr: decodeRemoteAddr(t.RemoteAddr),
SentTime: time.Unix(0, t.Timestamp),
}
if t.IsRetryToken {
token.OriginalDestConnectionID = protocol.ConnectionID(t.OriginalDestConnectionID)
token.RetrySrcConnectionID = protocol.ConnectionID(t.RetrySrcConnectionID)
}
return token, nil
}
// encodeRemoteAddr encodes a remote address such that it can be saved in the token
func encodeRemoteAddr(remoteAddr net.Addr) []byte {
if udpAddr, ok := remoteAddr.(*net.UDPAddr); ok {
return append([]byte{tokenPrefixIP}, udpAddr.IP...)
}
return append([]byte{tokenPrefixString}, []byte(remoteAddr.String())...)
}
// decodeRemoteAddr decodes the remote address saved in the token
func decodeRemoteAddr(data []byte) string {
// data will never be empty for a token that we generated.
// Check it to be on the safe side
if len(data) == 0 {
return ""
}
if data[0] == tokenPrefixIP {
return net.IP(data[1:]).String()
}
return string(data[1:])
}

View file

@ -0,0 +1,89 @@
package handshake
import (
"crypto/aes"
"crypto/cipher"
"crypto/sha256"
"fmt"
"io"
"golang.org/x/crypto/hkdf"
)
// TokenProtector is used to create and verify a token
type tokenProtector interface {
// NewToken creates a new token
NewToken([]byte) ([]byte, error)
// DecodeToken decodes a token
DecodeToken([]byte) ([]byte, error)
}
const (
tokenSecretSize = 32
tokenNonceSize = 32
)
// tokenProtector is used to create and verify a token
type tokenProtectorImpl struct {
rand io.Reader
secret []byte
}
// newTokenProtector creates a source for source address tokens
func newTokenProtector(rand io.Reader) (tokenProtector, error) {
secret := make([]byte, tokenSecretSize)
if _, err := rand.Read(secret); err != nil {
return nil, err
}
return &tokenProtectorImpl{
rand: rand,
secret: secret,
}, nil
}
// NewToken encodes data into a new token.
func (s *tokenProtectorImpl) NewToken(data []byte) ([]byte, error) {
nonce := make([]byte, tokenNonceSize)
if _, err := s.rand.Read(nonce); err != nil {
return nil, err
}
aead, aeadNonce, err := s.createAEAD(nonce)
if err != nil {
return nil, err
}
return append(nonce, aead.Seal(nil, aeadNonce, data, nil)...), nil
}
// DecodeToken decodes a token.
func (s *tokenProtectorImpl) DecodeToken(p []byte) ([]byte, error) {
if len(p) < tokenNonceSize {
return nil, fmt.Errorf("token too short: %d", len(p))
}
nonce := p[:tokenNonceSize]
aead, aeadNonce, err := s.createAEAD(nonce)
if err != nil {
return nil, err
}
return aead.Open(nil, aeadNonce, p[tokenNonceSize:], nil)
}
func (s *tokenProtectorImpl) createAEAD(nonce []byte) (cipher.AEAD, []byte, error) {
h := hkdf.New(sha256.New, s.secret, nonce, []byte("quic-go token source"))
key := make([]byte, 32) // use a 32 byte key, in order to select AES-256
if _, err := io.ReadFull(h, key); err != nil {
return nil, nil, err
}
aeadNonce := make([]byte, 12)
if _, err := io.ReadFull(h, aeadNonce); err != nil {
return nil, nil, err
}
c, err := aes.NewCipher(key)
if err != nil {
return nil, nil, err
}
aead, err := cipher.NewGCM(c)
if err != nil {
return nil, nil, err
}
return aead, aeadNonce, nil
}

View file

@ -0,0 +1,323 @@
package handshake
import (
"crypto"
"crypto/cipher"
"crypto/tls"
"encoding/binary"
"fmt"
"time"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/qerr"
"github.com/lucas-clemente/quic-go/internal/qtls"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/lucas-clemente/quic-go/logging"
)
// KeyUpdateInterval is the maximum number of packets we send or receive before initiating a key update.
// It's a package-level variable to allow modifying it for testing purposes.
var KeyUpdateInterval uint64 = protocol.KeyUpdateInterval
type updatableAEAD struct {
suite *qtls.CipherSuiteTLS13
keyPhase protocol.KeyPhase
largestAcked protocol.PacketNumber
firstPacketNumber protocol.PacketNumber
handshakeConfirmed bool
keyUpdateInterval uint64
invalidPacketLimit uint64
invalidPacketCount uint64
// Time when the keys should be dropped. Keys are dropped on the next call to Open().
prevRcvAEADExpiry time.Time
prevRcvAEAD cipher.AEAD
firstRcvdWithCurrentKey protocol.PacketNumber
firstSentWithCurrentKey protocol.PacketNumber
highestRcvdPN protocol.PacketNumber // highest packet number received (which could be successfully unprotected)
numRcvdWithCurrentKey uint64
numSentWithCurrentKey uint64
rcvAEAD cipher.AEAD
sendAEAD cipher.AEAD
// caches cipher.AEAD.Overhead(). This speeds up calls to Overhead().
aeadOverhead int
nextRcvAEAD cipher.AEAD
nextSendAEAD cipher.AEAD
nextRcvTrafficSecret []byte
nextSendTrafficSecret []byte
headerDecrypter headerProtector
headerEncrypter headerProtector
rttStats *utils.RTTStats
tracer logging.ConnectionTracer
logger utils.Logger
version protocol.VersionNumber
// use a single slice to avoid allocations
nonceBuf []byte
}
var (
_ ShortHeaderOpener = &updatableAEAD{}
_ ShortHeaderSealer = &updatableAEAD{}
)
func newUpdatableAEAD(rttStats *utils.RTTStats, tracer logging.ConnectionTracer, logger utils.Logger, version protocol.VersionNumber) *updatableAEAD {
return &updatableAEAD{
firstPacketNumber: protocol.InvalidPacketNumber,
largestAcked: protocol.InvalidPacketNumber,
firstRcvdWithCurrentKey: protocol.InvalidPacketNumber,
firstSentWithCurrentKey: protocol.InvalidPacketNumber,
keyUpdateInterval: KeyUpdateInterval,
rttStats: rttStats,
tracer: tracer,
logger: logger,
version: version,
}
}
func (a *updatableAEAD) rollKeys() {
if a.prevRcvAEAD != nil {
a.logger.Debugf("Dropping key phase %d ahead of scheduled time. Drop time was: %s", a.keyPhase-1, a.prevRcvAEADExpiry)
if a.tracer != nil {
a.tracer.DroppedKey(a.keyPhase - 1)
}
a.prevRcvAEADExpiry = time.Time{}
}
a.keyPhase++
a.firstRcvdWithCurrentKey = protocol.InvalidPacketNumber
a.firstSentWithCurrentKey = protocol.InvalidPacketNumber
a.numRcvdWithCurrentKey = 0
a.numSentWithCurrentKey = 0
a.prevRcvAEAD = a.rcvAEAD
a.rcvAEAD = a.nextRcvAEAD
a.sendAEAD = a.nextSendAEAD
a.nextRcvTrafficSecret = a.getNextTrafficSecret(a.suite.Hash, a.nextRcvTrafficSecret)
a.nextSendTrafficSecret = a.getNextTrafficSecret(a.suite.Hash, a.nextSendTrafficSecret)
a.nextRcvAEAD = createAEAD(a.suite, a.nextRcvTrafficSecret, a.version)
a.nextSendAEAD = createAEAD(a.suite, a.nextSendTrafficSecret, a.version)
}
func (a *updatableAEAD) startKeyDropTimer(now time.Time) {
d := 3 * a.rttStats.PTO(true)
a.logger.Debugf("Starting key drop timer to drop key phase %d (in %s)", a.keyPhase-1, d)
a.prevRcvAEADExpiry = now.Add(d)
}
func (a *updatableAEAD) getNextTrafficSecret(hash crypto.Hash, ts []byte) []byte {
return hkdfExpandLabel(hash, ts, []byte{}, "quic ku", hash.Size())
}
// For the client, this function is called before SetWriteKey.
// For the server, this function is called after SetWriteKey.
func (a *updatableAEAD) SetReadKey(suite *qtls.CipherSuiteTLS13, trafficSecret []byte) {
a.rcvAEAD = createAEAD(suite, trafficSecret, a.version)
a.headerDecrypter = newHeaderProtector(suite, trafficSecret, false, a.version)
if a.suite == nil {
a.setAEADParameters(a.rcvAEAD, suite)
}
a.nextRcvTrafficSecret = a.getNextTrafficSecret(suite.Hash, trafficSecret)
a.nextRcvAEAD = createAEAD(suite, a.nextRcvTrafficSecret, a.version)
}
// For the client, this function is called after SetReadKey.
// For the server, this function is called before SetWriteKey.
func (a *updatableAEAD) SetWriteKey(suite *qtls.CipherSuiteTLS13, trafficSecret []byte) {
a.sendAEAD = createAEAD(suite, trafficSecret, a.version)
a.headerEncrypter = newHeaderProtector(suite, trafficSecret, false, a.version)
if a.suite == nil {
a.setAEADParameters(a.sendAEAD, suite)
}
a.nextSendTrafficSecret = a.getNextTrafficSecret(suite.Hash, trafficSecret)
a.nextSendAEAD = createAEAD(suite, a.nextSendTrafficSecret, a.version)
}
func (a *updatableAEAD) setAEADParameters(aead cipher.AEAD, suite *qtls.CipherSuiteTLS13) {
a.nonceBuf = make([]byte, aead.NonceSize())
a.aeadOverhead = aead.Overhead()
a.suite = suite
switch suite.ID {
case tls.TLS_AES_128_GCM_SHA256, tls.TLS_AES_256_GCM_SHA384:
a.invalidPacketLimit = protocol.InvalidPacketLimitAES
case tls.TLS_CHACHA20_POLY1305_SHA256:
a.invalidPacketLimit = protocol.InvalidPacketLimitChaCha
default:
panic(fmt.Sprintf("unknown cipher suite %d", suite.ID))
}
}
func (a *updatableAEAD) DecodePacketNumber(wirePN protocol.PacketNumber, wirePNLen protocol.PacketNumberLen) protocol.PacketNumber {
return protocol.DecodePacketNumber(wirePNLen, a.highestRcvdPN, wirePN)
}
func (a *updatableAEAD) Open(dst, src []byte, rcvTime time.Time, pn protocol.PacketNumber, kp protocol.KeyPhaseBit, ad []byte) ([]byte, error) {
dec, err := a.open(dst, src, rcvTime, pn, kp, ad)
if err == ErrDecryptionFailed {
a.invalidPacketCount++
if a.invalidPacketCount >= a.invalidPacketLimit {
return nil, &qerr.TransportError{ErrorCode: qerr.AEADLimitReached}
}
}
if err == nil {
a.highestRcvdPN = utils.MaxPacketNumber(a.highestRcvdPN, pn)
}
return dec, err
}
func (a *updatableAEAD) open(dst, src []byte, rcvTime time.Time, pn protocol.PacketNumber, kp protocol.KeyPhaseBit, ad []byte) ([]byte, error) {
if a.prevRcvAEAD != nil && !a.prevRcvAEADExpiry.IsZero() && rcvTime.After(a.prevRcvAEADExpiry) {
a.prevRcvAEAD = nil
a.logger.Debugf("Dropping key phase %d", a.keyPhase-1)
a.prevRcvAEADExpiry = time.Time{}
if a.tracer != nil {
a.tracer.DroppedKey(a.keyPhase - 1)
}
}
binary.BigEndian.PutUint64(a.nonceBuf[len(a.nonceBuf)-8:], uint64(pn))
if kp != a.keyPhase.Bit() {
if a.keyPhase > 0 && a.firstRcvdWithCurrentKey == protocol.InvalidPacketNumber || pn < a.firstRcvdWithCurrentKey {
if a.prevRcvAEAD == nil {
return nil, ErrKeysDropped
}
// we updated the key, but the peer hasn't updated yet
dec, err := a.prevRcvAEAD.Open(dst, a.nonceBuf, src, ad)
if err != nil {
err = ErrDecryptionFailed
}
return dec, err
}
// try opening the packet with the next key phase
dec, err := a.nextRcvAEAD.Open(dst, a.nonceBuf, src, ad)
if err != nil {
return nil, ErrDecryptionFailed
}
// Opening succeeded. Check if the peer was allowed to update.
if a.keyPhase > 0 && a.firstSentWithCurrentKey == protocol.InvalidPacketNumber {
return nil, &qerr.TransportError{
ErrorCode: qerr.KeyUpdateError,
ErrorMessage: "keys updated too quickly",
}
}
a.rollKeys()
a.logger.Debugf("Peer updated keys to %d", a.keyPhase)
// The peer initiated this key update. It's safe to drop the keys for the previous generation now.
// Start a timer to drop the previous key generation.
a.startKeyDropTimer(rcvTime)
if a.tracer != nil {
a.tracer.UpdatedKey(a.keyPhase, true)
}
a.firstRcvdWithCurrentKey = pn
return dec, err
}
// The AEAD we're using here will be the qtls.aeadAESGCM13.
// It uses the nonce provided here and XOR it with the IV.
dec, err := a.rcvAEAD.Open(dst, a.nonceBuf, src, ad)
if err != nil {
return dec, ErrDecryptionFailed
}
a.numRcvdWithCurrentKey++
if a.firstRcvdWithCurrentKey == protocol.InvalidPacketNumber {
// We initiated the key updated, and now we received the first packet protected with the new key phase.
// Therefore, we are certain that the peer rolled its keys as well. Start a timer to drop the old keys.
if a.keyPhase > 0 {
a.logger.Debugf("Peer confirmed key update to phase %d", a.keyPhase)
a.startKeyDropTimer(rcvTime)
}
a.firstRcvdWithCurrentKey = pn
}
return dec, err
}
func (a *updatableAEAD) Seal(dst, src []byte, pn protocol.PacketNumber, ad []byte) []byte {
if a.firstSentWithCurrentKey == protocol.InvalidPacketNumber {
a.firstSentWithCurrentKey = pn
}
if a.firstPacketNumber == protocol.InvalidPacketNumber {
a.firstPacketNumber = pn
}
a.numSentWithCurrentKey++
binary.BigEndian.PutUint64(a.nonceBuf[len(a.nonceBuf)-8:], uint64(pn))
// The AEAD we're using here will be the qtls.aeadAESGCM13.
// It uses the nonce provided here and XOR it with the IV.
return a.sendAEAD.Seal(dst, a.nonceBuf, src, ad)
}
func (a *updatableAEAD) SetLargestAcked(pn protocol.PacketNumber) error {
if a.firstSentWithCurrentKey != protocol.InvalidPacketNumber &&
pn >= a.firstSentWithCurrentKey && a.numRcvdWithCurrentKey == 0 {
return &qerr.TransportError{
ErrorCode: qerr.KeyUpdateError,
ErrorMessage: fmt.Sprintf("received ACK for key phase %d, but peer didn't update keys", a.keyPhase),
}
}
a.largestAcked = pn
return nil
}
func (a *updatableAEAD) SetHandshakeConfirmed() {
a.handshakeConfirmed = true
}
func (a *updatableAEAD) updateAllowed() bool {
if !a.handshakeConfirmed {
return false
}
// the first key update is allowed as soon as the handshake is confirmed
return a.keyPhase == 0 ||
// subsequent key updates as soon as a packet sent with that key phase has been acknowledged
(a.firstSentWithCurrentKey != protocol.InvalidPacketNumber &&
a.largestAcked != protocol.InvalidPacketNumber &&
a.largestAcked >= a.firstSentWithCurrentKey)
}
func (a *updatableAEAD) shouldInitiateKeyUpdate() bool {
if !a.updateAllowed() {
return false
}
if a.numRcvdWithCurrentKey >= a.keyUpdateInterval {
a.logger.Debugf("Received %d packets with current key phase. Initiating key update to the next key phase: %d", a.numRcvdWithCurrentKey, a.keyPhase+1)
return true
}
if a.numSentWithCurrentKey >= a.keyUpdateInterval {
a.logger.Debugf("Sent %d packets with current key phase. Initiating key update to the next key phase: %d", a.numSentWithCurrentKey, a.keyPhase+1)
return true
}
return false
}
func (a *updatableAEAD) KeyPhase() protocol.KeyPhaseBit {
if a.shouldInitiateKeyUpdate() {
a.rollKeys()
a.logger.Debugf("Initiating key update to key phase %d", a.keyPhase)
if a.tracer != nil {
a.tracer.UpdatedKey(a.keyPhase, false)
}
}
return a.keyPhase.Bit()
}
func (a *updatableAEAD) Overhead() int {
return a.aeadOverhead
}
func (a *updatableAEAD) EncryptHeader(sample []byte, firstByte *byte, hdrBytes []byte) {
a.headerEncrypter.EncryptHeader(sample, firstByte, hdrBytes)
}
func (a *updatableAEAD) DecryptHeader(sample []byte, firstByte *byte, hdrBytes []byte) {
a.headerDecrypter.DecryptHeader(sample, firstByte, hdrBytes)
}
func (a *updatableAEAD) FirstPacketNumber() protocol.PacketNumber {
return a.firstPacketNumber
}

View file

@ -0,0 +1,33 @@
package logutils
import (
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/wire"
"github.com/lucas-clemente/quic-go/logging"
)
// ConvertFrame converts a wire.Frame into a logging.Frame.
// This makes it possible for external packages to access the frames.
// Furthermore, it removes the data slices from CRYPTO and STREAM frames.
func ConvertFrame(frame wire.Frame) logging.Frame {
switch f := frame.(type) {
case *wire.CryptoFrame:
return &logging.CryptoFrame{
Offset: f.Offset,
Length: protocol.ByteCount(len(f.Data)),
}
case *wire.StreamFrame:
return &logging.StreamFrame{
StreamID: f.StreamID,
Offset: f.Offset,
Length: f.DataLen(),
Fin: f.Fin,
}
case *wire.DatagramFrame:
return &logging.DatagramFrame{
Length: logging.ByteCount(len(f.Data)),
}
default:
return logging.Frame(frame)
}
}

View file

@ -0,0 +1,69 @@
package protocol
import (
"bytes"
"crypto/rand"
"fmt"
"io"
)
// A ConnectionID in QUIC
type ConnectionID []byte
const maxConnectionIDLen = 20
// GenerateConnectionID generates a connection ID using cryptographic random
func GenerateConnectionID(len int) (ConnectionID, error) {
b := make([]byte, len)
if _, err := rand.Read(b); err != nil {
return nil, err
}
return ConnectionID(b), nil
}
// GenerateConnectionIDForInitial generates a connection ID for the Initial packet.
// It uses a length randomly chosen between 8 and 20 bytes.
func GenerateConnectionIDForInitial() (ConnectionID, error) {
r := make([]byte, 1)
if _, err := rand.Read(r); err != nil {
return nil, err
}
len := MinConnectionIDLenInitial + int(r[0])%(maxConnectionIDLen-MinConnectionIDLenInitial+1)
return GenerateConnectionID(len)
}
// ReadConnectionID reads a connection ID of length len from the given io.Reader.
// It returns io.EOF if there are not enough bytes to read.
func ReadConnectionID(r io.Reader, len int) (ConnectionID, error) {
if len == 0 {
return nil, nil
}
c := make(ConnectionID, len)
_, err := io.ReadFull(r, c)
if err == io.ErrUnexpectedEOF {
return nil, io.EOF
}
return c, err
}
// Equal says if two connection IDs are equal
func (c ConnectionID) Equal(other ConnectionID) bool {
return bytes.Equal(c, other)
}
// Len returns the length of the connection ID in bytes
func (c ConnectionID) Len() int {
return len(c)
}
// Bytes returns the byte representation
func (c ConnectionID) Bytes() []byte {
return []byte(c)
}
func (c ConnectionID) String() string {
if c.Len() == 0 {
return "(empty)"
}
return fmt.Sprintf("%x", c.Bytes())
}

View file

@ -0,0 +1,30 @@
package protocol
// EncryptionLevel is the encryption level
// Default value is Unencrypted
type EncryptionLevel uint8
const (
// EncryptionInitial is the Initial encryption level
EncryptionInitial EncryptionLevel = 1 + iota
// EncryptionHandshake is the Handshake encryption level
EncryptionHandshake
// Encryption0RTT is the 0-RTT encryption level
Encryption0RTT
// Encryption1RTT is the 1-RTT encryption level
Encryption1RTT
)
func (e EncryptionLevel) String() string {
switch e {
case EncryptionInitial:
return "Initial"
case EncryptionHandshake:
return "Handshake"
case Encryption0RTT:
return "0-RTT"
case Encryption1RTT:
return "1-RTT"
}
return "unknown"
}

View file

@ -0,0 +1,36 @@
package protocol
// KeyPhase is the key phase
type KeyPhase uint64
// Bit determines the key phase bit
func (p KeyPhase) Bit() KeyPhaseBit {
if p%2 == 0 {
return KeyPhaseZero
}
return KeyPhaseOne
}
// KeyPhaseBit is the key phase bit
type KeyPhaseBit uint8
const (
// KeyPhaseUndefined is an undefined key phase
KeyPhaseUndefined KeyPhaseBit = iota
// KeyPhaseZero is key phase 0
KeyPhaseZero
// KeyPhaseOne is key phase 1
KeyPhaseOne
)
func (p KeyPhaseBit) String() string {
//nolint:exhaustive
switch p {
case KeyPhaseZero:
return "0"
case KeyPhaseOne:
return "1"
default:
return "undefined"
}
}

View file

@ -0,0 +1,79 @@
package protocol
// A PacketNumber in QUIC
type PacketNumber int64
// InvalidPacketNumber is a packet number that is never sent.
// In QUIC, 0 is a valid packet number.
const InvalidPacketNumber PacketNumber = -1
// PacketNumberLen is the length of the packet number in bytes
type PacketNumberLen uint8
const (
// PacketNumberLen1 is a packet number length of 1 byte
PacketNumberLen1 PacketNumberLen = 1
// PacketNumberLen2 is a packet number length of 2 bytes
PacketNumberLen2 PacketNumberLen = 2
// PacketNumberLen3 is a packet number length of 3 bytes
PacketNumberLen3 PacketNumberLen = 3
// PacketNumberLen4 is a packet number length of 4 bytes
PacketNumberLen4 PacketNumberLen = 4
)
// DecodePacketNumber calculates the packet number based on the received packet number, its length and the last seen packet number
func DecodePacketNumber(
packetNumberLength PacketNumberLen,
lastPacketNumber PacketNumber,
wirePacketNumber PacketNumber,
) PacketNumber {
var epochDelta PacketNumber
switch packetNumberLength {
case PacketNumberLen1:
epochDelta = PacketNumber(1) << 8
case PacketNumberLen2:
epochDelta = PacketNumber(1) << 16
case PacketNumberLen3:
epochDelta = PacketNumber(1) << 24
case PacketNumberLen4:
epochDelta = PacketNumber(1) << 32
}
epoch := lastPacketNumber & ^(epochDelta - 1)
var prevEpochBegin PacketNumber
if epoch > epochDelta {
prevEpochBegin = epoch - epochDelta
}
nextEpochBegin := epoch + epochDelta
return closestTo(
lastPacketNumber+1,
epoch+wirePacketNumber,
closestTo(lastPacketNumber+1, prevEpochBegin+wirePacketNumber, nextEpochBegin+wirePacketNumber),
)
}
func closestTo(target, a, b PacketNumber) PacketNumber {
if delta(target, a) < delta(target, b) {
return a
}
return b
}
func delta(a, b PacketNumber) PacketNumber {
if a < b {
return b - a
}
return a - b
}
// GetPacketNumberLengthForHeader gets the length of the packet number for the public header
// it never chooses a PacketNumberLen of 1 byte, since this is too short under certain circumstances
func GetPacketNumberLengthForHeader(packetNumber, leastUnacked PacketNumber) PacketNumberLen {
diff := uint64(packetNumber - leastUnacked)
if diff < (1 << (16 - 1)) {
return PacketNumberLen2
}
if diff < (1 << (24 - 1)) {
return PacketNumberLen3
}
return PacketNumberLen4
}

View file

@ -0,0 +1,193 @@
package protocol
import "time"
// DesiredReceiveBufferSize is the kernel UDP receive buffer size that we'd like to use.
const DesiredReceiveBufferSize = (1 << 20) * 2 // 2 MB
// InitialPacketSizeIPv4 is the maximum packet size that we use for sending IPv4 packets.
const InitialPacketSizeIPv4 = 1252
// InitialPacketSizeIPv6 is the maximum packet size that we use for sending IPv6 packets.
const InitialPacketSizeIPv6 = 1232
// MaxCongestionWindowPackets is the maximum congestion window in packet.
const MaxCongestionWindowPackets = 10000
// MaxUndecryptablePackets limits the number of undecryptable packets that are queued in the connection.
const MaxUndecryptablePackets = 32
// ConnectionFlowControlMultiplier determines how much larger the connection flow control windows needs to be relative to any stream's flow control window
// This is the value that Chromium is using
const ConnectionFlowControlMultiplier = 1.5
// DefaultInitialMaxStreamData is the default initial stream-level flow control window for receiving data
const DefaultInitialMaxStreamData = (1 << 10) * 512 // 512 kb
// DefaultInitialMaxData is the connection-level flow control window for receiving data
const DefaultInitialMaxData = ConnectionFlowControlMultiplier * DefaultInitialMaxStreamData
// DefaultMaxReceiveStreamFlowControlWindow is the default maximum stream-level flow control window for receiving data
const DefaultMaxReceiveStreamFlowControlWindow = 6 * (1 << 20) // 6 MB
// DefaultMaxReceiveConnectionFlowControlWindow is the default connection-level flow control window for receiving data
const DefaultMaxReceiveConnectionFlowControlWindow = 15 * (1 << 20) // 15 MB
// WindowUpdateThreshold is the fraction of the receive window that has to be consumed before an higher offset is advertised to the client
const WindowUpdateThreshold = 0.25
// DefaultMaxIncomingStreams is the maximum number of streams that a peer may open
const DefaultMaxIncomingStreams = 100
// DefaultMaxIncomingUniStreams is the maximum number of unidirectional streams that a peer may open
const DefaultMaxIncomingUniStreams = 100
// MaxServerUnprocessedPackets is the max number of packets stored in the server that are not yet processed.
const MaxServerUnprocessedPackets = 1024
// MaxConnUnprocessedPackets is the max number of packets stored in each connection that are not yet processed.
const MaxConnUnprocessedPackets = 256
// SkipPacketInitialPeriod is the initial period length used for packet number skipping to prevent an Optimistic ACK attack.
// Every time a packet number is skipped, the period is doubled, up to SkipPacketMaxPeriod.
const SkipPacketInitialPeriod PacketNumber = 256
// SkipPacketMaxPeriod is the maximum period length used for packet number skipping.
const SkipPacketMaxPeriod PacketNumber = 128 * 1024
// MaxAcceptQueueSize is the maximum number of connections that the server queues for accepting.
// If the queue is full, new connection attempts will be rejected.
const MaxAcceptQueueSize = 32
// TokenValidity is the duration that a (non-retry) token is considered valid
const TokenValidity = 24 * time.Hour
// RetryTokenValidity is the duration that a retry token is considered valid
const RetryTokenValidity = 10 * time.Second
// MaxOutstandingSentPackets is maximum number of packets saved for retransmission.
// When reached, it imposes a soft limit on sending new packets:
// Sending ACKs and retransmission is still allowed, but now new regular packets can be sent.
const MaxOutstandingSentPackets = 2 * MaxCongestionWindowPackets
// MaxTrackedSentPackets is maximum number of sent packets saved for retransmission.
// When reached, no more packets will be sent.
// This value *must* be larger than MaxOutstandingSentPackets.
const MaxTrackedSentPackets = MaxOutstandingSentPackets * 5 / 4
// MaxNonAckElicitingAcks is the maximum number of packets containing an ACK,
// but no ack-eliciting frames, that we send in a row
const MaxNonAckElicitingAcks = 19
// MaxStreamFrameSorterGaps is the maximum number of gaps between received StreamFrames
// prevents DoS attacks against the streamFrameSorter
const MaxStreamFrameSorterGaps = 1000
// MinStreamFrameBufferSize is the minimum data length of a received STREAM frame
// that we use the buffer for. This protects against a DoS where an attacker would send us
// very small STREAM frames to consume a lot of memory.
const MinStreamFrameBufferSize = 128
// MinCoalescedPacketSize is the minimum size of a coalesced packet that we pack.
// If a packet has less than this number of bytes, we won't coalesce any more packets onto it.
const MinCoalescedPacketSize = 128
// MaxCryptoStreamOffset is the maximum offset allowed on any of the crypto streams.
// This limits the size of the ClientHello and Certificates that can be received.
const MaxCryptoStreamOffset = 16 * (1 << 10)
// MinRemoteIdleTimeout is the minimum value that we accept for the remote idle timeout
const MinRemoteIdleTimeout = 5 * time.Second
// DefaultIdleTimeout is the default idle timeout
const DefaultIdleTimeout = 30 * time.Second
// DefaultHandshakeIdleTimeout is the default idle timeout used before handshake completion.
const DefaultHandshakeIdleTimeout = 5 * time.Second
// DefaultHandshakeTimeout is the default timeout for a connection until the crypto handshake succeeds.
const DefaultHandshakeTimeout = 10 * time.Second
// MaxKeepAliveInterval is the maximum time until we send a packet to keep a connection alive.
// It should be shorter than the time that NATs clear their mapping.
const MaxKeepAliveInterval = 20 * time.Second
// RetiredConnectionIDDeleteTimeout is the time we keep closed connections around in order to retransmit the CONNECTION_CLOSE.
// after this time all information about the old connection will be deleted
const RetiredConnectionIDDeleteTimeout = 5 * time.Second
// MinStreamFrameSize is the minimum size that has to be left in a packet, so that we add another STREAM frame.
// This avoids splitting up STREAM frames into small pieces, which has 2 advantages:
// 1. it reduces the framing overhead
// 2. it reduces the head-of-line blocking, when a packet is lost
const MinStreamFrameSize ByteCount = 128
// MaxPostHandshakeCryptoFrameSize is the maximum size of CRYPTO frames
// we send after the handshake completes.
const MaxPostHandshakeCryptoFrameSize = 1000
// MaxAckFrameSize is the maximum size for an ACK frame that we write
// Due to the varint encoding, ACK frames can grow (almost) indefinitely large.
// The MaxAckFrameSize should be large enough to encode many ACK range,
// but must ensure that a maximum size ACK frame fits into one packet.
const MaxAckFrameSize ByteCount = 1000
// MaxDatagramFrameSize is the maximum size of a DATAGRAM frame (RFC 9221).
// The size is chosen such that a DATAGRAM frame fits into a QUIC packet.
const MaxDatagramFrameSize ByteCount = 1220
// DatagramRcvQueueLen is the length of the receive queue for DATAGRAM frames (RFC 9221)
const DatagramRcvQueueLen = 128
// MaxNumAckRanges is the maximum number of ACK ranges that we send in an ACK frame.
// It also serves as a limit for the packet history.
// If at any point we keep track of more ranges, old ranges are discarded.
const MaxNumAckRanges = 32
// MinPacingDelay is the minimum duration that is used for packet pacing
// If the packet packing frequency is higher, multiple packets might be sent at once.
// Example: For a packet pacing delay of 200μs, we would send 5 packets at once, wait for 1ms, and so forth.
const MinPacingDelay = time.Millisecond
// DefaultConnectionIDLength is the connection ID length that is used for multiplexed connections
// if no other value is configured.
const DefaultConnectionIDLength = 4
// MaxActiveConnectionIDs is the number of connection IDs that we're storing.
const MaxActiveConnectionIDs = 4
// MaxIssuedConnectionIDs is the maximum number of connection IDs that we're issuing at the same time.
const MaxIssuedConnectionIDs = 6
// PacketsPerConnectionID is the number of packets we send using one connection ID.
// If the peer provices us with enough new connection IDs, we switch to a new connection ID.
const PacketsPerConnectionID = 10000
// AckDelayExponent is the ack delay exponent used when sending ACKs.
const AckDelayExponent = 3
// Estimated timer granularity.
// The loss detection timer will not be set to a value smaller than granularity.
const TimerGranularity = time.Millisecond
// MaxAckDelay is the maximum time by which we delay sending ACKs.
const MaxAckDelay = 25 * time.Millisecond
// MaxAckDelayInclGranularity is the max_ack_delay including the timer granularity.
// This is the value that should be advertised to the peer.
const MaxAckDelayInclGranularity = MaxAckDelay + TimerGranularity
// KeyUpdateInterval is the maximum number of packets we send or receive before initiating a key update.
const KeyUpdateInterval = 100 * 1000
// Max0RTTQueueingDuration is the maximum time that we store 0-RTT packets in order to wait for the corresponding Initial to be received.
const Max0RTTQueueingDuration = 100 * time.Millisecond
// Max0RTTQueues is the maximum number of connections that we buffer 0-RTT packets for.
const Max0RTTQueues = 32
// Max0RTTQueueLen is the maximum number of 0-RTT packets that we buffer for each connection.
// When a new connection is created, all buffered packets are passed to the connection immediately.
// To avoid blocking, this value has to be smaller than MaxConnUnprocessedPackets.
// To avoid packets being dropped as undecryptable by the connection, this value has to be smaller than MaxUndecryptablePackets.
const Max0RTTQueueLen = 31

View file

@ -0,0 +1,26 @@
package protocol
// Perspective determines if we're acting as a server or a client
type Perspective int
// the perspectives
const (
PerspectiveServer Perspective = 1
PerspectiveClient Perspective = 2
)
// Opposite returns the perspective of the peer
func (p Perspective) Opposite() Perspective {
return 3 - p
}
func (p Perspective) String() string {
switch p {
case PerspectiveServer:
return "Server"
case PerspectiveClient:
return "Client"
default:
return "invalid perspective"
}
}

View file

@ -0,0 +1,97 @@
package protocol
import (
"fmt"
"time"
)
// The PacketType is the Long Header Type
type PacketType uint8
const (
// PacketTypeInitial is the packet type of an Initial packet
PacketTypeInitial PacketType = 1 + iota
// PacketTypeRetry is the packet type of a Retry packet
PacketTypeRetry
// PacketTypeHandshake is the packet type of a Handshake packet
PacketTypeHandshake
// PacketType0RTT is the packet type of a 0-RTT packet
PacketType0RTT
)
func (t PacketType) String() string {
switch t {
case PacketTypeInitial:
return "Initial"
case PacketTypeRetry:
return "Retry"
case PacketTypeHandshake:
return "Handshake"
case PacketType0RTT:
return "0-RTT Protected"
default:
return fmt.Sprintf("unknown packet type: %d", t)
}
}
type ECN uint8
const (
ECNNon ECN = iota // 00
ECT1 // 01
ECT0 // 10
ECNCE // 11
)
// A ByteCount in QUIC
type ByteCount int64
// MaxByteCount is the maximum value of a ByteCount
const MaxByteCount = ByteCount(1<<62 - 1)
// InvalidByteCount is an invalid byte count
const InvalidByteCount ByteCount = -1
// A StatelessResetToken is a stateless reset token.
type StatelessResetToken [16]byte
// MaxPacketBufferSize maximum packet size of any QUIC packet, based on
// ethernet's max size, minus the IP and UDP headers. IPv6 has a 40 byte header,
// UDP adds an additional 8 bytes. This is a total overhead of 48 bytes.
// Ethernet's max packet size is 1500 bytes, 1500 - 48 = 1452.
const MaxPacketBufferSize ByteCount = 1452
// MinInitialPacketSize is the minimum size an Initial packet is required to have.
const MinInitialPacketSize = 1200
// MinUnknownVersionPacketSize is the minimum size a packet with an unknown version
// needs to have in order to trigger a Version Negotiation packet.
const MinUnknownVersionPacketSize = MinInitialPacketSize
// MinStatelessResetSize is the minimum size of a stateless reset packet that we send
const MinStatelessResetSize = 1 /* first byte */ + 20 /* max. conn ID length */ + 4 /* max. packet number length */ + 1 /* min. payload length */ + 16 /* token */
// MinConnectionIDLenInitial is the minimum length of the destination connection ID on an Initial packet.
const MinConnectionIDLenInitial = 8
// DefaultAckDelayExponent is the default ack delay exponent
const DefaultAckDelayExponent = 3
// MaxAckDelayExponent is the maximum ack delay exponent
const MaxAckDelayExponent = 20
// DefaultMaxAckDelay is the default max_ack_delay
const DefaultMaxAckDelay = 25 * time.Millisecond
// MaxMaxAckDelay is the maximum max_ack_delay
const MaxMaxAckDelay = (1<<14 - 1) * time.Millisecond
// MaxConnIDLen is the maximum length of the connection ID
const MaxConnIDLen = 20
// InvalidPacketLimitAES is the maximum number of packets that we can fail to decrypt when using
// AEAD_AES_128_GCM or AEAD_AES_265_GCM.
const InvalidPacketLimitAES = 1 << 52
// InvalidPacketLimitChaCha is the maximum number of packets that we can fail to decrypt when using AEAD_CHACHA20_POLY1305.
const InvalidPacketLimitChaCha = 1 << 36

View file

@ -0,0 +1,76 @@
package protocol
// StreamType encodes if this is a unidirectional or bidirectional stream
type StreamType uint8
const (
// StreamTypeUni is a unidirectional stream
StreamTypeUni StreamType = iota
// StreamTypeBidi is a bidirectional stream
StreamTypeBidi
)
// InvalidPacketNumber is a stream ID that is invalid.
// The first valid stream ID in QUIC is 0.
const InvalidStreamID StreamID = -1
// StreamNum is the stream number
type StreamNum int64
const (
// InvalidStreamNum is an invalid stream number.
InvalidStreamNum = -1
// MaxStreamCount is the maximum stream count value that can be sent in MAX_STREAMS frames
// and as the stream count in the transport parameters
MaxStreamCount StreamNum = 1 << 60
)
// StreamID calculates the stream ID.
func (s StreamNum) StreamID(stype StreamType, pers Perspective) StreamID {
if s == 0 {
return InvalidStreamID
}
var first StreamID
switch stype {
case StreamTypeBidi:
switch pers {
case PerspectiveClient:
first = 0
case PerspectiveServer:
first = 1
}
case StreamTypeUni:
switch pers {
case PerspectiveClient:
first = 2
case PerspectiveServer:
first = 3
}
}
return first + 4*StreamID(s-1)
}
// A StreamID in QUIC
type StreamID int64
// InitiatedBy says if the stream was initiated by the client or by the server
func (s StreamID) InitiatedBy() Perspective {
if s%2 == 0 {
return PerspectiveClient
}
return PerspectiveServer
}
// Type says if this is a unidirectional or bidirectional stream
func (s StreamID) Type() StreamType {
if s%4 >= 2 {
return StreamTypeUni
}
return StreamTypeBidi
}
// StreamNum returns how many streams in total are below this
// Example: for stream 9 it returns 3 (i.e. streams 1, 5 and 9)
func (s StreamID) StreamNum() StreamNum {
return StreamNum(s/4) + 1
}

View file

@ -0,0 +1,114 @@
package protocol
import (
"crypto/rand"
"encoding/binary"
"fmt"
"math"
)
// VersionNumber is a version number as int
type VersionNumber uint32
// gQUIC version range as defined in the wiki: https://github.com/quicwg/base-drafts/wiki/QUIC-Versions
const (
gquicVersion0 = 0x51303030
maxGquicVersion = 0x51303439
)
// The version numbers, making grepping easier
const (
VersionTLS VersionNumber = 0x1
VersionWhatever VersionNumber = math.MaxUint32 - 1 // for when the version doesn't matter
VersionUnknown VersionNumber = math.MaxUint32
VersionDraft29 VersionNumber = 0xff00001d
Version1 VersionNumber = 0x1
Version2 VersionNumber = 0x709a50c4
)
// SupportedVersions lists the versions that the server supports
// must be in sorted descending order
var SupportedVersions = []VersionNumber{Version1, Version2, VersionDraft29}
// IsValidVersion says if the version is known to quic-go
func IsValidVersion(v VersionNumber) bool {
return v == VersionTLS || IsSupportedVersion(SupportedVersions, v)
}
func (vn VersionNumber) String() string {
// For releases, VersionTLS will be set to a draft version.
// A switch statement can't contain duplicate cases.
if vn == VersionTLS && VersionTLS != VersionDraft29 && VersionTLS != Version1 {
return "TLS dev version (WIP)"
}
//nolint:exhaustive
switch vn {
case VersionWhatever:
return "whatever"
case VersionUnknown:
return "unknown"
case VersionDraft29:
return "draft-29"
case Version1:
return "v1"
case Version2:
return "v2"
default:
if vn.isGQUIC() {
return fmt.Sprintf("gQUIC %d", vn.toGQUICVersion())
}
return fmt.Sprintf("%#x", uint32(vn))
}
}
func (vn VersionNumber) isGQUIC() bool {
return vn > gquicVersion0 && vn <= maxGquicVersion
}
func (vn VersionNumber) toGQUICVersion() int {
return int(10*(vn-gquicVersion0)/0x100) + int(vn%0x10)
}
// IsSupportedVersion returns true if the server supports this version
func IsSupportedVersion(supported []VersionNumber, v VersionNumber) bool {
for _, t := range supported {
if t == v {
return true
}
}
return false
}
// ChooseSupportedVersion finds the best version in the overlap of ours and theirs
// ours is a slice of versions that we support, sorted by our preference (descending)
// theirs is a slice of versions offered by the peer. The order does not matter.
// The bool returned indicates if a matching version was found.
func ChooseSupportedVersion(ours, theirs []VersionNumber) (VersionNumber, bool) {
for _, ourVer := range ours {
for _, theirVer := range theirs {
if ourVer == theirVer {
return ourVer, true
}
}
}
return 0, false
}
// generateReservedVersion generates a reserved version number (v & 0x0f0f0f0f == 0x0a0a0a0a)
func generateReservedVersion() VersionNumber {
b := make([]byte, 4)
_, _ = rand.Read(b) // ignore the error here. Failure to read random data doesn't break anything
return VersionNumber((binary.BigEndian.Uint32(b) | 0x0a0a0a0a) & 0xfafafafa)
}
// GetGreasedVersions adds one reserved version number to a slice of version numbers, at a random position
func GetGreasedVersions(supported []VersionNumber) []VersionNumber {
b := make([]byte, 1)
_, _ = rand.Read(b) // ignore the error here. Failure to read random data doesn't break anything
randPos := int(b[0]) % (len(supported) + 1)
greased := make([]VersionNumber, len(supported)+1)
copy(greased, supported[:randPos])
greased[randPos] = generateReservedVersion()
copy(greased[randPos+1:], supported[randPos:])
return greased
}

View file

@ -0,0 +1,88 @@
package qerr
import (
"fmt"
"github.com/lucas-clemente/quic-go/internal/qtls"
)
// TransportErrorCode is a QUIC transport error.
type TransportErrorCode uint64
// The error codes defined by QUIC
const (
NoError TransportErrorCode = 0x0
InternalError TransportErrorCode = 0x1
ConnectionRefused TransportErrorCode = 0x2
FlowControlError TransportErrorCode = 0x3
StreamLimitError TransportErrorCode = 0x4
StreamStateError TransportErrorCode = 0x5
FinalSizeError TransportErrorCode = 0x6
FrameEncodingError TransportErrorCode = 0x7
TransportParameterError TransportErrorCode = 0x8
ConnectionIDLimitError TransportErrorCode = 0x9
ProtocolViolation TransportErrorCode = 0xa
InvalidToken TransportErrorCode = 0xb
ApplicationErrorErrorCode TransportErrorCode = 0xc
CryptoBufferExceeded TransportErrorCode = 0xd
KeyUpdateError TransportErrorCode = 0xe
AEADLimitReached TransportErrorCode = 0xf
NoViablePathError TransportErrorCode = 0x10
)
func (e TransportErrorCode) IsCryptoError() bool {
return e >= 0x100 && e < 0x200
}
// Message is a description of the error.
// It only returns a non-empty string for crypto errors.
func (e TransportErrorCode) Message() string {
if !e.IsCryptoError() {
return ""
}
return qtls.Alert(e - 0x100).Error()
}
func (e TransportErrorCode) String() string {
switch e {
case NoError:
return "NO_ERROR"
case InternalError:
return "INTERNAL_ERROR"
case ConnectionRefused:
return "CONNECTION_REFUSED"
case FlowControlError:
return "FLOW_CONTROL_ERROR"
case StreamLimitError:
return "STREAM_LIMIT_ERROR"
case StreamStateError:
return "STREAM_STATE_ERROR"
case FinalSizeError:
return "FINAL_SIZE_ERROR"
case FrameEncodingError:
return "FRAME_ENCODING_ERROR"
case TransportParameterError:
return "TRANSPORT_PARAMETER_ERROR"
case ConnectionIDLimitError:
return "CONNECTION_ID_LIMIT_ERROR"
case ProtocolViolation:
return "PROTOCOL_VIOLATION"
case InvalidToken:
return "INVALID_TOKEN"
case ApplicationErrorErrorCode:
return "APPLICATION_ERROR"
case CryptoBufferExceeded:
return "CRYPTO_BUFFER_EXCEEDED"
case KeyUpdateError:
return "KEY_UPDATE_ERROR"
case AEADLimitReached:
return "AEAD_LIMIT_REACHED"
case NoViablePathError:
return "NO_VIABLE_PATH"
default:
if e.IsCryptoError() {
return fmt.Sprintf("CRYPTO_ERROR (%#x)", uint16(e))
}
return fmt.Sprintf("unknown error code: %#x", uint16(e))
}
}

View file

@ -0,0 +1,124 @@
package qerr
import (
"fmt"
"net"
"github.com/lucas-clemente/quic-go/internal/protocol"
)
var (
ErrHandshakeTimeout = &HandshakeTimeoutError{}
ErrIdleTimeout = &IdleTimeoutError{}
)
type TransportError struct {
Remote bool
FrameType uint64
ErrorCode TransportErrorCode
ErrorMessage string
}
var _ error = &TransportError{}
// NewCryptoError create a new TransportError instance for a crypto error
func NewCryptoError(tlsAlert uint8, errorMessage string) *TransportError {
return &TransportError{
ErrorCode: 0x100 + TransportErrorCode(tlsAlert),
ErrorMessage: errorMessage,
}
}
func (e *TransportError) Error() string {
str := e.ErrorCode.String()
if e.FrameType != 0 {
str += fmt.Sprintf(" (frame type: %#x)", e.FrameType)
}
msg := e.ErrorMessage
if len(msg) == 0 {
msg = e.ErrorCode.Message()
}
if len(msg) == 0 {
return str
}
return str + ": " + msg
}
func (e *TransportError) Is(target error) bool {
return target == net.ErrClosed
}
// An ApplicationErrorCode is an application-defined error code.
type ApplicationErrorCode uint64
func (e *ApplicationError) Is(target error) bool {
return target == net.ErrClosed
}
// A StreamErrorCode is an error code used to cancel streams.
type StreamErrorCode uint64
type ApplicationError struct {
Remote bool
ErrorCode ApplicationErrorCode
ErrorMessage string
}
var _ error = &ApplicationError{}
func (e *ApplicationError) Error() string {
if len(e.ErrorMessage) == 0 {
return fmt.Sprintf("Application error %#x", e.ErrorCode)
}
return fmt.Sprintf("Application error %#x: %s", e.ErrorCode, e.ErrorMessage)
}
type IdleTimeoutError struct{}
var _ error = &IdleTimeoutError{}
func (e *IdleTimeoutError) Timeout() bool { return true }
func (e *IdleTimeoutError) Temporary() bool { return false }
func (e *IdleTimeoutError) Error() string { return "timeout: no recent network activity" }
func (e *IdleTimeoutError) Is(target error) bool { return target == net.ErrClosed }
type HandshakeTimeoutError struct{}
var _ error = &HandshakeTimeoutError{}
func (e *HandshakeTimeoutError) Timeout() bool { return true }
func (e *HandshakeTimeoutError) Temporary() bool { return false }
func (e *HandshakeTimeoutError) Error() string { return "timeout: handshake did not complete in time" }
func (e *HandshakeTimeoutError) Is(target error) bool { return target == net.ErrClosed }
// A VersionNegotiationError occurs when the client and the server can't agree on a QUIC version.
type VersionNegotiationError struct {
Ours []protocol.VersionNumber
Theirs []protocol.VersionNumber
}
func (e *VersionNegotiationError) Error() string {
return fmt.Sprintf("no compatible QUIC version found (we support %s, server offered %s)", e.Ours, e.Theirs)
}
func (e *VersionNegotiationError) Is(target error) bool {
return target == net.ErrClosed
}
// A StatelessResetError occurs when we receive a stateless reset.
type StatelessResetError struct {
Token protocol.StatelessResetToken
}
var _ net.Error = &StatelessResetError{}
func (e *StatelessResetError) Error() string {
return fmt.Sprintf("received a stateless reset with token %x", e.Token)
}
func (e *StatelessResetError) Is(target error) bool {
return target == net.ErrClosed
}
func (e *StatelessResetError) Timeout() bool { return false }
func (e *StatelessResetError) Temporary() bool { return true }

View file

@ -0,0 +1,100 @@
//go:build go1.16 && !go1.17
// +build go1.16,!go1.17
package qtls
import (
"crypto"
"crypto/cipher"
"crypto/tls"
"net"
"unsafe"
"github.com/marten-seemann/qtls-go1-16"
)
type (
// Alert is a TLS alert
Alert = qtls.Alert
// A Certificate is qtls.Certificate.
Certificate = qtls.Certificate
// CertificateRequestInfo contains inforamtion about a certificate request.
CertificateRequestInfo = qtls.CertificateRequestInfo
// A CipherSuiteTLS13 is a cipher suite for TLS 1.3
CipherSuiteTLS13 = qtls.CipherSuiteTLS13
// ClientHelloInfo contains information about a ClientHello.
ClientHelloInfo = qtls.ClientHelloInfo
// ClientSessionCache is a cache used for session resumption.
ClientSessionCache = qtls.ClientSessionCache
// ClientSessionState is a state needed for session resumption.
ClientSessionState = qtls.ClientSessionState
// A Config is a qtls.Config.
Config = qtls.Config
// A Conn is a qtls.Conn.
Conn = qtls.Conn
// ConnectionState contains information about the state of the connection.
ConnectionState = qtls.ConnectionStateWith0RTT
// EncryptionLevel is the encryption level of a message.
EncryptionLevel = qtls.EncryptionLevel
// Extension is a TLS extension
Extension = qtls.Extension
// ExtraConfig is the qtls.ExtraConfig
ExtraConfig = qtls.ExtraConfig
// RecordLayer is a qtls RecordLayer.
RecordLayer = qtls.RecordLayer
)
const (
// EncryptionHandshake is the Handshake encryption level
EncryptionHandshake = qtls.EncryptionHandshake
// Encryption0RTT is the 0-RTT encryption level
Encryption0RTT = qtls.Encryption0RTT
// EncryptionApplication is the application data encryption level
EncryptionApplication = qtls.EncryptionApplication
)
// AEADAESGCMTLS13 creates a new AES-GCM AEAD for TLS 1.3
func AEADAESGCMTLS13(key, fixedNonce []byte) cipher.AEAD {
return qtls.AEADAESGCMTLS13(key, fixedNonce)
}
// Client returns a new TLS client side connection.
func Client(conn net.Conn, config *Config, extraConfig *ExtraConfig) *Conn {
return qtls.Client(conn, config, extraConfig)
}
// Server returns a new TLS server side connection.
func Server(conn net.Conn, config *Config, extraConfig *ExtraConfig) *Conn {
return qtls.Server(conn, config, extraConfig)
}
func GetConnectionState(conn *Conn) ConnectionState {
return conn.ConnectionStateWith0RTT()
}
// ToTLSConnectionState extracts the tls.ConnectionState
func ToTLSConnectionState(cs ConnectionState) tls.ConnectionState {
return cs.ConnectionState
}
type cipherSuiteTLS13 struct {
ID uint16
KeyLen int
AEAD func(key, fixedNonce []byte) cipher.AEAD
Hash crypto.Hash
}
//go:linkname cipherSuiteTLS13ByID github.com/marten-seemann/qtls-go1-16.cipherSuiteTLS13ByID
func cipherSuiteTLS13ByID(id uint16) *cipherSuiteTLS13
// CipherSuiteTLS13ByID gets a TLS 1.3 cipher suite.
func CipherSuiteTLS13ByID(id uint16) *CipherSuiteTLS13 {
val := cipherSuiteTLS13ByID(id)
cs := (*cipherSuiteTLS13)(unsafe.Pointer(val))
return &qtls.CipherSuiteTLS13{
ID: cs.ID,
KeyLen: cs.KeyLen,
AEAD: cs.AEAD,
Hash: cs.Hash,
}
}

View file

@ -0,0 +1,100 @@
//go:build go1.17 && !go1.18
// +build go1.17,!go1.18
package qtls
import (
"crypto"
"crypto/cipher"
"crypto/tls"
"net"
"unsafe"
"github.com/marten-seemann/qtls-go1-17"
)
type (
// Alert is a TLS alert
Alert = qtls.Alert
// A Certificate is qtls.Certificate.
Certificate = qtls.Certificate
// CertificateRequestInfo contains inforamtion about a certificate request.
CertificateRequestInfo = qtls.CertificateRequestInfo
// A CipherSuiteTLS13 is a cipher suite for TLS 1.3
CipherSuiteTLS13 = qtls.CipherSuiteTLS13
// ClientHelloInfo contains information about a ClientHello.
ClientHelloInfo = qtls.ClientHelloInfo
// ClientSessionCache is a cache used for session resumption.
ClientSessionCache = qtls.ClientSessionCache
// ClientSessionState is a state needed for session resumption.
ClientSessionState = qtls.ClientSessionState
// A Config is a qtls.Config.
Config = qtls.Config
// A Conn is a qtls.Conn.
Conn = qtls.Conn
// ConnectionState contains information about the state of the connection.
ConnectionState = qtls.ConnectionStateWith0RTT
// EncryptionLevel is the encryption level of a message.
EncryptionLevel = qtls.EncryptionLevel
// Extension is a TLS extension
Extension = qtls.Extension
// ExtraConfig is the qtls.ExtraConfig
ExtraConfig = qtls.ExtraConfig
// RecordLayer is a qtls RecordLayer.
RecordLayer = qtls.RecordLayer
)
const (
// EncryptionHandshake is the Handshake encryption level
EncryptionHandshake = qtls.EncryptionHandshake
// Encryption0RTT is the 0-RTT encryption level
Encryption0RTT = qtls.Encryption0RTT
// EncryptionApplication is the application data encryption level
EncryptionApplication = qtls.EncryptionApplication
)
// AEADAESGCMTLS13 creates a new AES-GCM AEAD for TLS 1.3
func AEADAESGCMTLS13(key, fixedNonce []byte) cipher.AEAD {
return qtls.AEADAESGCMTLS13(key, fixedNonce)
}
// Client returns a new TLS client side connection.
func Client(conn net.Conn, config *Config, extraConfig *ExtraConfig) *Conn {
return qtls.Client(conn, config, extraConfig)
}
// Server returns a new TLS server side connection.
func Server(conn net.Conn, config *Config, extraConfig *ExtraConfig) *Conn {
return qtls.Server(conn, config, extraConfig)
}
func GetConnectionState(conn *Conn) ConnectionState {
return conn.ConnectionStateWith0RTT()
}
// ToTLSConnectionState extracts the tls.ConnectionState
func ToTLSConnectionState(cs ConnectionState) tls.ConnectionState {
return cs.ConnectionState
}
type cipherSuiteTLS13 struct {
ID uint16
KeyLen int
AEAD func(key, fixedNonce []byte) cipher.AEAD
Hash crypto.Hash
}
//go:linkname cipherSuiteTLS13ByID github.com/marten-seemann/qtls-go1-17.cipherSuiteTLS13ByID
func cipherSuiteTLS13ByID(id uint16) *cipherSuiteTLS13
// CipherSuiteTLS13ByID gets a TLS 1.3 cipher suite.
func CipherSuiteTLS13ByID(id uint16) *CipherSuiteTLS13 {
val := cipherSuiteTLS13ByID(id)
cs := (*cipherSuiteTLS13)(unsafe.Pointer(val))
return &qtls.CipherSuiteTLS13{
ID: cs.ID,
KeyLen: cs.KeyLen,
AEAD: cs.AEAD,
Hash: cs.Hash,
}
}

View file

@ -0,0 +1,100 @@
//go:build go1.18 && !go1.19
// +build go1.18,!go1.19
package qtls
import (
"crypto"
"crypto/cipher"
"crypto/tls"
"net"
"unsafe"
"github.com/marten-seemann/qtls-go1-18"
)
type (
// Alert is a TLS alert
Alert = qtls.Alert
// A Certificate is qtls.Certificate.
Certificate = qtls.Certificate
// CertificateRequestInfo contains inforamtion about a certificate request.
CertificateRequestInfo = qtls.CertificateRequestInfo
// A CipherSuiteTLS13 is a cipher suite for TLS 1.3
CipherSuiteTLS13 = qtls.CipherSuiteTLS13
// ClientHelloInfo contains information about a ClientHello.
ClientHelloInfo = qtls.ClientHelloInfo
// ClientSessionCache is a cache used for session resumption.
ClientSessionCache = qtls.ClientSessionCache
// ClientSessionState is a state needed for session resumption.
ClientSessionState = qtls.ClientSessionState
// A Config is a qtls.Config.
Config = qtls.Config
// A Conn is a qtls.Conn.
Conn = qtls.Conn
// ConnectionState contains information about the state of the connection.
ConnectionState = qtls.ConnectionStateWith0RTT
// EncryptionLevel is the encryption level of a message.
EncryptionLevel = qtls.EncryptionLevel
// Extension is a TLS extension
Extension = qtls.Extension
// ExtraConfig is the qtls.ExtraConfig
ExtraConfig = qtls.ExtraConfig
// RecordLayer is a qtls RecordLayer.
RecordLayer = qtls.RecordLayer
)
const (
// EncryptionHandshake is the Handshake encryption level
EncryptionHandshake = qtls.EncryptionHandshake
// Encryption0RTT is the 0-RTT encryption level
Encryption0RTT = qtls.Encryption0RTT
// EncryptionApplication is the application data encryption level
EncryptionApplication = qtls.EncryptionApplication
)
// AEADAESGCMTLS13 creates a new AES-GCM AEAD for TLS 1.3
func AEADAESGCMTLS13(key, fixedNonce []byte) cipher.AEAD {
return qtls.AEADAESGCMTLS13(key, fixedNonce)
}
// Client returns a new TLS client side connection.
func Client(conn net.Conn, config *Config, extraConfig *ExtraConfig) *Conn {
return qtls.Client(conn, config, extraConfig)
}
// Server returns a new TLS server side connection.
func Server(conn net.Conn, config *Config, extraConfig *ExtraConfig) *Conn {
return qtls.Server(conn, config, extraConfig)
}
func GetConnectionState(conn *Conn) ConnectionState {
return conn.ConnectionStateWith0RTT()
}
// ToTLSConnectionState extracts the tls.ConnectionState
func ToTLSConnectionState(cs ConnectionState) tls.ConnectionState {
return cs.ConnectionState
}
type cipherSuiteTLS13 struct {
ID uint16
KeyLen int
AEAD func(key, fixedNonce []byte) cipher.AEAD
Hash crypto.Hash
}
//go:linkname cipherSuiteTLS13ByID github.com/marten-seemann/qtls-go1-18.cipherSuiteTLS13ByID
func cipherSuiteTLS13ByID(id uint16) *cipherSuiteTLS13
// CipherSuiteTLS13ByID gets a TLS 1.3 cipher suite.
func CipherSuiteTLS13ByID(id uint16) *CipherSuiteTLS13 {
val := cipherSuiteTLS13ByID(id)
cs := (*cipherSuiteTLS13)(unsafe.Pointer(val))
return &qtls.CipherSuiteTLS13{
ID: cs.ID,
KeyLen: cs.KeyLen,
AEAD: cs.AEAD,
Hash: cs.Hash,
}
}

View file

@ -0,0 +1,100 @@
//go:build go1.19
// +build go1.19
package qtls
import (
"crypto"
"crypto/cipher"
"crypto/tls"
"net"
"unsafe"
"github.com/marten-seemann/qtls-go1-19"
)
type (
// Alert is a TLS alert
Alert = qtls.Alert
// A Certificate is qtls.Certificate.
Certificate = qtls.Certificate
// CertificateRequestInfo contains information about a certificate request.
CertificateRequestInfo = qtls.CertificateRequestInfo
// A CipherSuiteTLS13 is a cipher suite for TLS 1.3
CipherSuiteTLS13 = qtls.CipherSuiteTLS13
// ClientHelloInfo contains information about a ClientHello.
ClientHelloInfo = qtls.ClientHelloInfo
// ClientSessionCache is a cache used for session resumption.
ClientSessionCache = qtls.ClientSessionCache
// ClientSessionState is a state needed for session resumption.
ClientSessionState = qtls.ClientSessionState
// A Config is a qtls.Config.
Config = qtls.Config
// A Conn is a qtls.Conn.
Conn = qtls.Conn
// ConnectionState contains information about the state of the connection.
ConnectionState = qtls.ConnectionStateWith0RTT
// EncryptionLevel is the encryption level of a message.
EncryptionLevel = qtls.EncryptionLevel
// Extension is a TLS extension
Extension = qtls.Extension
// ExtraConfig is the qtls.ExtraConfig
ExtraConfig = qtls.ExtraConfig
// RecordLayer is a qtls RecordLayer.
RecordLayer = qtls.RecordLayer
)
const (
// EncryptionHandshake is the Handshake encryption level
EncryptionHandshake = qtls.EncryptionHandshake
// Encryption0RTT is the 0-RTT encryption level
Encryption0RTT = qtls.Encryption0RTT
// EncryptionApplication is the application data encryption level
EncryptionApplication = qtls.EncryptionApplication
)
// AEADAESGCMTLS13 creates a new AES-GCM AEAD for TLS 1.3
func AEADAESGCMTLS13(key, fixedNonce []byte) cipher.AEAD {
return qtls.AEADAESGCMTLS13(key, fixedNonce)
}
// Client returns a new TLS client side connection.
func Client(conn net.Conn, config *Config, extraConfig *ExtraConfig) *Conn {
return qtls.Client(conn, config, extraConfig)
}
// Server returns a new TLS server side connection.
func Server(conn net.Conn, config *Config, extraConfig *ExtraConfig) *Conn {
return qtls.Server(conn, config, extraConfig)
}
func GetConnectionState(conn *Conn) ConnectionState {
return conn.ConnectionStateWith0RTT()
}
// ToTLSConnectionState extracts the tls.ConnectionState
func ToTLSConnectionState(cs ConnectionState) tls.ConnectionState {
return cs.ConnectionState
}
type cipherSuiteTLS13 struct {
ID uint16
KeyLen int
AEAD func(key, fixedNonce []byte) cipher.AEAD
Hash crypto.Hash
}
//go:linkname cipherSuiteTLS13ByID github.com/marten-seemann/qtls-go1-19.cipherSuiteTLS13ByID
func cipherSuiteTLS13ByID(id uint16) *cipherSuiteTLS13
// CipherSuiteTLS13ByID gets a TLS 1.3 cipher suite.
func CipherSuiteTLS13ByID(id uint16) *CipherSuiteTLS13 {
val := cipherSuiteTLS13ByID(id)
cs := (*cipherSuiteTLS13)(unsafe.Pointer(val))
return &qtls.CipherSuiteTLS13{
ID: cs.ID,
KeyLen: cs.KeyLen,
AEAD: cs.AEAD,
Hash: cs.Hash,
}
}

View file

@ -0,0 +1,6 @@
//go:build go1.20
// +build go1.20
package qtls
var _ int = "The version of quic-go you're using can't be built on Go 1.20 yet. For more details, please see https://github.com/lucas-clemente/quic-go/wiki/quic-go-and-Go-versions."

View file

@ -0,0 +1,7 @@
//go:build (go1.9 || go1.10 || go1.11 || go1.12 || go1.13 || go1.14 || go1.15) && !go1.16
// +build go1.9 go1.10 go1.11 go1.12 go1.13 go1.14 go1.15
// +build !go1.16
package qtls
var _ int = "The version of quic-go you're using can't be built using outdated Go versions. For more details, please see https://github.com/lucas-clemente/quic-go/wiki/quic-go-and-Go-versions."

View file

@ -0,0 +1,22 @@
package utils
import "sync/atomic"
// An AtomicBool is an atomic bool
type AtomicBool struct {
v int32
}
// Set sets the value
func (a *AtomicBool) Set(value bool) {
var n int32
if value {
n = 1
}
atomic.StoreInt32(&a.v, n)
}
// Get gets the value
func (a *AtomicBool) Get() bool {
return atomic.LoadInt32(&a.v) != 0
}

View file

@ -0,0 +1,26 @@
package utils
import (
"bufio"
"io"
)
type bufferedWriteCloser struct {
*bufio.Writer
io.Closer
}
// NewBufferedWriteCloser creates an io.WriteCloser from a bufio.Writer and an io.Closer
func NewBufferedWriteCloser(writer *bufio.Writer, closer io.Closer) io.WriteCloser {
return &bufferedWriteCloser{
Writer: writer,
Closer: closer,
}
}
func (h bufferedWriteCloser) Close() error {
if err := h.Writer.Flush(); err != nil {
return err
}
return h.Closer.Close()
}

View file

@ -0,0 +1,217 @@
// This file was automatically generated by genny.
// Any changes will be lost if this file is regenerated.
// see https://github.com/cheekybits/genny
package utils
// Linked list implementation from the Go standard library.
// ByteIntervalElement is an element of a linked list.
type ByteIntervalElement struct {
// Next and previous pointers in the doubly-linked list of elements.
// To simplify the implementation, internally a list l is implemented
// as a ring, such that &l.root is both the next element of the last
// list element (l.Back()) and the previous element of the first list
// element (l.Front()).
next, prev *ByteIntervalElement
// The list to which this element belongs.
list *ByteIntervalList
// The value stored with this element.
Value ByteInterval
}
// Next returns the next list element or nil.
func (e *ByteIntervalElement) Next() *ByteIntervalElement {
if p := e.next; e.list != nil && p != &e.list.root {
return p
}
return nil
}
// Prev returns the previous list element or nil.
func (e *ByteIntervalElement) Prev() *ByteIntervalElement {
if p := e.prev; e.list != nil && p != &e.list.root {
return p
}
return nil
}
// ByteIntervalList is a linked list of ByteIntervals.
type ByteIntervalList struct {
root ByteIntervalElement // sentinel list element, only &root, root.prev, and root.next are used
len int // current list length excluding (this) sentinel element
}
// Init initializes or clears list l.
func (l *ByteIntervalList) Init() *ByteIntervalList {
l.root.next = &l.root
l.root.prev = &l.root
l.len = 0
return l
}
// NewByteIntervalList returns an initialized list.
func NewByteIntervalList() *ByteIntervalList { return new(ByteIntervalList).Init() }
// Len returns the number of elements of list l.
// The complexity is O(1).
func (l *ByteIntervalList) Len() int { return l.len }
// Front returns the first element of list l or nil if the list is empty.
func (l *ByteIntervalList) Front() *ByteIntervalElement {
if l.len == 0 {
return nil
}
return l.root.next
}
// Back returns the last element of list l or nil if the list is empty.
func (l *ByteIntervalList) Back() *ByteIntervalElement {
if l.len == 0 {
return nil
}
return l.root.prev
}
// lazyInit lazily initializes a zero List value.
func (l *ByteIntervalList) lazyInit() {
if l.root.next == nil {
l.Init()
}
}
// insert inserts e after at, increments l.len, and returns e.
func (l *ByteIntervalList) insert(e, at *ByteIntervalElement) *ByteIntervalElement {
n := at.next
at.next = e
e.prev = at
e.next = n
n.prev = e
e.list = l
l.len++
return e
}
// insertValue is a convenience wrapper for insert(&Element{Value: v}, at).
func (l *ByteIntervalList) insertValue(v ByteInterval, at *ByteIntervalElement) *ByteIntervalElement {
return l.insert(&ByteIntervalElement{Value: v}, at)
}
// remove removes e from its list, decrements l.len, and returns e.
func (l *ByteIntervalList) remove(e *ByteIntervalElement) *ByteIntervalElement {
e.prev.next = e.next
e.next.prev = e.prev
e.next = nil // avoid memory leaks
e.prev = nil // avoid memory leaks
e.list = nil
l.len--
return e
}
// Remove removes e from l if e is an element of list l.
// It returns the element value e.Value.
// The element must not be nil.
func (l *ByteIntervalList) Remove(e *ByteIntervalElement) ByteInterval {
if e.list == l {
// if e.list == l, l must have been initialized when e was inserted
// in l or l == nil (e is a zero Element) and l.remove will crash
l.remove(e)
}
return e.Value
}
// PushFront inserts a new element e with value v at the front of list l and returns e.
func (l *ByteIntervalList) PushFront(v ByteInterval) *ByteIntervalElement {
l.lazyInit()
return l.insertValue(v, &l.root)
}
// PushBack inserts a new element e with value v at the back of list l and returns e.
func (l *ByteIntervalList) PushBack(v ByteInterval) *ByteIntervalElement {
l.lazyInit()
return l.insertValue(v, l.root.prev)
}
// InsertBefore inserts a new element e with value v immediately before mark and returns e.
// If mark is not an element of l, the list is not modified.
// The mark must not be nil.
func (l *ByteIntervalList) InsertBefore(v ByteInterval, mark *ByteIntervalElement) *ByteIntervalElement {
if mark.list != l {
return nil
}
// see comment in List.Remove about initialization of l
return l.insertValue(v, mark.prev)
}
// InsertAfter inserts a new element e with value v immediately after mark and returns e.
// If mark is not an element of l, the list is not modified.
// The mark must not be nil.
func (l *ByteIntervalList) InsertAfter(v ByteInterval, mark *ByteIntervalElement) *ByteIntervalElement {
if mark.list != l {
return nil
}
// see comment in List.Remove about initialization of l
return l.insertValue(v, mark)
}
// MoveToFront moves element e to the front of list l.
// If e is not an element of l, the list is not modified.
// The element must not be nil.
func (l *ByteIntervalList) MoveToFront(e *ByteIntervalElement) {
if e.list != l || l.root.next == e {
return
}
// see comment in List.Remove about initialization of l
l.insert(l.remove(e), &l.root)
}
// MoveToBack moves element e to the back of list l.
// If e is not an element of l, the list is not modified.
// The element must not be nil.
func (l *ByteIntervalList) MoveToBack(e *ByteIntervalElement) {
if e.list != l || l.root.prev == e {
return
}
// see comment in List.Remove about initialization of l
l.insert(l.remove(e), l.root.prev)
}
// MoveBefore moves element e to its new position before mark.
// If e or mark is not an element of l, or e == mark, the list is not modified.
// The element and mark must not be nil.
func (l *ByteIntervalList) MoveBefore(e, mark *ByteIntervalElement) {
if e.list != l || e == mark || mark.list != l {
return
}
l.insert(l.remove(e), mark.prev)
}
// MoveAfter moves element e to its new position after mark.
// If e or mark is not an element of l, or e == mark, the list is not modified.
// The element and mark must not be nil.
func (l *ByteIntervalList) MoveAfter(e, mark *ByteIntervalElement) {
if e.list != l || e == mark || mark.list != l {
return
}
l.insert(l.remove(e), mark)
}
// PushBackList inserts a copy of an other list at the back of list l.
// The lists l and other may be the same. They must not be nil.
func (l *ByteIntervalList) PushBackList(other *ByteIntervalList) {
l.lazyInit()
for i, e := other.Len(), other.Front(); i > 0; i, e = i-1, e.Next() {
l.insertValue(e.Value, l.root.prev)
}
}
// PushFrontList inserts a copy of an other list at the front of list l.
// The lists l and other may be the same. They must not be nil.
func (l *ByteIntervalList) PushFrontList(other *ByteIntervalList) {
l.lazyInit()
for i, e := other.Len(), other.Back(); i > 0; i, e = i-1, e.Prev() {
l.insertValue(e.Value, &l.root)
}
}

View file

@ -0,0 +1,17 @@
package utils
import (
"bytes"
"io"
)
// A ByteOrder specifies how to convert byte sequences into 16-, 32-, or 64-bit unsigned integers.
type ByteOrder interface {
ReadUint32(io.ByteReader) (uint32, error)
ReadUint24(io.ByteReader) (uint32, error)
ReadUint16(io.ByteReader) (uint16, error)
WriteUint32(*bytes.Buffer, uint32)
WriteUint24(*bytes.Buffer, uint32)
WriteUint16(*bytes.Buffer, uint16)
}

View file

@ -0,0 +1,89 @@
package utils
import (
"bytes"
"io"
)
// BigEndian is the big-endian implementation of ByteOrder.
var BigEndian ByteOrder = bigEndian{}
type bigEndian struct{}
var _ ByteOrder = &bigEndian{}
// ReadUintN reads N bytes
func (bigEndian) ReadUintN(b io.ByteReader, length uint8) (uint64, error) {
var res uint64
for i := uint8(0); i < length; i++ {
bt, err := b.ReadByte()
if err != nil {
return 0, err
}
res ^= uint64(bt) << ((length - 1 - i) * 8)
}
return res, nil
}
// ReadUint32 reads a uint32
func (bigEndian) ReadUint32(b io.ByteReader) (uint32, error) {
var b1, b2, b3, b4 uint8
var err error
if b4, err = b.ReadByte(); err != nil {
return 0, err
}
if b3, err = b.ReadByte(); err != nil {
return 0, err
}
if b2, err = b.ReadByte(); err != nil {
return 0, err
}
if b1, err = b.ReadByte(); err != nil {
return 0, err
}
return uint32(b1) + uint32(b2)<<8 + uint32(b3)<<16 + uint32(b4)<<24, nil
}
// ReadUint24 reads a uint24
func (bigEndian) ReadUint24(b io.ByteReader) (uint32, error) {
var b1, b2, b3 uint8
var err error
if b3, err = b.ReadByte(); err != nil {
return 0, err
}
if b2, err = b.ReadByte(); err != nil {
return 0, err
}
if b1, err = b.ReadByte(); err != nil {
return 0, err
}
return uint32(b1) + uint32(b2)<<8 + uint32(b3)<<16, nil
}
// ReadUint16 reads a uint16
func (bigEndian) ReadUint16(b io.ByteReader) (uint16, error) {
var b1, b2 uint8
var err error
if b2, err = b.ReadByte(); err != nil {
return 0, err
}
if b1, err = b.ReadByte(); err != nil {
return 0, err
}
return uint16(b1) + uint16(b2)<<8, nil
}
// WriteUint32 writes a uint32
func (bigEndian) WriteUint32(b *bytes.Buffer, i uint32) {
b.Write([]byte{uint8(i >> 24), uint8(i >> 16), uint8(i >> 8), uint8(i)})
}
// WriteUint24 writes a uint24
func (bigEndian) WriteUint24(b *bytes.Buffer, i uint32) {
b.Write([]byte{uint8(i >> 16), uint8(i >> 8), uint8(i)})
}
// WriteUint16 writes a uint16
func (bigEndian) WriteUint16(b *bytes.Buffer, i uint16) {
b.Write([]byte{uint8(i >> 8), uint8(i)})
}

View file

@ -0,0 +1,5 @@
package utils
//go:generate genny -pkg utils -in linkedlist/linkedlist.go -out byteinterval_linkedlist.go gen Item=ByteInterval
//go:generate genny -pkg utils -in linkedlist/linkedlist.go -out packetinterval_linkedlist.go gen Item=PacketInterval
//go:generate genny -pkg utils -in linkedlist/linkedlist.go -out newconnectionid_linkedlist.go gen Item=NewConnectionID

View file

@ -0,0 +1,10 @@
package utils
import "net"
func IsIPv4(ip net.IP) bool {
// If ip is not an IPv4 address, To4 returns nil.
// Note that there might be some corner cases, where this is not correct.
// See https://stackoverflow.com/questions/22751035/golang-distinguish-ipv4-ipv6.
return ip.To4() != nil
}

View file

@ -0,0 +1,131 @@
package utils
import (
"fmt"
"log"
"os"
"strings"
"time"
)
// LogLevel of quic-go
type LogLevel uint8
const (
// LogLevelNothing disables
LogLevelNothing LogLevel = iota
// LogLevelError enables err logs
LogLevelError
// LogLevelInfo enables info logs (e.g. packets)
LogLevelInfo
// LogLevelDebug enables debug logs (e.g. packet contents)
LogLevelDebug
)
const logEnv = "QUIC_GO_LOG_LEVEL"
// A Logger logs.
type Logger interface {
SetLogLevel(LogLevel)
SetLogTimeFormat(format string)
WithPrefix(prefix string) Logger
Debug() bool
Errorf(format string, args ...interface{})
Infof(format string, args ...interface{})
Debugf(format string, args ...interface{})
}
// DefaultLogger is used by quic-go for logging.
var DefaultLogger Logger
type defaultLogger struct {
prefix string
logLevel LogLevel
timeFormat string
}
var _ Logger = &defaultLogger{}
// SetLogLevel sets the log level
func (l *defaultLogger) SetLogLevel(level LogLevel) {
l.logLevel = level
}
// SetLogTimeFormat sets the format of the timestamp
// an empty string disables the logging of timestamps
func (l *defaultLogger) SetLogTimeFormat(format string) {
log.SetFlags(0) // disable timestamp logging done by the log package
l.timeFormat = format
}
// Debugf logs something
func (l *defaultLogger) Debugf(format string, args ...interface{}) {
if l.logLevel == LogLevelDebug {
l.logMessage(format, args...)
}
}
// Infof logs something
func (l *defaultLogger) Infof(format string, args ...interface{}) {
if l.logLevel >= LogLevelInfo {
l.logMessage(format, args...)
}
}
// Errorf logs something
func (l *defaultLogger) Errorf(format string, args ...interface{}) {
if l.logLevel >= LogLevelError {
l.logMessage(format, args...)
}
}
func (l *defaultLogger) logMessage(format string, args ...interface{}) {
var pre string
if len(l.timeFormat) > 0 {
pre = time.Now().Format(l.timeFormat) + " "
}
if len(l.prefix) > 0 {
pre += l.prefix + " "
}
log.Printf(pre+format, args...)
}
func (l *defaultLogger) WithPrefix(prefix string) Logger {
if len(l.prefix) > 0 {
prefix = l.prefix + " " + prefix
}
return &defaultLogger{
logLevel: l.logLevel,
timeFormat: l.timeFormat,
prefix: prefix,
}
}
// Debug returns true if the log level is LogLevelDebug
func (l *defaultLogger) Debug() bool {
return l.logLevel == LogLevelDebug
}
func init() {
DefaultLogger = &defaultLogger{}
DefaultLogger.SetLogLevel(readLoggingEnv())
}
func readLoggingEnv() LogLevel {
switch strings.ToLower(os.Getenv(logEnv)) {
case "":
return LogLevelNothing
case "debug":
return LogLevelDebug
case "info":
return LogLevelInfo
case "error":
return LogLevelError
default:
fmt.Fprintln(os.Stderr, "invalid quic-go log level, see https://github.com/lucas-clemente/quic-go/wiki/Logging")
return LogLevelNothing
}
}

View file

@ -0,0 +1,170 @@
package utils
import (
"math"
"time"
"github.com/lucas-clemente/quic-go/internal/protocol"
)
// InfDuration is a duration of infinite length
const InfDuration = time.Duration(math.MaxInt64)
// Max returns the maximum of two Ints
func Max(a, b int) int {
if a < b {
return b
}
return a
}
// MaxUint32 returns the maximum of two uint32
func MaxUint32(a, b uint32) uint32 {
if a < b {
return b
}
return a
}
// MaxUint64 returns the maximum of two uint64
func MaxUint64(a, b uint64) uint64 {
if a < b {
return b
}
return a
}
// MinUint64 returns the maximum of two uint64
func MinUint64(a, b uint64) uint64 {
if a < b {
return a
}
return b
}
// Min returns the minimum of two Ints
func Min(a, b int) int {
if a < b {
return a
}
return b
}
// MinUint32 returns the maximum of two uint32
func MinUint32(a, b uint32) uint32 {
if a < b {
return a
}
return b
}
// MinInt64 returns the minimum of two int64
func MinInt64(a, b int64) int64 {
if a < b {
return a
}
return b
}
// MaxInt64 returns the minimum of two int64
func MaxInt64(a, b int64) int64 {
if a > b {
return a
}
return b
}
// MinByteCount returns the minimum of two ByteCounts
func MinByteCount(a, b protocol.ByteCount) protocol.ByteCount {
if a < b {
return a
}
return b
}
// MaxByteCount returns the maximum of two ByteCounts
func MaxByteCount(a, b protocol.ByteCount) protocol.ByteCount {
if a < b {
return b
}
return a
}
// MaxDuration returns the max duration
func MaxDuration(a, b time.Duration) time.Duration {
if a > b {
return a
}
return b
}
// MinDuration returns the minimum duration
func MinDuration(a, b time.Duration) time.Duration {
if a > b {
return b
}
return a
}
// MinNonZeroDuration return the minimum duration that's not zero.
func MinNonZeroDuration(a, b time.Duration) time.Duration {
if a == 0 {
return b
}
if b == 0 {
return a
}
return MinDuration(a, b)
}
// AbsDuration returns the absolute value of a time duration
func AbsDuration(d time.Duration) time.Duration {
if d >= 0 {
return d
}
return -d
}
// MinTime returns the earlier time
func MinTime(a, b time.Time) time.Time {
if a.After(b) {
return b
}
return a
}
// MinNonZeroTime returns the earlist time that is not time.Time{}
// If both a and b are time.Time{}, it returns time.Time{}
func MinNonZeroTime(a, b time.Time) time.Time {
if a.IsZero() {
return b
}
if b.IsZero() {
return a
}
return MinTime(a, b)
}
// MaxTime returns the later time
func MaxTime(a, b time.Time) time.Time {
if a.After(b) {
return a
}
return b
}
// MaxPacketNumber returns the max packet number
func MaxPacketNumber(a, b protocol.PacketNumber) protocol.PacketNumber {
if a > b {
return a
}
return b
}
// MinPacketNumber returns the min packet number
func MinPacketNumber(a, b protocol.PacketNumber) protocol.PacketNumber {
if a < b {
return a
}
return b
}

View file

@ -0,0 +1,12 @@
package utils
import (
"github.com/lucas-clemente/quic-go/internal/protocol"
)
// NewConnectionID is a new connection ID
type NewConnectionID struct {
SequenceNumber uint64
ConnectionID protocol.ConnectionID
StatelessResetToken protocol.StatelessResetToken
}

View file

@ -0,0 +1,217 @@
// This file was automatically generated by genny.
// Any changes will be lost if this file is regenerated.
// see https://github.com/cheekybits/genny
package utils
// Linked list implementation from the Go standard library.
// NewConnectionIDElement is an element of a linked list.
type NewConnectionIDElement struct {
// Next and previous pointers in the doubly-linked list of elements.
// To simplify the implementation, internally a list l is implemented
// as a ring, such that &l.root is both the next element of the last
// list element (l.Back()) and the previous element of the first list
// element (l.Front()).
next, prev *NewConnectionIDElement
// The list to which this element belongs.
list *NewConnectionIDList
// The value stored with this element.
Value NewConnectionID
}
// Next returns the next list element or nil.
func (e *NewConnectionIDElement) Next() *NewConnectionIDElement {
if p := e.next; e.list != nil && p != &e.list.root {
return p
}
return nil
}
// Prev returns the previous list element or nil.
func (e *NewConnectionIDElement) Prev() *NewConnectionIDElement {
if p := e.prev; e.list != nil && p != &e.list.root {
return p
}
return nil
}
// NewConnectionIDList is a linked list of NewConnectionIDs.
type NewConnectionIDList struct {
root NewConnectionIDElement // sentinel list element, only &root, root.prev, and root.next are used
len int // current list length excluding (this) sentinel element
}
// Init initializes or clears list l.
func (l *NewConnectionIDList) Init() *NewConnectionIDList {
l.root.next = &l.root
l.root.prev = &l.root
l.len = 0
return l
}
// NewNewConnectionIDList returns an initialized list.
func NewNewConnectionIDList() *NewConnectionIDList { return new(NewConnectionIDList).Init() }
// Len returns the number of elements of list l.
// The complexity is O(1).
func (l *NewConnectionIDList) Len() int { return l.len }
// Front returns the first element of list l or nil if the list is empty.
func (l *NewConnectionIDList) Front() *NewConnectionIDElement {
if l.len == 0 {
return nil
}
return l.root.next
}
// Back returns the last element of list l or nil if the list is empty.
func (l *NewConnectionIDList) Back() *NewConnectionIDElement {
if l.len == 0 {
return nil
}
return l.root.prev
}
// lazyInit lazily initializes a zero List value.
func (l *NewConnectionIDList) lazyInit() {
if l.root.next == nil {
l.Init()
}
}
// insert inserts e after at, increments l.len, and returns e.
func (l *NewConnectionIDList) insert(e, at *NewConnectionIDElement) *NewConnectionIDElement {
n := at.next
at.next = e
e.prev = at
e.next = n
n.prev = e
e.list = l
l.len++
return e
}
// insertValue is a convenience wrapper for insert(&Element{Value: v}, at).
func (l *NewConnectionIDList) insertValue(v NewConnectionID, at *NewConnectionIDElement) *NewConnectionIDElement {
return l.insert(&NewConnectionIDElement{Value: v}, at)
}
// remove removes e from its list, decrements l.len, and returns e.
func (l *NewConnectionIDList) remove(e *NewConnectionIDElement) *NewConnectionIDElement {
e.prev.next = e.next
e.next.prev = e.prev
e.next = nil // avoid memory leaks
e.prev = nil // avoid memory leaks
e.list = nil
l.len--
return e
}
// Remove removes e from l if e is an element of list l.
// It returns the element value e.Value.
// The element must not be nil.
func (l *NewConnectionIDList) Remove(e *NewConnectionIDElement) NewConnectionID {
if e.list == l {
// if e.list == l, l must have been initialized when e was inserted
// in l or l == nil (e is a zero Element) and l.remove will crash
l.remove(e)
}
return e.Value
}
// PushFront inserts a new element e with value v at the front of list l and returns e.
func (l *NewConnectionIDList) PushFront(v NewConnectionID) *NewConnectionIDElement {
l.lazyInit()
return l.insertValue(v, &l.root)
}
// PushBack inserts a new element e with value v at the back of list l and returns e.
func (l *NewConnectionIDList) PushBack(v NewConnectionID) *NewConnectionIDElement {
l.lazyInit()
return l.insertValue(v, l.root.prev)
}
// InsertBefore inserts a new element e with value v immediately before mark and returns e.
// If mark is not an element of l, the list is not modified.
// The mark must not be nil.
func (l *NewConnectionIDList) InsertBefore(v NewConnectionID, mark *NewConnectionIDElement) *NewConnectionIDElement {
if mark.list != l {
return nil
}
// see comment in List.Remove about initialization of l
return l.insertValue(v, mark.prev)
}
// InsertAfter inserts a new element e with value v immediately after mark and returns e.
// If mark is not an element of l, the list is not modified.
// The mark must not be nil.
func (l *NewConnectionIDList) InsertAfter(v NewConnectionID, mark *NewConnectionIDElement) *NewConnectionIDElement {
if mark.list != l {
return nil
}
// see comment in List.Remove about initialization of l
return l.insertValue(v, mark)
}
// MoveToFront moves element e to the front of list l.
// If e is not an element of l, the list is not modified.
// The element must not be nil.
func (l *NewConnectionIDList) MoveToFront(e *NewConnectionIDElement) {
if e.list != l || l.root.next == e {
return
}
// see comment in List.Remove about initialization of l
l.insert(l.remove(e), &l.root)
}
// MoveToBack moves element e to the back of list l.
// If e is not an element of l, the list is not modified.
// The element must not be nil.
func (l *NewConnectionIDList) MoveToBack(e *NewConnectionIDElement) {
if e.list != l || l.root.prev == e {
return
}
// see comment in List.Remove about initialization of l
l.insert(l.remove(e), l.root.prev)
}
// MoveBefore moves element e to its new position before mark.
// If e or mark is not an element of l, or e == mark, the list is not modified.
// The element and mark must not be nil.
func (l *NewConnectionIDList) MoveBefore(e, mark *NewConnectionIDElement) {
if e.list != l || e == mark || mark.list != l {
return
}
l.insert(l.remove(e), mark.prev)
}
// MoveAfter moves element e to its new position after mark.
// If e or mark is not an element of l, or e == mark, the list is not modified.
// The element and mark must not be nil.
func (l *NewConnectionIDList) MoveAfter(e, mark *NewConnectionIDElement) {
if e.list != l || e == mark || mark.list != l {
return
}
l.insert(l.remove(e), mark)
}
// PushBackList inserts a copy of an other list at the back of list l.
// The lists l and other may be the same. They must not be nil.
func (l *NewConnectionIDList) PushBackList(other *NewConnectionIDList) {
l.lazyInit()
for i, e := other.Len(), other.Front(); i > 0; i, e = i-1, e.Next() {
l.insertValue(e.Value, l.root.prev)
}
}
// PushFrontList inserts a copy of an other list at the front of list l.
// The lists l and other may be the same. They must not be nil.
func (l *NewConnectionIDList) PushFrontList(other *NewConnectionIDList) {
l.lazyInit()
for i, e := other.Len(), other.Back(); i > 0; i, e = i-1, e.Prev() {
l.insertValue(e.Value, &l.root)
}
}

View file

@ -0,0 +1,9 @@
package utils
import "github.com/lucas-clemente/quic-go/internal/protocol"
// PacketInterval is an interval from one PacketNumber to the other
type PacketInterval struct {
Start protocol.PacketNumber
End protocol.PacketNumber
}

View file

@ -0,0 +1,217 @@
// This file was automatically generated by genny.
// Any changes will be lost if this file is regenerated.
// see https://github.com/cheekybits/genny
package utils
// Linked list implementation from the Go standard library.
// PacketIntervalElement is an element of a linked list.
type PacketIntervalElement struct {
// Next and previous pointers in the doubly-linked list of elements.
// To simplify the implementation, internally a list l is implemented
// as a ring, such that &l.root is both the next element of the last
// list element (l.Back()) and the previous element of the first list
// element (l.Front()).
next, prev *PacketIntervalElement
// The list to which this element belongs.
list *PacketIntervalList
// The value stored with this element.
Value PacketInterval
}
// Next returns the next list element or nil.
func (e *PacketIntervalElement) Next() *PacketIntervalElement {
if p := e.next; e.list != nil && p != &e.list.root {
return p
}
return nil
}
// Prev returns the previous list element or nil.
func (e *PacketIntervalElement) Prev() *PacketIntervalElement {
if p := e.prev; e.list != nil && p != &e.list.root {
return p
}
return nil
}
// PacketIntervalList is a linked list of PacketIntervals.
type PacketIntervalList struct {
root PacketIntervalElement // sentinel list element, only &root, root.prev, and root.next are used
len int // current list length excluding (this) sentinel element
}
// Init initializes or clears list l.
func (l *PacketIntervalList) Init() *PacketIntervalList {
l.root.next = &l.root
l.root.prev = &l.root
l.len = 0
return l
}
// NewPacketIntervalList returns an initialized list.
func NewPacketIntervalList() *PacketIntervalList { return new(PacketIntervalList).Init() }
// Len returns the number of elements of list l.
// The complexity is O(1).
func (l *PacketIntervalList) Len() int { return l.len }
// Front returns the first element of list l or nil if the list is empty.
func (l *PacketIntervalList) Front() *PacketIntervalElement {
if l.len == 0 {
return nil
}
return l.root.next
}
// Back returns the last element of list l or nil if the list is empty.
func (l *PacketIntervalList) Back() *PacketIntervalElement {
if l.len == 0 {
return nil
}
return l.root.prev
}
// lazyInit lazily initializes a zero List value.
func (l *PacketIntervalList) lazyInit() {
if l.root.next == nil {
l.Init()
}
}
// insert inserts e after at, increments l.len, and returns e.
func (l *PacketIntervalList) insert(e, at *PacketIntervalElement) *PacketIntervalElement {
n := at.next
at.next = e
e.prev = at
e.next = n
n.prev = e
e.list = l
l.len++
return e
}
// insertValue is a convenience wrapper for insert(&Element{Value: v}, at).
func (l *PacketIntervalList) insertValue(v PacketInterval, at *PacketIntervalElement) *PacketIntervalElement {
return l.insert(&PacketIntervalElement{Value: v}, at)
}
// remove removes e from its list, decrements l.len, and returns e.
func (l *PacketIntervalList) remove(e *PacketIntervalElement) *PacketIntervalElement {
e.prev.next = e.next
e.next.prev = e.prev
e.next = nil // avoid memory leaks
e.prev = nil // avoid memory leaks
e.list = nil
l.len--
return e
}
// Remove removes e from l if e is an element of list l.
// It returns the element value e.Value.
// The element must not be nil.
func (l *PacketIntervalList) Remove(e *PacketIntervalElement) PacketInterval {
if e.list == l {
// if e.list == l, l must have been initialized when e was inserted
// in l or l == nil (e is a zero Element) and l.remove will crash
l.remove(e)
}
return e.Value
}
// PushFront inserts a new element e with value v at the front of list l and returns e.
func (l *PacketIntervalList) PushFront(v PacketInterval) *PacketIntervalElement {
l.lazyInit()
return l.insertValue(v, &l.root)
}
// PushBack inserts a new element e with value v at the back of list l and returns e.
func (l *PacketIntervalList) PushBack(v PacketInterval) *PacketIntervalElement {
l.lazyInit()
return l.insertValue(v, l.root.prev)
}
// InsertBefore inserts a new element e with value v immediately before mark and returns e.
// If mark is not an element of l, the list is not modified.
// The mark must not be nil.
func (l *PacketIntervalList) InsertBefore(v PacketInterval, mark *PacketIntervalElement) *PacketIntervalElement {
if mark.list != l {
return nil
}
// see comment in List.Remove about initialization of l
return l.insertValue(v, mark.prev)
}
// InsertAfter inserts a new element e with value v immediately after mark and returns e.
// If mark is not an element of l, the list is not modified.
// The mark must not be nil.
func (l *PacketIntervalList) InsertAfter(v PacketInterval, mark *PacketIntervalElement) *PacketIntervalElement {
if mark.list != l {
return nil
}
// see comment in List.Remove about initialization of l
return l.insertValue(v, mark)
}
// MoveToFront moves element e to the front of list l.
// If e is not an element of l, the list is not modified.
// The element must not be nil.
func (l *PacketIntervalList) MoveToFront(e *PacketIntervalElement) {
if e.list != l || l.root.next == e {
return
}
// see comment in List.Remove about initialization of l
l.insert(l.remove(e), &l.root)
}
// MoveToBack moves element e to the back of list l.
// If e is not an element of l, the list is not modified.
// The element must not be nil.
func (l *PacketIntervalList) MoveToBack(e *PacketIntervalElement) {
if e.list != l || l.root.prev == e {
return
}
// see comment in List.Remove about initialization of l
l.insert(l.remove(e), l.root.prev)
}
// MoveBefore moves element e to its new position before mark.
// If e or mark is not an element of l, or e == mark, the list is not modified.
// The element and mark must not be nil.
func (l *PacketIntervalList) MoveBefore(e, mark *PacketIntervalElement) {
if e.list != l || e == mark || mark.list != l {
return
}
l.insert(l.remove(e), mark.prev)
}
// MoveAfter moves element e to its new position after mark.
// If e or mark is not an element of l, or e == mark, the list is not modified.
// The element and mark must not be nil.
func (l *PacketIntervalList) MoveAfter(e, mark *PacketIntervalElement) {
if e.list != l || e == mark || mark.list != l {
return
}
l.insert(l.remove(e), mark)
}
// PushBackList inserts a copy of an other list at the back of list l.
// The lists l and other may be the same. They must not be nil.
func (l *PacketIntervalList) PushBackList(other *PacketIntervalList) {
l.lazyInit()
for i, e := other.Len(), other.Front(); i > 0; i, e = i-1, e.Next() {
l.insertValue(e.Value, l.root.prev)
}
}
// PushFrontList inserts a copy of an other list at the front of list l.
// The lists l and other may be the same. They must not be nil.
func (l *PacketIntervalList) PushFrontList(other *PacketIntervalList) {
l.lazyInit()
for i, e := other.Len(), other.Back(); i > 0; i, e = i-1, e.Prev() {
l.insertValue(e.Value, &l.root)
}
}

Some files were not shown because too many files have changed in this diff Show more