Update deps; sync vendor

This commit is contained in:
Frank Denis 2022-02-21 09:00:21 +01:00
parent 9373cc7162
commit c08852feb1
76 changed files with 4193 additions and 1014 deletions

View file

@ -194,12 +194,15 @@ func (x *FileSyntax) updateLine(line *Line, tokens ...string) {
line.Token = tokens
}
func (x *FileSyntax) removeLine(line *Line) {
// markRemoved modifies line so that it (and its end-of-line comment, if any)
// will be dropped by (*FileSyntax).Cleanup.
func (line *Line) markRemoved() {
line.Token = nil
line.Comments.Suffix = nil
}
// Cleanup cleans up the file syntax x after any edit operations.
// To avoid quadratic behavior, removeLine marks the line as dead
// To avoid quadratic behavior, (*Line).markRemoved marks the line as dead
// by setting line.Token = nil but does not remove it from the slice
// in which it appears. After edits have all been indicated,
// calling Cleanup cleans out the dead lines.

View file

@ -47,8 +47,9 @@ type File struct {
// A Module is the module statement.
type Module struct {
Mod module.Version
Syntax *Line
Mod module.Version
Deprecated string
Syntax *Line
}
// A Go is the go statement.
@ -57,13 +58,6 @@ type Go struct {
Syntax *Line
}
// A Require is a single require statement.
type Require struct {
Mod module.Version
Indirect bool // has "// indirect" comment
Syntax *Line
}
// An Exclude is a single exclude statement.
type Exclude struct {
Mod module.Version
@ -92,6 +86,93 @@ type VersionInterval struct {
Low, High string
}
// A Require is a single require statement.
type Require struct {
Mod module.Version
Indirect bool // has "// indirect" comment
Syntax *Line
}
func (r *Require) markRemoved() {
r.Syntax.markRemoved()
*r = Require{}
}
func (r *Require) setVersion(v string) {
r.Mod.Version = v
if line := r.Syntax; len(line.Token) > 0 {
if line.InBlock {
// If the line is preceded by an empty line, remove it; see
// https://golang.org/issue/33779.
if len(line.Comments.Before) == 1 && len(line.Comments.Before[0].Token) == 0 {
line.Comments.Before = line.Comments.Before[:0]
}
if len(line.Token) >= 2 { // example.com v1.2.3
line.Token[1] = v
}
} else {
if len(line.Token) >= 3 { // require example.com v1.2.3
line.Token[2] = v
}
}
}
}
// setIndirect sets line to have (or not have) a "// indirect" comment.
func (r *Require) setIndirect(indirect bool) {
r.Indirect = indirect
line := r.Syntax
if isIndirect(line) == indirect {
return
}
if indirect {
// Adding comment.
if len(line.Suffix) == 0 {
// New comment.
line.Suffix = []Comment{{Token: "// indirect", Suffix: true}}
return
}
com := &line.Suffix[0]
text := strings.TrimSpace(strings.TrimPrefix(com.Token, string(slashSlash)))
if text == "" {
// Empty comment.
com.Token = "// indirect"
return
}
// Insert at beginning of existing comment.
com.Token = "// indirect; " + text
return
}
// Removing comment.
f := strings.TrimSpace(strings.TrimPrefix(line.Suffix[0].Token, string(slashSlash)))
if f == "indirect" {
// Remove whole comment.
line.Suffix = nil
return
}
// Remove comment prefix.
com := &line.Suffix[0]
i := strings.Index(com.Token, "indirect;")
com.Token = "//" + com.Token[i+len("indirect;"):]
}
// isIndirect reports whether line has a "// indirect" comment,
// meaning it is in go.mod only for its effect on indirect dependencies,
// so that it can be dropped entirely once the effective version of the
// indirect dependency reaches the given minimum version.
func isIndirect(line *Line) bool {
if len(line.Suffix) == 0 {
return false
}
f := strings.Fields(strings.TrimPrefix(line.Suffix[0].Token, string(slashSlash)))
return (len(f) == 1 && f[0] == "indirect" || len(f) > 1 && f[0] == "indirect;")
}
func (f *File) AddModuleStmt(path string) error {
if f.Syntax == nil {
f.Syntax = new(FileSyntax)
@ -131,8 +212,15 @@ var dontFixRetract VersionFixer = func(_, vers string) (string, error) {
return vers, nil
}
// Parse parses the data, reported in errors as being from file,
// into a File struct. It applies fix, if non-nil, to canonicalize all module versions found.
// Parse parses and returns a go.mod file.
//
// file is the name of the file, used in positions and errors.
//
// data is the content of the file.
//
// fix is an optional function that canonicalizes module versions.
// If fix is nil, all module versions must be canonical (module.CanonicalVersion
// must return the same string).
func Parse(file string, data []byte, fix VersionFixer) (*File, error) {
return parseToFile(file, data, fix, true)
}
@ -209,6 +297,7 @@ func parseToFile(file string, data []byte, fix VersionFixer, strict bool) (parse
}
var GoVersionRE = lazyregexp.New(`^([1-9][0-9]*)\.(0|[1-9][0-9]*)$`)
var laxGoVersionRE = lazyregexp.New(`^v?(([1-9][0-9]*)\.(0|[1-9][0-9]*))([^0-9].*)$`)
func (f *File) add(errs *ErrorList, block *LineBlock, line *Line, verb string, args []string, fix VersionFixer, strict bool) {
// If strict is false, this module is a dependency.
@ -259,8 +348,17 @@ func (f *File) add(errs *ErrorList, block *LineBlock, line *Line, verb string, a
errorf("go directive expects exactly one argument")
return
} else if !GoVersionRE.MatchString(args[0]) {
errorf("invalid go version '%s': must match format 1.23", args[0])
return
fixed := false
if !strict {
if m := laxGoVersionRE.FindStringSubmatch(args[0]); m != nil {
args[0] = m[1]
fixed = true
}
}
if !fixed {
errorf("invalid go version '%s': must match format 1.23", args[0])
return
}
}
f.Go = &Go{Syntax: line}
@ -271,7 +369,11 @@ func (f *File) add(errs *ErrorList, block *LineBlock, line *Line, verb string, a
errorf("repeated module statement")
return
}
f.Module = &Module{Syntax: line}
deprecated := parseDeprecation(block, line)
f.Module = &Module{
Syntax: line,
Deprecated: deprecated,
}
if len(args) != 1 {
errorf("usage: module module/path")
return
@ -385,7 +487,7 @@ func (f *File) add(errs *ErrorList, block *LineBlock, line *Line, verb string, a
})
case "retract":
rationale := parseRetractRationale(block, line)
rationale := parseDirectiveComment(block, line)
vi, err := parseVersionInterval(verb, "", &args, dontFixRetract)
if err != nil {
if strict {
@ -454,58 +556,6 @@ func (f *File) fixRetract(fix VersionFixer, errs *ErrorList) {
}
}
// isIndirect reports whether line has a "// indirect" comment,
// meaning it is in go.mod only for its effect on indirect dependencies,
// so that it can be dropped entirely once the effective version of the
// indirect dependency reaches the given minimum version.
func isIndirect(line *Line) bool {
if len(line.Suffix) == 0 {
return false
}
f := strings.Fields(strings.TrimPrefix(line.Suffix[0].Token, string(slashSlash)))
return (len(f) == 1 && f[0] == "indirect" || len(f) > 1 && f[0] == "indirect;")
}
// setIndirect sets line to have (or not have) a "// indirect" comment.
func setIndirect(line *Line, indirect bool) {
if isIndirect(line) == indirect {
return
}
if indirect {
// Adding comment.
if len(line.Suffix) == 0 {
// New comment.
line.Suffix = []Comment{{Token: "// indirect", Suffix: true}}
return
}
com := &line.Suffix[0]
text := strings.TrimSpace(strings.TrimPrefix(com.Token, string(slashSlash)))
if text == "" {
// Empty comment.
com.Token = "// indirect"
return
}
// Insert at beginning of existing comment.
com.Token = "// indirect; " + text
return
}
// Removing comment.
f := strings.Fields(line.Suffix[0].Token)
if len(f) == 2 {
// Remove whole comment.
line.Suffix = nil
return
}
// Remove comment prefix.
com := &line.Suffix[0]
i := strings.Index(com.Token, "indirect;")
com.Token = "//" + com.Token[i+len("indirect;"):]
}
// IsDirectoryPath reports whether the given path should be interpreted
// as a directory path. Just like on the go command line, relative paths
// and rooted paths are directory paths; the rest are module paths.
@ -612,10 +662,29 @@ func parseString(s *string) (string, error) {
return t, nil
}
// parseRetractRationale extracts the rationale for a retract directive from the
// surrounding comments. If the line does not have comments and is part of a
// block that does have comments, the block's comments are used.
func parseRetractRationale(block *LineBlock, line *Line) string {
var deprecatedRE = lazyregexp.New(`(?s)(?:^|\n\n)Deprecated: *(.*?)(?:$|\n\n)`)
// parseDeprecation extracts the text of comments on a "module" directive and
// extracts a deprecation message from that.
//
// A deprecation message is contained in a paragraph within a block of comments
// that starts with "Deprecated:" (case sensitive). The message runs until the
// end of the paragraph and does not include the "Deprecated:" prefix. If the
// comment block has multiple paragraphs that start with "Deprecated:",
// parseDeprecation returns the message from the first.
func parseDeprecation(block *LineBlock, line *Line) string {
text := parseDirectiveComment(block, line)
m := deprecatedRE.FindStringSubmatch(text)
if m == nil {
return ""
}
return m[1]
}
// parseDirectiveComment extracts the text of comments on a directive.
// If the directive's line does not have comments and is part of a block that
// does have comments, the block's comments are used.
func parseDirectiveComment(block *LineBlock, line *Line) string {
comments := line.Comment()
if block != nil && len(comments.Before) == 0 && len(comments.Suffix) == 0 {
comments = block.Comment()
@ -794,6 +863,12 @@ func (f *File) AddGoStmt(version string) error {
return nil
}
// AddRequire sets the first require line for path to version vers,
// preserving any existing comments for that line and removing all
// other lines for path.
//
// If no line currently exists for path, AddRequire adds a new line
// at the end of the last require block.
func (f *File) AddRequire(path, vers string) error {
need := true
for _, r := range f.Require {
@ -803,7 +878,7 @@ func (f *File) AddRequire(path, vers string) error {
f.Syntax.updateLine(r.Syntax, "require", AutoQuote(path), vers)
need = false
} else {
f.Syntax.removeLine(r.Syntax)
r.Syntax.markRemoved()
*r = Require{}
}
}
@ -815,77 +890,290 @@ func (f *File) AddRequire(path, vers string) error {
return nil
}
// AddNewRequire adds a new require line for path at version vers at the end of
// the last require block, regardless of any existing require lines for path.
func (f *File) AddNewRequire(path, vers string, indirect bool) {
line := f.Syntax.addLine(nil, "require", AutoQuote(path), vers)
setIndirect(line, indirect)
f.Require = append(f.Require, &Require{module.Version{Path: path, Version: vers}, indirect, line})
r := &Require{
Mod: module.Version{Path: path, Version: vers},
Syntax: line,
}
r.setIndirect(indirect)
f.Require = append(f.Require, r)
}
// SetRequire updates the requirements of f to contain exactly req, preserving
// the existing block structure and line comment contents (except for 'indirect'
// markings) for the first requirement on each named module path.
//
// The Syntax field is ignored for the requirements in req.
//
// Any requirements not already present in the file are added to the block
// containing the last require line.
//
// The requirements in req must specify at most one distinct version for each
// module path.
//
// If any existing requirements may be removed, the caller should call Cleanup
// after all edits are complete.
func (f *File) SetRequire(req []*Require) {
need := make(map[string]string)
indirect := make(map[string]bool)
type elem struct {
version string
indirect bool
}
need := make(map[string]elem)
for _, r := range req {
need[r.Mod.Path] = r.Mod.Version
indirect[r.Mod.Path] = r.Indirect
if prev, dup := need[r.Mod.Path]; dup && prev.version != r.Mod.Version {
panic(fmt.Errorf("SetRequire called with conflicting versions for path %s (%s and %s)", r.Mod.Path, prev.version, r.Mod.Version))
}
need[r.Mod.Path] = elem{r.Mod.Version, r.Indirect}
}
// Update or delete the existing Require entries to preserve
// only the first for each module path in req.
for _, r := range f.Require {
if v, ok := need[r.Mod.Path]; ok {
r.Mod.Version = v
r.Indirect = indirect[r.Mod.Path]
e, ok := need[r.Mod.Path]
if ok {
r.setVersion(e.version)
r.setIndirect(e.indirect)
} else {
*r = Require{}
r.markRemoved()
}
delete(need, r.Mod.Path)
}
var newStmts []Expr
for _, stmt := range f.Syntax.Stmt {
// Add new entries in the last block of the file for any paths that weren't
// already present.
//
// This step is nondeterministic, but the final result will be deterministic
// because we will sort the block.
for path, e := range need {
f.AddNewRequire(path, e.version, e.indirect)
}
f.SortBlocks()
}
// SetRequireSeparateIndirect updates the requirements of f to contain the given
// requirements. Comment contents (except for 'indirect' markings) are retained
// from the first existing requirement for each module path. Like SetRequire,
// SetRequireSeparateIndirect adds requirements for new paths in req,
// updates the version and "// indirect" comment on existing requirements,
// and deletes requirements on paths not in req. Existing duplicate requirements
// are deleted.
//
// As its name suggests, SetRequireSeparateIndirect puts direct and indirect
// requirements into two separate blocks, one containing only direct
// requirements, and the other containing only indirect requirements.
// SetRequireSeparateIndirect may move requirements between these two blocks
// when their indirect markings change. However, SetRequireSeparateIndirect
// won't move requirements from other blocks, especially blocks with comments.
//
// If the file initially has one uncommented block of requirements,
// SetRequireSeparateIndirect will split it into a direct-only and indirect-only
// block. This aids in the transition to separate blocks.
func (f *File) SetRequireSeparateIndirect(req []*Require) {
// hasComments returns whether a line or block has comments
// other than "indirect".
hasComments := func(c Comments) bool {
return len(c.Before) > 0 || len(c.After) > 0 || len(c.Suffix) > 1 ||
(len(c.Suffix) == 1 &&
strings.TrimSpace(strings.TrimPrefix(c.Suffix[0].Token, string(slashSlash))) != "indirect")
}
// moveReq adds r to block. If r was in another block, moveReq deletes
// it from that block and transfers its comments.
moveReq := func(r *Require, block *LineBlock) {
var line *Line
if r.Syntax == nil {
line = &Line{Token: []string{AutoQuote(r.Mod.Path), r.Mod.Version}}
r.Syntax = line
if r.Indirect {
r.setIndirect(true)
}
} else {
line = new(Line)
*line = *r.Syntax
if !line.InBlock && len(line.Token) > 0 && line.Token[0] == "require" {
line.Token = line.Token[1:]
}
r.Syntax.Token = nil // Cleanup will delete the old line.
r.Syntax = line
}
line.InBlock = true
block.Line = append(block.Line, line)
}
// Examine existing require lines and blocks.
var (
// We may insert new requirements into the last uncommented
// direct-only and indirect-only blocks. We may also move requirements
// to the opposite block if their indirect markings change.
lastDirectIndex = -1
lastIndirectIndex = -1
// If there are no direct-only or indirect-only blocks, a new block may
// be inserted after the last require line or block.
lastRequireIndex = -1
// If there's only one require line or block, and it's uncommented,
// we'll move its requirements to the direct-only or indirect-only blocks.
requireLineOrBlockCount = 0
// Track the block each requirement belongs to (if any) so we can
// move them later.
lineToBlock = make(map[*Line]*LineBlock)
)
for i, stmt := range f.Syntax.Stmt {
switch stmt := stmt.(type) {
case *LineBlock:
if len(stmt.Token) > 0 && stmt.Token[0] == "require" {
var newLines []*Line
for _, line := range stmt.Line {
if p, err := parseString(&line.Token[0]); err == nil && need[p] != "" {
if len(line.Comments.Before) == 1 && len(line.Comments.Before[0].Token) == 0 {
line.Comments.Before = line.Comments.Before[:0]
}
line.Token[1] = need[p]
delete(need, p)
setIndirect(line, indirect[p])
newLines = append(newLines, line)
}
case *Line:
if len(stmt.Token) == 0 || stmt.Token[0] != "require" {
continue
}
lastRequireIndex = i
requireLineOrBlockCount++
if !hasComments(stmt.Comments) {
if isIndirect(stmt) {
lastIndirectIndex = i
} else {
lastDirectIndex = i
}
if len(newLines) == 0 {
continue // drop stmt
}
stmt.Line = newLines
}
case *Line:
if len(stmt.Token) > 0 && stmt.Token[0] == "require" {
if p, err := parseString(&stmt.Token[1]); err == nil && need[p] != "" {
stmt.Token[2] = need[p]
delete(need, p)
setIndirect(stmt, indirect[p])
case *LineBlock:
if len(stmt.Token) == 0 || stmt.Token[0] != "require" {
continue
}
lastRequireIndex = i
requireLineOrBlockCount++
allDirect := len(stmt.Line) > 0 && !hasComments(stmt.Comments)
allIndirect := len(stmt.Line) > 0 && !hasComments(stmt.Comments)
for _, line := range stmt.Line {
lineToBlock[line] = stmt
if hasComments(line.Comments) {
allDirect = false
allIndirect = false
} else if isIndirect(line) {
allDirect = false
} else {
continue // drop stmt
allIndirect = false
}
}
if allDirect {
lastDirectIndex = i
}
if allIndirect {
lastIndirectIndex = i
}
}
newStmts = append(newStmts, stmt)
}
f.Syntax.Stmt = newStmts
for path, vers := range need {
f.AddNewRequire(path, vers, indirect[path])
oneFlatUncommentedBlock := requireLineOrBlockCount == 1 &&
!hasComments(*f.Syntax.Stmt[lastRequireIndex].Comment())
// Create direct and indirect blocks if needed. Convert lines into blocks
// if needed. If we end up with an empty block or a one-line block,
// Cleanup will delete it or convert it to a line later.
insertBlock := func(i int) *LineBlock {
block := &LineBlock{Token: []string{"require"}}
f.Syntax.Stmt = append(f.Syntax.Stmt, nil)
copy(f.Syntax.Stmt[i+1:], f.Syntax.Stmt[i:])
f.Syntax.Stmt[i] = block
return block
}
ensureBlock := func(i int) *LineBlock {
switch stmt := f.Syntax.Stmt[i].(type) {
case *LineBlock:
return stmt
case *Line:
block := &LineBlock{
Token: []string{"require"},
Line: []*Line{stmt},
}
stmt.Token = stmt.Token[1:] // remove "require"
stmt.InBlock = true
f.Syntax.Stmt[i] = block
return block
default:
panic(fmt.Sprintf("unexpected statement: %v", stmt))
}
}
var lastDirectBlock *LineBlock
if lastDirectIndex < 0 {
if lastIndirectIndex >= 0 {
lastDirectIndex = lastIndirectIndex
lastIndirectIndex++
} else if lastRequireIndex >= 0 {
lastDirectIndex = lastRequireIndex + 1
} else {
lastDirectIndex = len(f.Syntax.Stmt)
}
lastDirectBlock = insertBlock(lastDirectIndex)
} else {
lastDirectBlock = ensureBlock(lastDirectIndex)
}
var lastIndirectBlock *LineBlock
if lastIndirectIndex < 0 {
lastIndirectIndex = lastDirectIndex + 1
lastIndirectBlock = insertBlock(lastIndirectIndex)
} else {
lastIndirectBlock = ensureBlock(lastIndirectIndex)
}
// Delete requirements we don't want anymore.
// Update versions and indirect comments on requirements we want to keep.
// If a requirement is in last{Direct,Indirect}Block with the wrong
// indirect marking after this, or if the requirement is in an single
// uncommented mixed block (oneFlatUncommentedBlock), move it to the
// correct block.
//
// Some blocks may be empty after this. Cleanup will remove them.
need := make(map[string]*Require)
for _, r := range req {
need[r.Mod.Path] = r
}
have := make(map[string]*Require)
for _, r := range f.Require {
path := r.Mod.Path
if need[path] == nil || have[path] != nil {
// Requirement not needed, or duplicate requirement. Delete.
r.markRemoved()
continue
}
have[r.Mod.Path] = r
r.setVersion(need[path].Mod.Version)
r.setIndirect(need[path].Indirect)
if need[path].Indirect &&
(oneFlatUncommentedBlock || lineToBlock[r.Syntax] == lastDirectBlock) {
moveReq(r, lastIndirectBlock)
} else if !need[path].Indirect &&
(oneFlatUncommentedBlock || lineToBlock[r.Syntax] == lastIndirectBlock) {
moveReq(r, lastDirectBlock)
}
}
// Add new requirements.
for path, r := range need {
if have[path] == nil {
if r.Indirect {
moveReq(r, lastIndirectBlock)
} else {
moveReq(r, lastDirectBlock)
}
f.Require = append(f.Require, r)
}
}
f.SortBlocks()
}
func (f *File) DropRequire(path string) error {
for _, r := range f.Require {
if r.Mod.Path == path {
f.Syntax.removeLine(r.Syntax)
r.Syntax.markRemoved()
*r = Require{}
}
}
@ -916,7 +1204,7 @@ func (f *File) AddExclude(path, vers string) error {
func (f *File) DropExclude(path, vers string) error {
for _, x := range f.Exclude {
if x.Mod.Path == path && x.Mod.Version == vers {
f.Syntax.removeLine(x.Syntax)
x.Syntax.markRemoved()
*x = Exclude{}
}
}
@ -947,7 +1235,7 @@ func (f *File) AddReplace(oldPath, oldVers, newPath, newVers string) error {
continue
}
// Already added; delete other replacements for same.
f.Syntax.removeLine(r.Syntax)
r.Syntax.markRemoved()
*r = Replace{}
}
if r.Old.Path == oldPath {
@ -963,7 +1251,7 @@ func (f *File) AddReplace(oldPath, oldVers, newPath, newVers string) error {
func (f *File) DropReplace(oldPath, oldVers string) error {
for _, r := range f.Replace {
if r.Old.Path == oldPath && r.Old.Version == oldVers {
f.Syntax.removeLine(r.Syntax)
r.Syntax.markRemoved()
*r = Replace{}
}
}
@ -1004,7 +1292,7 @@ func (f *File) AddRetract(vi VersionInterval, rationale string) error {
func (f *File) DropRetract(vi VersionInterval) error {
for _, r := range f.Retract {
if r.VersionInterval == vi {
f.Syntax.removeLine(r.Syntax)
r.Syntax.markRemoved()
*r = Retract{}
}
}

View file

@ -192,6 +192,21 @@ func (e *InvalidVersionError) Error() string {
func (e *InvalidVersionError) Unwrap() error { return e.Err }
// An InvalidPathError indicates a module, import, or file path doesn't
// satisfy all naming constraints. See CheckPath, CheckImportPath,
// and CheckFilePath for specific restrictions.
type InvalidPathError struct {
Kind string // "module", "import", or "file"
Path string
Err error
}
func (e *InvalidPathError) Error() string {
return fmt.Sprintf("malformed %s path %q: %v", e.Kind, e.Path, e.Err)
}
func (e *InvalidPathError) Unwrap() error { return e.Err }
// Check checks that a given module path, version pair is valid.
// In addition to the path being a valid module path
// and the version being a valid semantic version,
@ -296,30 +311,36 @@ func fileNameOK(r rune) bool {
// this second requirement is replaced by a requirement that the path
// follow the gopkg.in server's conventions.
// Third, no path element may begin with a dot.
func CheckPath(path string) error {
func CheckPath(path string) (err error) {
defer func() {
if err != nil {
err = &InvalidPathError{Kind: "module", Path: path, Err: err}
}
}()
if err := checkPath(path, modulePath); err != nil {
return fmt.Errorf("malformed module path %q: %v", path, err)
return err
}
i := strings.Index(path, "/")
if i < 0 {
i = len(path)
}
if i == 0 {
return fmt.Errorf("malformed module path %q: leading slash", path)
return fmt.Errorf("leading slash")
}
if !strings.Contains(path[:i], ".") {
return fmt.Errorf("malformed module path %q: missing dot in first path element", path)
return fmt.Errorf("missing dot in first path element")
}
if path[0] == '-' {
return fmt.Errorf("malformed module path %q: leading dash in first path element", path)
return fmt.Errorf("leading dash in first path element")
}
for _, r := range path[:i] {
if !firstPathOK(r) {
return fmt.Errorf("malformed module path %q: invalid char %q in first path element", path, r)
return fmt.Errorf("invalid char %q in first path element", r)
}
}
if _, _, ok := SplitPathVersion(path); !ok {
return fmt.Errorf("malformed module path %q: invalid version", path)
return fmt.Errorf("invalid version")
}
return nil
}
@ -343,7 +364,7 @@ func CheckPath(path string) error {
// subtleties of Unicode.
func CheckImportPath(path string) error {
if err := checkPath(path, importPath); err != nil {
return fmt.Errorf("malformed import path %q: %v", path, err)
return &InvalidPathError{Kind: "import", Path: path, Err: err}
}
return nil
}
@ -358,12 +379,13 @@ const (
filePath
)
// checkPath checks that a general path is valid.
// It returns an error describing why but not mentioning path.
// Because these checks apply to both module paths and import paths,
// the caller is expected to add the "malformed ___ path %q: " prefix.
// fileName indicates whether the final element of the path is a file name
// (as opposed to a directory name).
// checkPath checks that a general path is valid. kind indicates what
// specific constraints should be applied.
//
// checkPath returns an error describing why the path is not valid.
// Because these checks apply to module, import, and file paths,
// and because other checks may be applied, the caller is expected to wrap
// this error with InvalidPathError.
func checkPath(path string, kind pathKind) error {
if !utf8.ValidString(path) {
return fmt.Errorf("invalid UTF-8")
@ -371,7 +393,7 @@ func checkPath(path string, kind pathKind) error {
if path == "" {
return fmt.Errorf("empty string")
}
if path[0] == '-' {
if path[0] == '-' && kind != filePath {
return fmt.Errorf("leading dash")
}
if strings.Contains(path, "//") {
@ -477,7 +499,7 @@ func checkElem(elem string, kind pathKind) error {
// subtleties of Unicode.
func CheckFilePath(path string) error {
if err := checkPath(path, filePath); err != nil {
return fmt.Errorf("malformed file path %q: %v", path, err)
return &InvalidPathError{Kind: "file", Path: path, Err: err}
}
return nil
}

250
vendor/golang.org/x/mod/module/pseudo.go generated vendored Normal file
View file

@ -0,0 +1,250 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Pseudo-versions
//
// Code authors are expected to tag the revisions they want users to use,
// including prereleases. However, not all authors tag versions at all,
// and not all commits a user might want to try will have tags.
// A pseudo-version is a version with a special form that allows us to
// address an untagged commit and order that version with respect to
// other versions we might encounter.
//
// A pseudo-version takes one of the general forms:
//
// (1) vX.0.0-yyyymmddhhmmss-abcdef123456
// (2) vX.Y.(Z+1)-0.yyyymmddhhmmss-abcdef123456
// (3) vX.Y.(Z+1)-0.yyyymmddhhmmss-abcdef123456+incompatible
// (4) vX.Y.Z-pre.0.yyyymmddhhmmss-abcdef123456
// (5) vX.Y.Z-pre.0.yyyymmddhhmmss-abcdef123456+incompatible
//
// If there is no recently tagged version with the right major version vX,
// then form (1) is used, creating a space of pseudo-versions at the bottom
// of the vX version range, less than any tagged version, including the unlikely v0.0.0.
//
// If the most recent tagged version before the target commit is vX.Y.Z or vX.Y.Z+incompatible,
// then the pseudo-version uses form (2) or (3), making it a prerelease for the next
// possible semantic version after vX.Y.Z. The leading 0 segment in the prerelease string
// ensures that the pseudo-version compares less than possible future explicit prereleases
// like vX.Y.(Z+1)-rc1 or vX.Y.(Z+1)-1.
//
// If the most recent tagged version before the target commit is vX.Y.Z-pre or vX.Y.Z-pre+incompatible,
// then the pseudo-version uses form (4) or (5), making it a slightly later prerelease.
package module
import (
"errors"
"fmt"
"strings"
"time"
"golang.org/x/mod/internal/lazyregexp"
"golang.org/x/mod/semver"
)
var pseudoVersionRE = lazyregexp.New(`^v[0-9]+\.(0\.0-|\d+\.\d+-([^+]*\.)?0\.)\d{14}-[A-Za-z0-9]+(\+[0-9A-Za-z-]+(\.[0-9A-Za-z-]+)*)?$`)
const PseudoVersionTimestampFormat = "20060102150405"
// PseudoVersion returns a pseudo-version for the given major version ("v1")
// preexisting older tagged version ("" or "v1.2.3" or "v1.2.3-pre"), revision time,
// and revision identifier (usually a 12-byte commit hash prefix).
func PseudoVersion(major, older string, t time.Time, rev string) string {
if major == "" {
major = "v0"
}
segment := fmt.Sprintf("%s-%s", t.UTC().Format(PseudoVersionTimestampFormat), rev)
build := semver.Build(older)
older = semver.Canonical(older)
if older == "" {
return major + ".0.0-" + segment // form (1)
}
if semver.Prerelease(older) != "" {
return older + ".0." + segment + build // form (4), (5)
}
// Form (2), (3).
// Extract patch from vMAJOR.MINOR.PATCH
i := strings.LastIndex(older, ".") + 1
v, patch := older[:i], older[i:]
// Reassemble.
return v + incDecimal(patch) + "-0." + segment + build
}
// ZeroPseudoVersion returns a pseudo-version with a zero timestamp and
// revision, which may be used as a placeholder.
func ZeroPseudoVersion(major string) string {
return PseudoVersion(major, "", time.Time{}, "000000000000")
}
// incDecimal returns the decimal string incremented by 1.
func incDecimal(decimal string) string {
// Scan right to left turning 9s to 0s until you find a digit to increment.
digits := []byte(decimal)
i := len(digits) - 1
for ; i >= 0 && digits[i] == '9'; i-- {
digits[i] = '0'
}
if i >= 0 {
digits[i]++
} else {
// digits is all zeros
digits[0] = '1'
digits = append(digits, '0')
}
return string(digits)
}
// decDecimal returns the decimal string decremented by 1, or the empty string
// if the decimal is all zeroes.
func decDecimal(decimal string) string {
// Scan right to left turning 0s to 9s until you find a digit to decrement.
digits := []byte(decimal)
i := len(digits) - 1
for ; i >= 0 && digits[i] == '0'; i-- {
digits[i] = '9'
}
if i < 0 {
// decimal is all zeros
return ""
}
if i == 0 && digits[i] == '1' && len(digits) > 1 {
digits = digits[1:]
} else {
digits[i]--
}
return string(digits)
}
// IsPseudoVersion reports whether v is a pseudo-version.
func IsPseudoVersion(v string) bool {
return strings.Count(v, "-") >= 2 && semver.IsValid(v) && pseudoVersionRE.MatchString(v)
}
// IsZeroPseudoVersion returns whether v is a pseudo-version with a zero base,
// timestamp, and revision, as returned by ZeroPseudoVersion.
func IsZeroPseudoVersion(v string) bool {
return v == ZeroPseudoVersion(semver.Major(v))
}
// PseudoVersionTime returns the time stamp of the pseudo-version v.
// It returns an error if v is not a pseudo-version or if the time stamp
// embedded in the pseudo-version is not a valid time.
func PseudoVersionTime(v string) (time.Time, error) {
_, timestamp, _, _, err := parsePseudoVersion(v)
if err != nil {
return time.Time{}, err
}
t, err := time.Parse("20060102150405", timestamp)
if err != nil {
return time.Time{}, &InvalidVersionError{
Version: v,
Pseudo: true,
Err: fmt.Errorf("malformed time %q", timestamp),
}
}
return t, nil
}
// PseudoVersionRev returns the revision identifier of the pseudo-version v.
// It returns an error if v is not a pseudo-version.
func PseudoVersionRev(v string) (rev string, err error) {
_, _, rev, _, err = parsePseudoVersion(v)
return
}
// PseudoVersionBase returns the canonical parent version, if any, upon which
// the pseudo-version v is based.
//
// If v has no parent version (that is, if it is "vX.0.0-[…]"),
// PseudoVersionBase returns the empty string and a nil error.
func PseudoVersionBase(v string) (string, error) {
base, _, _, build, err := parsePseudoVersion(v)
if err != nil {
return "", err
}
switch pre := semver.Prerelease(base); pre {
case "":
// vX.0.0-yyyymmddhhmmss-abcdef123456 → ""
if build != "" {
// Pseudo-versions of the form vX.0.0-yyyymmddhhmmss-abcdef123456+incompatible
// are nonsensical: the "vX.0.0-" prefix implies that there is no parent tag,
// but the "+incompatible" suffix implies that the major version of
// the parent tag is not compatible with the module's import path.
//
// There are a few such entries in the index generated by proxy.golang.org,
// but we believe those entries were generated by the proxy itself.
return "", &InvalidVersionError{
Version: v,
Pseudo: true,
Err: fmt.Errorf("lacks base version, but has build metadata %q", build),
}
}
return "", nil
case "-0":
// vX.Y.(Z+1)-0.yyyymmddhhmmss-abcdef123456 → vX.Y.Z
// vX.Y.(Z+1)-0.yyyymmddhhmmss-abcdef123456+incompatible → vX.Y.Z+incompatible
base = strings.TrimSuffix(base, pre)
i := strings.LastIndexByte(base, '.')
if i < 0 {
panic("base from parsePseudoVersion missing patch number: " + base)
}
patch := decDecimal(base[i+1:])
if patch == "" {
// vX.0.0-0 is invalid, but has been observed in the wild in the index
// generated by requests to proxy.golang.org.
//
// NOTE(bcmills): I cannot find a historical bug that accounts for
// pseudo-versions of this form, nor have I seen such versions in any
// actual go.mod files. If we find actual examples of this form and a
// reasonable theory of how they came into existence, it seems fine to
// treat them as equivalent to vX.0.0 (especially since the invalid
// pseudo-versions have lower precedence than the real ones). For now, we
// reject them.
return "", &InvalidVersionError{
Version: v,
Pseudo: true,
Err: fmt.Errorf("version before %s would have negative patch number", base),
}
}
return base[:i+1] + patch + build, nil
default:
// vX.Y.Z-pre.0.yyyymmddhhmmss-abcdef123456 → vX.Y.Z-pre
// vX.Y.Z-pre.0.yyyymmddhhmmss-abcdef123456+incompatible → vX.Y.Z-pre+incompatible
if !strings.HasSuffix(base, ".0") {
panic(`base from parsePseudoVersion missing ".0" before date: ` + base)
}
return strings.TrimSuffix(base, ".0") + build, nil
}
}
var errPseudoSyntax = errors.New("syntax error")
func parsePseudoVersion(v string) (base, timestamp, rev, build string, err error) {
if !IsPseudoVersion(v) {
return "", "", "", "", &InvalidVersionError{
Version: v,
Pseudo: true,
Err: errPseudoSyntax,
}
}
build = semver.Build(v)
v = strings.TrimSuffix(v, build)
j := strings.LastIndex(v, "-")
v, rev = v[:j], v[j+1:]
i := strings.LastIndex(v, "-")
if j := strings.LastIndex(v, "."); j > i {
base = v[:j] // "vX.Y.Z-pre.0" or "vX.Y.(Z+1)-0"
timestamp = v[j+1:]
} else {
base = v[:i] // "vX.0.0"
timestamp = v[i+1:]
}
return base, timestamp, rev, build, nil
}

View file

@ -22,6 +22,8 @@
// as shorthands for vMAJOR.0.0 and vMAJOR.MINOR.0.
package semver
import "sort"
// parsed returns the parsed form of a semantic version string.
type parsed struct {
major string
@ -150,6 +152,24 @@ func Max(v, w string) string {
return w
}
// ByVersion implements sort.Interface for sorting semantic version strings.
type ByVersion []string
func (vs ByVersion) Len() int { return len(vs) }
func (vs ByVersion) Swap(i, j int) { vs[i], vs[j] = vs[j], vs[i] }
func (vs ByVersion) Less(i, j int) bool {
cmp := Compare(vs[i], vs[j])
if cmp != 0 {
return cmp < 0
}
return vs[i] < vs[j]
}
// Sort sorts a list of semantic version strings using ByVersion.
func Sort(list []string) {
sort.Sort(ByVersion(list))
}
func parse(v string) (p parsed, ok bool) {
if v == "" || v[0] != 'v' {
p.err = "missing v prefix"

View file

@ -597,6 +597,7 @@ ccflags="$@"
$2 ~ /^DEVLINK_/ ||
$2 ~ /^ETHTOOL_/ ||
$2 ~ /^LWTUNNEL_IP/ ||
$2 ~ /^ITIMER_/ ||
$2 !~ "WMESGLEN" &&
$2 ~ /^W[A-Z0-9]+$/ ||
$2 ~/^PPPIOC/ ||

View file

@ -14,6 +14,7 @@ package unix
import (
"encoding/binary"
"syscall"
"time"
"unsafe"
)
@ -2314,6 +2315,52 @@ type RemoteIovec struct {
//sys shmdt(addr uintptr) (err error)
//sys shmget(key int, size int, flag int) (id int, err error)
//sys getitimer(which int, currValue *Itimerval) (err error)
//sys setitimer(which int, newValue *Itimerval, oldValue *Itimerval) (err error)
// MakeItimerval creates an Itimerval from interval and value durations.
func MakeItimerval(interval, value time.Duration) Itimerval {
return Itimerval{
Interval: NsecToTimeval(interval.Nanoseconds()),
Value: NsecToTimeval(value.Nanoseconds()),
}
}
// A value which may be passed to the which parameter for Getitimer and
// Setitimer.
type ItimerWhich int
// Possible which values for Getitimer and Setitimer.
const (
ItimerReal ItimerWhich = ITIMER_REAL
ItimerVirtual ItimerWhich = ITIMER_VIRTUAL
ItimerProf ItimerWhich = ITIMER_PROF
)
// Getitimer wraps getitimer(2) to return the current value of the timer
// specified by which.
func Getitimer(which ItimerWhich) (Itimerval, error) {
var it Itimerval
if err := getitimer(int(which), &it); err != nil {
return Itimerval{}, err
}
return it, nil
}
// Setitimer wraps setitimer(2) to arm or disarm the timer specified by which.
// It returns the previous value of the timer.
//
// If the Itimerval argument is the zero value, the timer will be disarmed.
func Setitimer(which ItimerWhich, it Itimerval) (Itimerval, error) {
var prev Itimerval
if err := setitimer(int(which), &it, &prev); err != nil {
return Itimerval{}, err
}
return prev, nil
}
/*
* Unimplemented
*/
@ -2333,7 +2380,6 @@ type RemoteIovec struct {
// GetMempolicy
// GetRobustList
// GetThreadArea
// Getitimer
// Getpmsg
// IoCancel
// IoDestroy

View file

@ -1268,6 +1268,9 @@ const (
IP_XFRM_POLICY = 0x11
ISOFS_SUPER_MAGIC = 0x9660
ISTRIP = 0x20
ITIMER_PROF = 0x2
ITIMER_REAL = 0x0
ITIMER_VIRTUAL = 0x1
IUTF8 = 0x4000
IXANY = 0x800
JFFS2_SUPER_MAGIC = 0x72b6

View file

@ -2032,3 +2032,23 @@ func shmget(key int, size int, flag int) (id int, err error) {
}
return
}
// THIS FILE IS GENERATED BY THE COMMAND AT THE TOP; DO NOT EDIT
func getitimer(which int, currValue *Itimerval) (err error) {
_, _, e1 := Syscall(SYS_GETITIMER, uintptr(which), uintptr(unsafe.Pointer(currValue)), 0)
if e1 != 0 {
err = errnoErr(e1)
}
return
}
// THIS FILE IS GENERATED BY THE COMMAND AT THE TOP; DO NOT EDIT
func setitimer(which int, newValue *Itimerval, oldValue *Itimerval) (err error) {
_, _, e1 := Syscall(SYS_SETITIMER, uintptr(which), uintptr(unsafe.Pointer(newValue)), uintptr(unsafe.Pointer(oldValue)))
if e1 != 0 {
err = errnoErr(e1)
}
return
}

View file

@ -24,6 +24,11 @@ type ItimerSpec struct {
Value Timespec
}
type Itimerval struct {
Interval Timeval
Value Timeval
}
const (
TIME_OK = 0x0
TIME_INS = 0x1

View file

@ -10,6 +10,7 @@ import (
"bufio"
"errors"
"fmt"
"io"
"math"
"os"
"sort"
@ -45,14 +46,18 @@ func ParseProfiles(fileName string) ([]*Profile, error) {
return nil, err
}
defer pf.Close()
return ParseProfilesFromReader(pf)
}
files := make(map[string]*Profile)
buf := bufio.NewReader(pf)
// ParseProfilesFromReader parses profile data from the Reader and
// returns a Profile for each source file described therein.
func ParseProfilesFromReader(rd io.Reader) ([]*Profile, error) {
// First line is "mode: foo", where foo is "set", "count", or "atomic".
// Rest of file is in the format
// encoding/base64/base64.go:34.44,37.40 3 1
// where the fields are: name.go:line.column,line.column numberOfStatements count
s := bufio.NewScanner(buf)
files := make(map[string]*Profile)
s := bufio.NewScanner(rd)
mode := ""
for s.Scan() {
line := s.Text()

View file

@ -51,6 +51,11 @@ type asmArch struct {
bigEndian bool
stack string
lr bool
// retRegs is a list of registers for return value in register ABI (ABIInternal).
// For now, as we only check whether we write to any result, here we only need to
// include the first integer register and first floating-point register. Accessing
// any of them counts as writing to result.
retRegs []string
// calculated during initialization
sizes types.Sizes
intSize int
@ -79,8 +84,8 @@ type asmVar struct {
var (
asmArch386 = asmArch{name: "386", bigEndian: false, stack: "SP", lr: false}
asmArchArm = asmArch{name: "arm", bigEndian: false, stack: "R13", lr: true}
asmArchArm64 = asmArch{name: "arm64", bigEndian: false, stack: "RSP", lr: true}
asmArchAmd64 = asmArch{name: "amd64", bigEndian: false, stack: "SP", lr: false}
asmArchArm64 = asmArch{name: "arm64", bigEndian: false, stack: "RSP", lr: true, retRegs: []string{"R0", "F0"}}
asmArchAmd64 = asmArch{name: "amd64", bigEndian: false, stack: "SP", lr: false, retRegs: []string{"AX", "X0"}}
asmArchMips = asmArch{name: "mips", bigEndian: true, stack: "R29", lr: true}
asmArchMipsLE = asmArch{name: "mipsle", bigEndian: false, stack: "R29", lr: true}
asmArchMips64 = asmArch{name: "mips64", bigEndian: true, stack: "R29", lr: true}
@ -137,7 +142,7 @@ var (
asmSP = re(`[^+\-0-9](([0-9]+)\(([A-Z0-9]+)\))`)
asmOpcode = re(`^\s*(?:[A-Z0-9a-z_]+:)?\s*([A-Z]+)\s*([^,]*)(?:,\s*(.*))?`)
ppc64Suff = re(`([BHWD])(ZU|Z|U|BR)?$`)
abiSuff = re(`^(.+)<ABI.+>$`)
abiSuff = re(`^(.+)<(ABI.+)>$`)
)
func run(pass *analysis.Pass) (interface{}, error) {
@ -185,6 +190,7 @@ Files:
var (
fn *asmFunc
fnName string
abi string
localSize, argSize int
wroteSP bool
noframe bool
@ -195,18 +201,22 @@ Files:
flushRet := func() {
if fn != nil && fn.vars["ret"] != nil && !haveRetArg && len(retLine) > 0 {
v := fn.vars["ret"]
resultStr := fmt.Sprintf("%d-byte ret+%d(FP)", v.size, v.off)
if abi == "ABIInternal" {
resultStr = "result register"
}
for _, line := range retLine {
pass.Reportf(analysisutil.LineStart(tf, line), "[%s] %s: RET without writing to %d-byte ret+%d(FP)", arch, fnName, v.size, v.off)
pass.Reportf(analysisutil.LineStart(tf, line), "[%s] %s: RET without writing to %s", arch, fnName, resultStr)
}
}
retLine = nil
}
trimABI := func(fnName string) string {
trimABI := func(fnName string) (string, string) {
m := abiSuff.FindStringSubmatch(fnName)
if m != nil {
return m[1]
return m[1], m[2]
}
return fnName
return fnName, ""
}
for lineno, line := range lines {
lineno++
@ -273,11 +283,12 @@ Files:
// log.Printf("%s:%d: [%s] cannot check cross-package assembly function: %s is in package %s", fname, lineno, arch, fnName, pkgPath)
fn = nil
fnName = ""
abi = ""
continue
}
}
// Trim off optional ABI selector.
fnName := trimABI(fnName)
fnName, abi = trimABI(fnName)
flag := m[3]
fn = knownFunc[fnName][arch]
if fn != nil {
@ -305,6 +316,7 @@ Files:
flushRet()
fn = nil
fnName = ""
abi = ""
continue
}
@ -335,6 +347,15 @@ Files:
haveRetArg = true
}
if abi == "ABIInternal" && !haveRetArg {
for _, reg := range archDef.retRegs {
if strings.Contains(line, reg) {
haveRetArg = true
break
}
}
}
for _, m := range asmSP.FindAllStringSubmatch(line, -1) {
if m[3] != archDef.stack || wroteSP || noframe {
continue

View file

@ -14,6 +14,7 @@ import (
"golang.org/x/tools/go/analysis"
"golang.org/x/tools/go/analysis/passes/inspect"
"golang.org/x/tools/go/ast/inspector"
"golang.org/x/tools/internal/typeparams"
)
const Doc = `check for unkeyed composite literals
@ -67,41 +68,61 @@ func run(pass *analysis.Pass) (interface{}, error) {
// skip whitelisted types
return
}
under := typ.Underlying()
for {
ptr, ok := under.(*types.Pointer)
if !ok {
break
var structuralTypes []types.Type
switch typ := typ.(type) {
case *typeparams.TypeParam:
terms, err := typeparams.StructuralTerms(typ)
if err != nil {
return // invalid type
}
under = ptr.Elem().Underlying()
}
if _, ok := under.(*types.Struct); !ok {
// skip non-struct composite literals
return
}
if isLocalType(pass, typ) {
// allow unkeyed locally defined composite literal
return
}
// check if the CompositeLit contains an unkeyed field
allKeyValue := true
for _, e := range cl.Elts {
if _, ok := e.(*ast.KeyValueExpr); !ok {
allKeyValue = false
break
for _, term := range terms {
structuralTypes = append(structuralTypes, term.Type())
}
default:
structuralTypes = append(structuralTypes, typ)
}
if allKeyValue {
// all the composite literal fields are keyed
for _, typ := range structuralTypes {
under := deref(typ.Underlying())
if _, ok := under.(*types.Struct); !ok {
// skip non-struct composite literals
continue
}
if isLocalType(pass, typ) {
// allow unkeyed locally defined composite literal
continue
}
// check if the CompositeLit contains an unkeyed field
allKeyValue := true
for _, e := range cl.Elts {
if _, ok := e.(*ast.KeyValueExpr); !ok {
allKeyValue = false
break
}
}
if allKeyValue {
// all the composite literal fields are keyed
continue
}
pass.ReportRangef(cl, "%s composite literal uses unkeyed fields", typeName)
return
}
pass.ReportRangef(cl, "%s composite literal uses unkeyed fields", typeName)
})
return nil, nil
}
func deref(typ types.Type) types.Type {
for {
ptr, ok := typ.(*types.Pointer)
if !ok {
break
}
typ = ptr.Elem().Underlying()
}
return typ
}
func isLocalType(pass *analysis.Pass, typ types.Type) bool {
switch x := typ.(type) {
case *types.Struct:
@ -112,6 +133,8 @@ func isLocalType(pass *analysis.Pass, typ types.Type) bool {
case *types.Named:
// names in package foo are local to foo_test too
return strings.TrimSuffix(x.Obj().Pkg().Path(), "_test") == strings.TrimSuffix(pass.Pkg.Path(), "_test")
case *typeparams.TypeParam:
return strings.TrimSuffix(x.Obj().Pkg().Path(), "_test") == strings.TrimSuffix(pass.Pkg.Path(), "_test")
}
return false
}

View file

@ -17,6 +17,7 @@ import (
"golang.org/x/tools/go/analysis/passes/inspect"
"golang.org/x/tools/go/analysis/passes/internal/analysisutil"
"golang.org/x/tools/go/ast/inspector"
"golang.org/x/tools/internal/typeparams"
)
const Doc = `check for locks erroneously passed by value
@ -145,7 +146,7 @@ func checkCopyLocksCallExpr(pass *analysis.Pass, ce *ast.CallExpr) {
func checkCopyLocksFunc(pass *analysis.Pass, name string, recv *ast.FieldList, typ *ast.FuncType) {
if recv != nil && len(recv.List) > 0 {
expr := recv.List[0].Type
if path := lockPath(pass.Pkg, pass.TypesInfo.Types[expr].Type); path != nil {
if path := lockPath(pass.Pkg, pass.TypesInfo.Types[expr].Type, nil); path != nil {
pass.ReportRangef(expr, "%s passes lock by value: %v", name, path)
}
}
@ -153,7 +154,7 @@ func checkCopyLocksFunc(pass *analysis.Pass, name string, recv *ast.FieldList, t
if typ.Params != nil {
for _, field := range typ.Params.List {
expr := field.Type
if path := lockPath(pass.Pkg, pass.TypesInfo.Types[expr].Type); path != nil {
if path := lockPath(pass.Pkg, pass.TypesInfo.Types[expr].Type, nil); path != nil {
pass.ReportRangef(expr, "%s passes lock by value: %v", name, path)
}
}
@ -199,12 +200,12 @@ func checkCopyLocksRangeVar(pass *analysis.Pass, rtok token.Token, e ast.Expr) {
if typ == nil {
return
}
if path := lockPath(pass.Pkg, typ); path != nil {
if path := lockPath(pass.Pkg, typ, nil); path != nil {
pass.Reportf(e.Pos(), "range var %s copies lock: %v", analysisutil.Format(pass.Fset, e), path)
}
}
type typePath []types.Type
type typePath []string
// String pretty-prints a typePath.
func (path typePath) String() string {
@ -215,7 +216,7 @@ func (path typePath) String() string {
fmt.Fprint(&buf, " contains ")
}
// The human-readable path is in reverse order, outermost to innermost.
fmt.Fprint(&buf, path[n-i-1].String())
fmt.Fprint(&buf, path[n-i-1])
}
return buf.String()
}
@ -234,16 +235,57 @@ func lockPathRhs(pass *analysis.Pass, x ast.Expr) typePath {
return nil
}
}
return lockPath(pass.Pkg, pass.TypesInfo.Types[x].Type)
return lockPath(pass.Pkg, pass.TypesInfo.Types[x].Type, nil)
}
// lockPath returns a typePath describing the location of a lock value
// contained in typ. If there is no contained lock, it returns nil.
func lockPath(tpkg *types.Package, typ types.Type) typePath {
//
// The seenTParams map is used to short-circuit infinite recursion via type
// parameters.
func lockPath(tpkg *types.Package, typ types.Type, seenTParams map[*typeparams.TypeParam]bool) typePath {
if typ == nil {
return nil
}
if tpar, ok := typ.(*typeparams.TypeParam); ok {
if seenTParams == nil {
// Lazily allocate seenTParams, since the common case will not involve
// any type parameters.
seenTParams = make(map[*typeparams.TypeParam]bool)
}
if seenTParams[tpar] {
return nil
}
seenTParams[tpar] = true
terms, err := typeparams.StructuralTerms(tpar)
if err != nil {
return nil // invalid type
}
for _, term := range terms {
subpath := lockPath(tpkg, term.Type(), seenTParams)
if len(subpath) > 0 {
if term.Tilde() {
// Prepend a tilde to our lock path entry to clarify the resulting
// diagnostic message. Consider the following example:
//
// func _[Mutex interface{ ~sync.Mutex; M() }](m Mutex) {}
//
// Here the naive error message will be something like "passes lock
// by value: Mutex contains sync.Mutex". This is misleading because
// the local type parameter doesn't actually contain sync.Mutex,
// which lacks the M method.
//
// With tilde, it is clearer that the containment is via an
// approximation element.
subpath[len(subpath)-1] = "~" + subpath[len(subpath)-1]
}
return append(subpath, typ.String())
}
}
return nil
}
for {
atyp, ok := typ.Underlying().(*types.Array)
if !ok {
@ -252,6 +294,17 @@ func lockPath(tpkg *types.Package, typ types.Type) typePath {
typ = atyp.Elem()
}
ttyp, ok := typ.Underlying().(*types.Tuple)
if ok {
for i := 0; i < ttyp.Len(); i++ {
subpath := lockPath(tpkg, ttyp.At(i).Type(), seenTParams)
if subpath != nil {
return append(subpath, typ.String())
}
}
return nil
}
// We're only interested in the case in which the underlying
// type is a struct. (Interfaces and pointers are safe to copy.)
styp, ok := typ.Underlying().(*types.Struct)
@ -263,7 +316,7 @@ func lockPath(tpkg *types.Package, typ types.Type) typePath {
// is a sync.Locker, but a value is not. This differentiates
// embedded interfaces from embedded values.
if types.Implements(types.NewPointer(typ), lockerType) && !types.Implements(typ, lockerType) {
return []types.Type{typ}
return []string{typ.String()}
}
// In go1.10, sync.noCopy did not implement Locker.
@ -272,15 +325,15 @@ func lockPath(tpkg *types.Package, typ types.Type) typePath {
if named, ok := typ.(*types.Named); ok &&
named.Obj().Name() == "noCopy" &&
named.Obj().Pkg().Path() == "sync" {
return []types.Type{typ}
return []string{typ.String()}
}
nfields := styp.NumFields()
for i := 0; i < nfields; i++ {
ftyp := styp.Field(i).Type()
subpath := lockPath(tpkg, ftyp)
subpath := lockPath(tpkg, ftyp, seenTParams)
if subpath != nil {
return append(subpath, typ)
return append(subpath, typ.String())
}
}

View file

@ -187,7 +187,11 @@ func (c *CFGs) callMayReturn(call *ast.CallExpr) (r bool) {
return false // panic never returns
}
// Is this a static call?
// Is this a static call? Also includes static functions
// parameterized by a type. Such functions may or may not
// return depending on the parameter type, but in some
// cases the answer is definite. We let ctrlflow figure
// that out.
fn := typeutil.StaticCallee(c.pass.TypesInfo, call)
if fn == nil {
return true // callee not statically known; be conservative

View file

@ -51,6 +51,12 @@ func assertableTo(v, t types.Type) *types.Func {
if V == nil || T == nil {
return nil
}
// Mitigations for interface comparisons and generics.
// TODO(https://github.com/golang/go/issues/50658): Support more precise conclusion.
if isParameterized(V) || isParameterized(T) {
return nil
}
if f, wrongType := types.MissingMethod(V, T, false); wrongType {
return f
}

View file

@ -0,0 +1,112 @@
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ifaceassert
import (
"go/types"
"golang.org/x/tools/internal/typeparams"
)
// isParameterized reports whether typ contains any of the type parameters of tparams.
//
// NOTE: Adapted from go/types/infer.go. If that is exported in a future release remove this copy.
func isParameterized(typ types.Type) bool {
w := tpWalker{
seen: make(map[types.Type]bool),
}
return w.isParameterized(typ)
}
type tpWalker struct {
seen map[types.Type]bool
}
func (w *tpWalker) isParameterized(typ types.Type) (res bool) {
// detect cycles
if x, ok := w.seen[typ]; ok {
return x
}
w.seen[typ] = false
defer func() {
w.seen[typ] = res
}()
switch t := typ.(type) {
case nil, *types.Basic: // TODO(gri) should nil be handled here?
break
case *types.Array:
return w.isParameterized(t.Elem())
case *types.Slice:
return w.isParameterized(t.Elem())
case *types.Struct:
for i, n := 0, t.NumFields(); i < n; i++ {
if w.isParameterized(t.Field(i).Type()) {
return true
}
}
case *types.Pointer:
return w.isParameterized(t.Elem())
case *types.Tuple:
n := t.Len()
for i := 0; i < n; i++ {
if w.isParameterized(t.At(i).Type()) {
return true
}
}
case *types.Signature:
// t.tparams may not be nil if we are looking at a signature
// of a generic function type (or an interface method) that is
// part of the type we're testing. We don't care about these type
// parameters.
// Similarly, the receiver of a method may declare (rather then
// use) type parameters, we don't care about those either.
// Thus, we only need to look at the input and result parameters.
return w.isParameterized(t.Params()) || w.isParameterized(t.Results())
case *types.Interface:
for i, n := 0, t.NumMethods(); i < n; i++ {
if w.isParameterized(t.Method(i).Type()) {
return true
}
}
terms, err := typeparams.InterfaceTermSet(t)
if err != nil {
panic(err)
}
for _, term := range terms {
if w.isParameterized(term.Type()) {
return true
}
}
case *types.Map:
return w.isParameterized(t.Key()) || w.isParameterized(t.Elem())
case *types.Chan:
return w.isParameterized(t.Elem())
case *types.Named:
list := typeparams.NamedTypeArgs(t)
for i, n := 0, list.Len(); i < n; i++ {
if w.isParameterized(list.At(i)) {
return true
}
}
case *typeparams.TypeParam:
return true
default:
panic(t) // unreachable
}
return false
}

View file

@ -14,6 +14,7 @@ import (
"golang.org/x/tools/go/analysis"
"golang.org/x/tools/go/analysis/passes/inspect"
"golang.org/x/tools/go/ast/inspector"
"golang.org/x/tools/internal/typeparams"
)
const Doc = `check for useless comparisons between functions and nil
@ -59,6 +60,12 @@ func run(pass *analysis.Pass) (interface{}, error) {
obj = pass.TypesInfo.Uses[v]
case *ast.SelectorExpr:
obj = pass.TypesInfo.Uses[v.Sel]
case *ast.IndexExpr, *typeparams.IndexListExpr:
// Check generic functions such as "f[T1,T2]".
x, _, _, _ := typeparams.UnpackIndexExpr(v)
if id, ok := x.(*ast.Ident); ok {
obj = pass.TypesInfo.Uses[id]
}
default:
return
}

View file

@ -135,6 +135,11 @@ func runFunc(pass *analysis.Pass, fn *ssa.Function) {
if nilnessOf(stack, instr.X) == isnil {
reportf("nilpanic", instr.Pos(), "panic with nil value")
}
case *ssa.SliceToArrayPointer:
nn := nilnessOf(stack, instr.X)
if nn == isnil && slice2ArrayPtrLen(instr) > 0 {
reportf("conversionpanic", instr.Pos(), "nil slice being cast to an array of len > 0 will always panic")
}
}
}
@ -259,6 +264,26 @@ func nilnessOf(stack []fact, v ssa.Value) nilness {
if underlying := nilnessOf(stack, v.X); underlying != unknown {
return underlying
}
case *ssa.SliceToArrayPointer:
nn := nilnessOf(stack, v.X)
if slice2ArrayPtrLen(v) > 0 {
if nn == isnil {
// We know that *(*[1]byte)(nil) is going to panic because of the
// conversion. So return unknown to the caller, prevent useless
// nil deference reporting due to * operator.
return unknown
}
// Otherwise, the conversion will yield a non-nil pointer to array.
// Note that the instruction can still panic if array length greater
// than slice length. If the value is used by another instruction,
// that instruction can assume the panic did not happen when that
// instruction is reached.
return isnonnil
}
// In case array length is zero, the conversion result depends on nilness of the slice.
if nn != unknown {
return nn
}
}
// Is value intrinsically nil or non-nil?
@ -292,6 +317,10 @@ func nilnessOf(stack []fact, v ssa.Value) nilness {
return unknown
}
func slice2ArrayPtrLen(v *ssa.SliceToArrayPointer) int64 {
return v.Type().(*types.Pointer).Elem().Underlying().(*types.Array).Len()
}
// If b ends with an equality comparison, eq returns the operation and
// its true (equal) and false (not equal) successors.
func eq(b *ssa.BasicBlock) (op *ssa.BinOp, tsucc, fsucc *ssa.BasicBlock) {

View file

@ -25,6 +25,7 @@ import (
"golang.org/x/tools/go/analysis/passes/internal/analysisutil"
"golang.org/x/tools/go/ast/inspector"
"golang.org/x/tools/go/types/typeutil"
"golang.org/x/tools/internal/typeparams"
)
func init() {
@ -452,8 +453,15 @@ func stringConstantArg(pass *analysis.Pass, call *ast.CallExpr, idx int) (string
if idx >= len(call.Args) {
return "", false
}
arg := call.Args[idx]
lit := pass.TypesInfo.Types[arg].Value
return stringConstantExpr(pass, call.Args[idx])
}
// stringConstantExpr returns expression's string constant value.
//
// ("", false) is returned if expression isn't a string
// constant.
func stringConstantExpr(pass *analysis.Pass, expr ast.Expr) (string, bool) {
lit := pass.TypesInfo.Types[expr].Value
if lit != nil && lit.Kind() == constant.String {
return constant.StringVal(lit), true
}
@ -490,7 +498,7 @@ func printfNameAndKind(pass *analysis.Pass, call *ast.CallExpr) (fn *types.Func,
_, ok = isPrint[strings.ToLower(fn.Name())]
}
if ok {
if fn.Name() == "Errorf" {
if fn.FullName() == "fmt.Errorf" {
kind = KindErrorf
} else if strings.HasSuffix(fn.Name(), "f") {
kind = KindPrintf
@ -513,7 +521,12 @@ func printfNameAndKind(pass *analysis.Pass, call *ast.CallExpr) (fn *types.Func,
func isFormatter(typ types.Type) bool {
// If the type is an interface, the value it holds might satisfy fmt.Formatter.
if _, ok := typ.Underlying().(*types.Interface); ok {
return true
// Don't assume type parameters could be formatters. With the greater
// expressiveness of constraint interface syntax we expect more type safety
// when using type parameters.
if !typeparams.IsTypeParam(typ) {
return true
}
}
obj, _, _ := types.LookupFieldOrMethod(typ, false, nil, "Format")
fn, ok := obj.(*types.Func)
@ -590,12 +603,9 @@ func checkPrintf(pass *analysis.Pass, kind Kind, call *ast.CallExpr, fn *types.F
}
if state.verb == 'w' {
switch kind {
case KindNone, KindPrint:
case KindNone, KindPrint, KindPrintf:
pass.Reportf(call.Pos(), "%s does not support error-wrapping directive %%w", state.name)
return
case KindPrintf:
pass.Reportf(call.Pos(), "%s call has error-wrapping directive %%w, which is only supported for functions backed by fmt.Errorf", state.name)
return
}
if anyW {
pass.Reportf(call.Pos(), "%s call has more than one error-wrapping directive %%w", state.name)
@ -837,8 +847,9 @@ func okPrintfArg(pass *analysis.Pass, call *ast.CallExpr, state *formatState) (o
}
// Could current arg implement fmt.Formatter?
// Skip check for the %w verb, which requires an error.
formatter := false
if state.argNum < len(call.Args) {
if v.typ != argError && state.argNum < len(call.Args) {
if tv, ok := pass.TypesInfo.Types[call.Args[state.argNum]]; ok {
formatter = isFormatter(tv.Type)
}
@ -874,8 +885,12 @@ func okPrintfArg(pass *analysis.Pass, call *ast.CallExpr, state *formatState) (o
return
}
arg := call.Args[argNum]
if !matchArgType(pass, argInt, nil, arg) {
pass.ReportRangef(call, "%s format %s uses non-int %s as argument of *", state.name, state.format, analysisutil.Format(pass.Fset, arg))
if reason, ok := matchArgType(pass, argInt, arg); !ok {
details := ""
if reason != "" {
details = " (" + reason + ")"
}
pass.ReportRangef(call, "%s format %s uses non-int %s%s as argument of *", state.name, state.format, analysisutil.Format(pass.Fset, arg), details)
return false
}
}
@ -892,12 +907,16 @@ func okPrintfArg(pass *analysis.Pass, call *ast.CallExpr, state *formatState) (o
pass.ReportRangef(call, "%s format %s arg %s is a func value, not called", state.name, state.format, analysisutil.Format(pass.Fset, arg))
return false
}
if !matchArgType(pass, v.typ, nil, arg) {
if reason, ok := matchArgType(pass, v.typ, arg); !ok {
typeString := ""
if typ := pass.TypesInfo.Types[arg].Type; typ != nil {
typeString = typ.String()
}
pass.ReportRangef(call, "%s format %s has arg %s of wrong type %s", state.name, state.format, analysisutil.Format(pass.Fset, arg), typeString)
details := ""
if reason != "" {
details = " (" + reason + ")"
}
pass.ReportRangef(call, "%s format %s has arg %s of wrong type %s%s", state.name, state.format, analysisutil.Format(pass.Fset, arg), typeString, details)
return false
}
if v.typ&argString != 0 && v.verb != 'T' && !bytes.Contains(state.flags, []byte{'#'}) {
@ -1055,10 +1074,10 @@ func checkPrint(pass *analysis.Pass, call *ast.CallExpr, fn *types.Func) {
}
arg := args[0]
if lit, ok := arg.(*ast.BasicLit); ok && lit.Kind == token.STRING {
// Ignore trailing % character in lit.Value.
if s, ok := stringConstantExpr(pass, arg); ok {
// Ignore trailing % character
// The % in "abc 0.0%" couldn't be a formatting directive.
s := strings.TrimSuffix(lit.Value, `%"`)
s = strings.TrimSuffix(s, "%")
if strings.Contains(s, "%") {
m := printFormatRE.FindStringSubmatch(s)
if m != nil {
@ -1069,9 +1088,8 @@ func checkPrint(pass *analysis.Pass, call *ast.CallExpr, fn *types.Func) {
if strings.HasSuffix(fn.Name(), "ln") {
// The last item, if a string, should not have a newline.
arg = args[len(args)-1]
if lit, ok := arg.(*ast.BasicLit); ok && lit.Kind == token.STRING {
str, _ := strconv.Unquote(lit.Value)
if strings.HasSuffix(str, "\n") {
if s, ok := stringConstantExpr(pass, arg); ok {
if strings.HasSuffix(s, "\n") {
pass.ReportRangef(call, "%s arg list ends with redundant newline", fn.FullName())
}
}

View file

@ -5,45 +5,60 @@
package printf
import (
"fmt"
"go/ast"
"go/types"
"golang.org/x/tools/go/analysis"
"golang.org/x/tools/go/analysis/passes/internal/analysisutil"
"golang.org/x/tools/internal/typeparams"
)
var errorType = types.Universe.Lookup("error").Type().Underlying().(*types.Interface)
// matchArgType reports an error if printf verb t is not appropriate
// for operand arg.
// matchArgType reports an error if printf verb t is not appropriate for
// operand arg.
//
// typ is used only for recursive calls; external callers must supply nil.
//
// (Recursion arises from the compound types {map,chan,slice} which
// may be printed with %d etc. if that is appropriate for their element
// types.)
func matchArgType(pass *analysis.Pass, t printfArgType, typ types.Type, arg ast.Expr) bool {
return matchArgTypeInternal(pass, t, typ, arg, make(map[types.Type]bool))
}
// matchArgTypeInternal is the internal version of matchArgType. It carries a map
// remembering what types are in progress so we don't recur when faced with recursive
// types or mutually recursive types.
func matchArgTypeInternal(pass *analysis.Pass, t printfArgType, typ types.Type, arg ast.Expr, inProgress map[types.Type]bool) bool {
// If arg is a type parameter, the verb t must be appropriate for every type in
// the type parameter type set.
func matchArgType(pass *analysis.Pass, t printfArgType, arg ast.Expr) (reason string, ok bool) {
// %v, %T accept any argument type.
if t == anyType {
return true
}
if typ == nil {
// external call
typ = pass.TypesInfo.Types[arg].Type
if typ == nil {
return true // probably a type check problem
}
return "", true
}
typ := pass.TypesInfo.Types[arg].Type
if typ == nil {
return "", true // probably a type check problem
}
m := &argMatcher{t: t, seen: make(map[types.Type]bool)}
ok = m.match(typ, true)
return m.reason, ok
}
// argMatcher recursively matches types against the printfArgType t.
//
// To short-circuit recursion, it keeps track of types that have already been
// matched (or are in the process of being matched) via the seen map. Recursion
// arises from the compound types {map,chan,slice} which may be printed with %d
// etc. if that is appropriate for their element types, as well as from type
// parameters, which are expanded to the constituents of their type set.
//
// The reason field may be set to report the cause of the mismatch.
type argMatcher struct {
t printfArgType
seen map[types.Type]bool
reason string
}
// match checks if typ matches m's printf arg type. If topLevel is true, typ is
// the actual type of the printf arg, for which special rules apply. As a
// special case, top level type parameters pass topLevel=true when checking for
// matches among the constituents of their type set, as type arguments will
// replace the type parameter at compile time.
func (m *argMatcher) match(typ types.Type, topLevel bool) bool {
// %w accepts only errors.
if t == argError {
if m.t == argError {
return types.ConvertibleTo(typ, errorType)
}
@ -51,65 +66,122 @@ func matchArgTypeInternal(pass *analysis.Pass, t printfArgType, typ types.Type,
if isFormatter(typ) {
return true
}
// If we can use a string, might arg (dynamically) implement the Stringer or Error interface?
if t&argString != 0 && isConvertibleToString(pass, typ) {
if m.t&argString != 0 && isConvertibleToString(typ) {
return true
}
if typ, _ := typ.(*typeparams.TypeParam); typ != nil {
// Avoid infinite recursion through type parameters.
if m.seen[typ] {
return true
}
m.seen[typ] = true
terms, err := typeparams.StructuralTerms(typ)
if err != nil {
return true // invalid type (possibly an empty type set)
}
if len(terms) == 0 {
// No restrictions on the underlying of typ. Type parameters implementing
// error, fmt.Formatter, or fmt.Stringer were handled above, and %v and
// %T was handled in matchType. We're about to check restrictions the
// underlying; if the underlying type is unrestricted there must be an
// element of the type set that violates one of the arg type checks
// below, so we can safely return false here.
if m.t == anyType { // anyType must have already been handled.
panic("unexpected printfArgType")
}
return false
}
// Only report a reason if typ is the argument type, otherwise it won't
// make sense. Note that it is not sufficient to check if topLevel == here,
// as type parameters can have a type set consisting of other type
// parameters.
reportReason := len(m.seen) == 1
for _, term := range terms {
if !m.match(term.Type(), topLevel) {
if reportReason {
if term.Tilde() {
m.reason = fmt.Sprintf("contains ~%s", term.Type())
} else {
m.reason = fmt.Sprintf("contains %s", term.Type())
}
}
return false
}
}
return true
}
typ = typ.Underlying()
if inProgress[typ] {
// We're already looking at this type. The call that started it will take care of it.
if m.seen[typ] {
// We've already considered typ, or are in the process of considering it.
// In case we've already considered typ, it must have been valid (else we
// would have stopped matching). In case we're in the process of
// considering it, we must avoid infinite recursion.
//
// There are some pathological cases where returning true here is
// incorrect, for example `type R struct { F []R }`, but these are
// acceptable false negatives.
return true
}
inProgress[typ] = true
m.seen[typ] = true
switch typ := typ.(type) {
case *types.Signature:
return t == argPointer
return m.t == argPointer
case *types.Map:
return t == argPointer ||
// Recur: map[int]int matches %d.
(matchArgTypeInternal(pass, t, typ.Key(), arg, inProgress) && matchArgTypeInternal(pass, t, typ.Elem(), arg, inProgress))
if m.t == argPointer {
return true
}
// Recur: map[int]int matches %d.
return m.match(typ.Key(), false) && m.match(typ.Elem(), false)
case *types.Chan:
return t&argPointer != 0
return m.t&argPointer != 0
case *types.Array:
// Same as slice.
if types.Identical(typ.Elem().Underlying(), types.Typ[types.Byte]) && t&argString != 0 {
if types.Identical(typ.Elem().Underlying(), types.Typ[types.Byte]) && m.t&argString != 0 {
return true // %s matches []byte
}
// Recur: []int matches %d.
return matchArgTypeInternal(pass, t, typ.Elem(), arg, inProgress)
return m.match(typ.Elem(), false)
case *types.Slice:
// Same as array.
if types.Identical(typ.Elem().Underlying(), types.Typ[types.Byte]) && t&argString != 0 {
if types.Identical(typ.Elem().Underlying(), types.Typ[types.Byte]) && m.t&argString != 0 {
return true // %s matches []byte
}
if t == argPointer {
if m.t == argPointer {
return true // %p prints a slice's 0th element
}
// Recur: []int matches %d. But watch out for
// type T []T
// If the element is a pointer type (type T[]*T), it's handled fine by the Pointer case below.
return matchArgTypeInternal(pass, t, typ.Elem(), arg, inProgress)
return m.match(typ.Elem(), false)
case *types.Pointer:
// Ugly, but dealing with an edge case: a known pointer to an invalid type,
// probably something from a failed import.
if typ.Elem().String() == "invalid type" {
if false {
pass.Reportf(arg.Pos(), "printf argument %v is pointer to invalid or unknown type", analysisutil.Format(pass.Fset, arg))
}
if typ.Elem() == types.Typ[types.Invalid] {
return true // special case
}
// If it's actually a pointer with %p, it prints as one.
if t == argPointer {
if m.t == argPointer {
return true
}
if typeparams.IsTypeParam(typ.Elem()) {
return true // We don't know whether the logic below applies. Give up.
}
under := typ.Elem().Underlying()
switch under.(type) {
case *types.Struct: // see below
@ -118,19 +190,31 @@ func matchArgTypeInternal(pass *analysis.Pass, t printfArgType, typ types.Type,
case *types.Map: // see below
default:
// Check whether the rest can print pointers.
return t&argPointer != 0
return m.t&argPointer != 0
}
// If it's a top-level pointer to a struct, array, slice, or
// If it's a top-level pointer to a struct, array, slice, type param, or
// map, that's equivalent in our analysis to whether we can
// print the type being pointed to. Pointers in nested levels
// are not supported to minimize fmt running into loops.
if len(inProgress) > 1 {
if !topLevel {
return false
}
return matchArgTypeInternal(pass, t, under, arg, inProgress)
return m.match(under, false)
case *types.Struct:
return matchStructArgType(pass, t, typ, arg, inProgress)
// report whether all the elements of the struct match the expected type. For
// instance, with "%d" all the elements must be printable with the "%d" format.
for i := 0; i < typ.NumFields(); i++ {
typf := typ.Field(i)
if !m.match(typf.Type(), false) {
return false
}
if m.t&argString != 0 && !typf.Exported() && isConvertibleToString(typf.Type()) {
// Issue #17798: unexported Stringer or error cannot be properly formatted.
return false
}
}
return true
case *types.Interface:
// There's little we can do.
@ -142,7 +226,7 @@ func matchArgTypeInternal(pass *analysis.Pass, t printfArgType, typ types.Type,
switch typ.Kind() {
case types.UntypedBool,
types.Bool:
return t&argBool != 0
return m.t&argBool != 0
case types.UntypedInt,
types.Int,
@ -156,35 +240,32 @@ func matchArgTypeInternal(pass *analysis.Pass, t printfArgType, typ types.Type,
types.Uint32,
types.Uint64,
types.Uintptr:
return t&argInt != 0
return m.t&argInt != 0
case types.UntypedFloat,
types.Float32,
types.Float64:
return t&argFloat != 0
return m.t&argFloat != 0
case types.UntypedComplex,
types.Complex64,
types.Complex128:
return t&argComplex != 0
return m.t&argComplex != 0
case types.UntypedString,
types.String:
return t&argString != 0
return m.t&argString != 0
case types.UnsafePointer:
return t&(argPointer|argInt) != 0
return m.t&(argPointer|argInt) != 0
case types.UntypedRune:
return t&(argInt|argRune) != 0
return m.t&(argInt|argRune) != 0
case types.UntypedNil:
return false
case types.Invalid:
if false {
pass.Reportf(arg.Pos(), "printf argument %v has invalid or unknown type", analysisutil.Format(pass.Fset, arg))
}
return true // Probably a type check problem.
}
panic("unreachable")
@ -193,7 +274,7 @@ func matchArgTypeInternal(pass *analysis.Pass, t printfArgType, typ types.Type,
return false
}
func isConvertibleToString(pass *analysis.Pass, typ types.Type) bool {
func isConvertibleToString(typ types.Type) bool {
if bt, ok := typ.(*types.Basic); ok && bt.Kind() == types.UntypedNil {
// We explicitly don't want untyped nil, which is
// convertible to both of the interfaces below, as it
@ -228,19 +309,3 @@ func hasBasicType(pass *analysis.Pass, x ast.Expr, kind types.BasicKind) bool {
b, ok := t.(*types.Basic)
return ok && b.Kind() == kind
}
// matchStructArgType reports whether all the elements of the struct match the expected
// type. For instance, with "%d" all the elements must be printable with the "%d" format.
func matchStructArgType(pass *analysis.Pass, t printfArgType, typ *types.Struct, arg ast.Expr, inProgress map[types.Type]bool) bool {
for i := 0; i < typ.NumFields(); i++ {
typf := typ.Field(i)
if !matchArgTypeInternal(pass, t, typf.Type(), arg, inProgress) {
return false
}
if t&argString != 0 && !typf.Exported() && isConvertibleToString(pass, typf.Type()) {
// Issue #17798: unexported Stringer or error cannot be properly formatted.
return false
}
}
return true
}

View file

@ -14,11 +14,14 @@ import (
"go/ast"
"go/constant"
"go/token"
"go/types"
"math"
"golang.org/x/tools/go/analysis"
"golang.org/x/tools/go/analysis/passes/inspect"
"golang.org/x/tools/go/analysis/passes/internal/analysisutil"
"golang.org/x/tools/go/ast/inspector"
"golang.org/x/tools/internal/typeparams"
)
const Doc = "check for shifts that equal or exceed the width of the integer"
@ -93,9 +96,36 @@ func checkLongShift(pass *analysis.Pass, node ast.Node, x, y ast.Expr) {
if t == nil {
return
}
size := 8 * pass.TypesSizes.Sizeof(t)
if amt >= size {
var structuralTypes []types.Type
switch t := t.(type) {
case *typeparams.TypeParam:
terms, err := typeparams.StructuralTerms(t)
if err != nil {
return // invalid type
}
for _, term := range terms {
structuralTypes = append(structuralTypes, term.Type())
}
default:
structuralTypes = append(structuralTypes, t)
}
sizes := make(map[int64]struct{})
for _, t := range structuralTypes {
size := 8 * pass.TypesSizes.Sizeof(t)
sizes[size] = struct{}{}
}
minSize := int64(math.MaxInt64)
for size := range sizes {
if size < minSize {
minSize = size
}
}
if amt >= minSize {
ident := analysisutil.Format(pass.Fset, x)
pass.ReportRangef(node, "%s (%d bits) too small for shift of %d", ident, size, amt)
qualifier := ""
if len(sizes) > 1 {
qualifier = "may be "
}
pass.ReportRangef(node, "%s (%s%d bits) too small for shift of %d", ident, qualifier, minSize, amt)
}
}

View file

@ -45,7 +45,8 @@ func run(pass *analysis.Pass) (interface{}, error) {
return
}
if fn.FullName() != "sort.Slice" {
fnName := fn.FullName()
if fnName != "sort.Slice" && fnName != "sort.SliceStable" && fnName != "sort.SliceIsSorted" {
return
}
@ -115,7 +116,7 @@ func run(pass *analysis.Pass) (interface{}, error) {
pass.Report(analysis.Diagnostic{
Pos: call.Pos(),
End: call.End(),
Message: fmt.Sprintf("sort.Slice's argument must be a slice; is called with %s", typ.String()),
Message: fmt.Sprintf("%s's argument must be a slice; is called with %s", fnName, typ.String()),
SuggestedFixes: fixes,
})
})

View file

@ -61,7 +61,7 @@ var Analyzer = &analysis.Analyzer{
// we let it go. But if it does have a fmt.ScanState, then the
// rest has to match.
var canonicalMethods = map[string]struct{ args, results []string }{
"As": {[]string{"interface{}"}, []string{"bool"}}, // errors.As
"As": {[]string{"any"}, []string{"bool"}}, // errors.As
// "Flush": {{}, {"error"}}, // http.Flusher and jpeg.writer conflict
"Format": {[]string{"=fmt.State", "rune"}, []string{}}, // fmt.Formatter
"GobDecode": {[]string{"[]byte"}, []string{"error"}}, // gob.GobDecoder
@ -194,7 +194,9 @@ func matchParams(pass *analysis.Pass, expect []string, actual *types.Tuple, pref
func matchParamType(expect string, actual types.Type) bool {
expect = strings.TrimPrefix(expect, "=")
// Overkill but easy.
return typeString(actual) == expect
t := typeString(actual)
return t == expect ||
(t == "any" || t == "interface{}") && (expect == "any" || expect == "interface{}")
}
var errorType = types.Universe.Lookup("error").Type().Underlying().(*types.Interface)

View file

@ -10,10 +10,12 @@ import (
"fmt"
"go/ast"
"go/types"
"strings"
"golang.org/x/tools/go/analysis"
"golang.org/x/tools/go/analysis/passes/inspect"
"golang.org/x/tools/go/ast/inspector"
"golang.org/x/tools/internal/typeparams"
)
const Doc = `check for string(int) conversions
@ -36,6 +38,35 @@ var Analyzer = &analysis.Analyzer{
Run: run,
}
// describe returns a string describing the type typ contained within the type
// set of inType. If non-empty, inName is used as the name of inType (this is
// necessary so that we can use alias type names that may not be reachable from
// inType itself).
func describe(typ, inType types.Type, inName string) string {
name := inName
if typ != inType {
name = typeName(typ)
}
if name == "" {
return ""
}
var parentheticals []string
if underName := typeName(typ.Underlying()); underName != "" && underName != name {
parentheticals = append(parentheticals, underName)
}
if typ != inType && inName != "" && inName != name {
parentheticals = append(parentheticals, "in "+inName)
}
if len(parentheticals) > 0 {
name += " (" + strings.Join(parentheticals, ", ") + ")"
}
return name
}
func typeName(typ types.Type) string {
if v, _ := typ.(interface{ Name() string }); v != nil {
return v.Name()
@ -54,6 +85,11 @@ func run(pass *analysis.Pass) (interface{}, error) {
inspect.Preorder(nodeFilter, func(n ast.Node) {
call := n.(*ast.CallExpr)
if len(call.Args) != 1 {
return
}
arg := call.Args[0]
// Retrieve target type name.
var tname *types.TypeName
switch fun := call.Fun.(type) {
@ -65,62 +101,119 @@ func run(pass *analysis.Pass) (interface{}, error) {
if tname == nil {
return
}
target := tname.Name()
// Check that target type T in T(v) has an underlying type of string.
T, _ := tname.Type().Underlying().(*types.Basic)
if T == nil || T.Kind() != types.String {
return
}
if s := T.Name(); target != s {
target += " (" + s + ")"
// In the conversion T(v) of a value v of type V to a target type T, we
// look for types T0 in the type set of T and V0 in the type set of V, such
// that V0->T0 is a problematic conversion. If T and V are not type
// parameters, this amounts to just checking if V->T is a problematic
// conversion.
// First, find a type T0 in T that has an underlying type of string.
T := tname.Type()
ttypes, err := structuralTypes(T)
if err != nil {
return // invalid type
}
// Check that type V of v has an underlying integral type that is not byte or rune.
if len(call.Args) != 1 {
return
var T0 types.Type // string type in the type set of T
for _, tt := range ttypes {
u, _ := tt.Underlying().(*types.Basic)
if u != nil && u.Kind() == types.String {
T0 = tt
break
}
}
v := call.Args[0]
vtyp := pass.TypesInfo.TypeOf(v)
V, _ := vtyp.Underlying().(*types.Basic)
if V == nil || V.Info()&types.IsInteger == 0 {
return
}
switch V.Kind() {
case types.Byte, types.Rune, types.UntypedRune:
if T0 == nil {
// No target types have an underlying type of string.
return
}
// Retrieve source type name.
source := typeName(vtyp)
if source == "" {
// Next, find a type V0 in V that has an underlying integral type that is
// not byte or rune.
V := pass.TypesInfo.TypeOf(arg)
vtypes, err := structuralTypes(V)
if err != nil {
return // invalid type
}
var V0 types.Type // integral type in the type set of V
for _, vt := range vtypes {
u, _ := vt.Underlying().(*types.Basic)
if u != nil && u.Info()&types.IsInteger != 0 {
switch u.Kind() {
case types.Byte, types.Rune, types.UntypedRune:
continue
}
V0 = vt
break
}
}
if V0 == nil {
// No source types are non-byte or rune integer types.
return
}
if s := V.Name(); source != s {
source += " (" + s + ")"
convertibleToRune := true // if true, we can suggest a fix
for _, t := range vtypes {
if !types.ConvertibleTo(t, types.Typ[types.Rune]) {
convertibleToRune = false
break
}
}
target := describe(T0, T, tname.Name())
source := describe(V0, V, typeName(V))
if target == "" || source == "" {
return // something went wrong
}
diag := analysis.Diagnostic{
Pos: n.Pos(),
Message: fmt.Sprintf("conversion from %s to %s yields a string of one rune, not a string of digits (did you mean fmt.Sprint(x)?)", source, target),
SuggestedFixes: []analysis.SuggestedFix{
}
if convertibleToRune {
diag.SuggestedFixes = []analysis.SuggestedFix{
{
Message: "Did you mean to convert a rune to a string?",
TextEdits: []analysis.TextEdit{
{
Pos: v.Pos(),
End: v.Pos(),
Pos: arg.Pos(),
End: arg.Pos(),
NewText: []byte("rune("),
},
{
Pos: v.End(),
End: v.End(),
Pos: arg.End(),
End: arg.End(),
NewText: []byte(")"),
},
},
},
},
}
}
pass.Report(diag)
})
return nil, nil
}
func structuralTypes(t types.Type) ([]types.Type, error) {
var structuralTypes []types.Type
switch t := t.(type) {
case *typeparams.TypeParam:
terms, err := typeparams.StructuralTerms(t)
if err != nil {
return nil, err
}
for _, term := range terms {
structuralTypes = append(structuralTypes, term.Type())
}
default:
structuralTypes = append(structuralTypes, t)
}
return structuralTypes, nil
}

View file

@ -11,6 +11,7 @@ import (
"golang.org/x/tools/go/analysis/passes/inspect"
"golang.org/x/tools/go/analysis/passes/internal/analysisutil"
"golang.org/x/tools/go/ast/inspector"
"golang.org/x/tools/internal/typeparams"
)
const Doc = `report calls to (*testing.T).Fatal from goroutines started by a test.
@ -119,11 +120,44 @@ func typeIsTestingDotTOrB(expr ast.Expr) (string, bool) {
return varTypeName, ok
}
// goStmtFunc returns the ast.Node of a call expression
// that was invoked as a go statement. Currently, only
// function literals declared in the same function, and
// static calls within the same package are supported.
func goStmtFun(goStmt *ast.GoStmt) ast.Node {
switch fun := goStmt.Call.Fun.(type) {
case *ast.IndexExpr, *typeparams.IndexListExpr:
x, _, _, _ := typeparams.UnpackIndexExpr(fun)
id, _ := x.(*ast.Ident)
if id == nil {
break
}
if id.Obj == nil {
break
}
if funDecl, ok := id.Obj.Decl.(ast.Node); ok {
return funDecl
}
case *ast.Ident:
// TODO(cuonglm): improve this once golang/go#48141 resolved.
if fun.Obj == nil {
break
}
if funDecl, ok := fun.Obj.Decl.(ast.Node); ok {
return funDecl
}
case *ast.FuncLit:
return goStmt.Call.Fun
}
return goStmt.Call
}
// checkGoStmt traverses the goroutine and checks for the
// use of the forbidden *testing.(B, T) methods.
func checkGoStmt(pass *analysis.Pass, goStmt *ast.GoStmt) {
fn := goStmtFun(goStmt)
// Otherwise examine the goroutine to check for the forbidden methods.
ast.Inspect(goStmt, func(n ast.Node) bool {
ast.Inspect(fn, func(n ast.Node) bool {
selExpr, ok := n.(*ast.SelectorExpr)
if !ok {
return true
@ -147,7 +181,11 @@ func checkGoStmt(pass *analysis.Pass, goStmt *ast.GoStmt) {
return true
}
if typeName, ok := typeIsTestingDotTOrB(field.Type); ok {
pass.ReportRangef(selExpr, "call to (*%s).%s from a non-test goroutine", typeName, selExpr.Sel)
var fnRange analysis.Range = goStmt
if _, ok := fn.(*ast.FuncLit); ok {
fnRange = selExpr
}
pass.ReportRangef(fnRange, "call to (*%s).%s from a non-test goroutine", typeName, selExpr.Sel)
}
return true
})

View file

@ -8,12 +8,15 @@ package tests
import (
"go/ast"
"go/token"
"go/types"
"regexp"
"strings"
"unicode"
"unicode/utf8"
"golang.org/x/tools/go/analysis"
"golang.org/x/tools/internal/typeparams"
)
const Doc = `check for common mistaken usages of tests and examples
@ -42,10 +45,10 @@ func run(pass *analysis.Pass) (interface{}, error) {
// Ignore non-functions or functions with receivers.
continue
}
switch {
case strings.HasPrefix(fn.Name.Name, "Example"):
checkExample(pass, fn)
checkExampleName(pass, fn)
checkExampleOutput(pass, fn, f.Comments)
case strings.HasPrefix(fn.Name.Name, "Test"):
checkTest(pass, fn, "Test")
case strings.HasPrefix(fn.Name.Name, "Benchmark"):
@ -108,7 +111,59 @@ func lookup(pkg *types.Package, name string) []types.Object {
return ret
}
func checkExample(pass *analysis.Pass, fn *ast.FuncDecl) {
// This pattern is taken from /go/src/go/doc/example.go
var outputRe = regexp.MustCompile(`(?i)^[[:space:]]*(unordered )?output:`)
type commentMetadata struct {
isOutput bool
pos token.Pos
}
func checkExampleOutput(pass *analysis.Pass, fn *ast.FuncDecl, fileComments []*ast.CommentGroup) {
commentsInExample := []commentMetadata{}
numOutputs := 0
// Find the comment blocks that are in the example. These comments are
// guaranteed to be in order of appearance.
for _, cg := range fileComments {
if cg.Pos() < fn.Pos() {
continue
} else if cg.End() > fn.End() {
break
}
isOutput := outputRe.MatchString(cg.Text())
if isOutput {
numOutputs++
}
commentsInExample = append(commentsInExample, commentMetadata{
isOutput: isOutput,
pos: cg.Pos(),
})
}
// Change message based on whether there are multiple output comment blocks.
msg := "output comment block must be the last comment block"
if numOutputs > 1 {
msg = "there can only be one output comment block per example"
}
for i, cg := range commentsInExample {
// Check for output comments that are not the last comment in the example.
isLast := (i == len(commentsInExample)-1)
if cg.isOutput && !isLast {
pass.Report(
analysis.Diagnostic{
Pos: cg.pos,
Message: msg,
},
)
}
}
}
func checkExampleName(pass *analysis.Pass, fn *ast.FuncDecl) {
fnName := fn.Name.Name
if params := fn.Type.Params; len(params.List) != 0 {
pass.Reportf(fn.Pos(), "%s should be niladic", fnName)
@ -116,6 +171,9 @@ func checkExample(pass *analysis.Pass, fn *ast.FuncDecl) {
if results := fn.Type.Results; results != nil && len(results.List) != 0 {
pass.Reportf(fn.Pos(), "%s should return nothing", fnName)
}
if tparams := typeparams.ForFuncType(fn.Type); tparams != nil && len(tparams.List) > 0 {
pass.Reportf(fn.Pos(), "%s should not have type params", fnName)
}
if fnName == "Example" {
// Nothing more to do.
@ -182,6 +240,12 @@ func checkTest(pass *analysis.Pass, fn *ast.FuncDecl, prefix string) {
return
}
if tparams := typeparams.ForFuncType(fn.Type); tparams != nil && len(tparams.List) > 0 {
// Note: cmd/go/internal/load also errors about TestXXX and BenchmarkXXX functions with type parameters.
// We have currently decided to also warn before compilation/package loading. This can help users in IDEs.
pass.Reportf(fn.Pos(), "%s has type parameters: it will not be run by go test as a %sXXX function", fn.Name.Name, prefix)
}
if !isTestSuffix(fn.Name.Name[len(prefix):]) {
pass.Reportf(fn.Pos(), "%s has malformed name: first letter after '%s' must not be lowercase", fn.Name.Name, prefix)
}

View file

@ -14,6 +14,7 @@ import (
"golang.org/x/tools/go/analysis/passes/inspect"
"golang.org/x/tools/go/ast/inspector"
"golang.org/x/tools/go/types/typeutil"
"golang.org/x/tools/internal/typeparams"
)
const Doc = `report passing non-pointer or non-interface values to unmarshal
@ -85,7 +86,7 @@ func run(pass *analysis.Pass) (interface{}, error) {
t := pass.TypesInfo.Types[call.Args[argidx]].Type
switch t.Underlying().(type) {
case *types.Pointer, *types.Interface:
case *types.Pointer, *types.Interface, *typeparams.TypeParam:
return
}

View file

@ -17,6 +17,7 @@ import (
"golang.org/x/tools/go/analysis/passes/inspect"
"golang.org/x/tools/go/analysis/passes/internal/analysisutil"
"golang.org/x/tools/go/ast/inspector"
"golang.org/x/tools/internal/typeparams"
)
// TODO(adonovan): make this analysis modular: export a mustUseResult
@ -70,6 +71,11 @@ func run(pass *analysis.Pass) (interface{}, error) {
return // a conversion, not a call
}
x, _, _, _ := typeparams.UnpackIndexExpr(fun)
if x != nil {
fun = x // If this is generic function or method call, skip the instantiation arguments
}
selector, ok := fun.(*ast.SelectorExpr)
if !ok {
return // neither a method call nor a qualified ident

View file

@ -11,6 +11,8 @@ import (
"go/ast"
"go/token"
"sort"
"golang.org/x/tools/internal/typeparams"
)
// PathEnclosingInterval returns the node that encloses the source
@ -294,8 +296,8 @@ func childrenOf(n ast.Node) []ast.Node {
case *ast.FieldList:
children = append(children,
tok(n.Opening, len("(")),
tok(n.Closing, len(")")))
tok(n.Opening, len("(")), // or len("[")
tok(n.Closing, len(")"))) // or len("]")
case *ast.File:
// TODO test: Doc
@ -322,6 +324,9 @@ func childrenOf(n ast.Node) []ast.Node {
children = append(children, n.Recv)
}
children = append(children, n.Name)
if tparams := typeparams.ForFuncType(n.Type); tparams != nil {
children = append(children, tparams)
}
if n.Type.Params != nil {
children = append(children, n.Type.Params)
}
@ -371,8 +376,13 @@ func childrenOf(n ast.Node) []ast.Node {
case *ast.IndexExpr:
children = append(children,
tok(n.Lbrack, len("{")),
tok(n.Rbrack, len("}")))
tok(n.Lbrack, len("[")),
tok(n.Rbrack, len("]")))
case *typeparams.IndexListExpr:
children = append(children,
tok(n.Lbrack, len("[")),
tok(n.Rbrack, len("]")))
case *ast.InterfaceType:
children = append(children,
@ -581,6 +591,8 @@ func NodeDescription(n ast.Node) string {
return "decrement statement"
case *ast.IndexExpr:
return "index expression"
case *typeparams.IndexListExpr:
return "index list expression"
case *ast.InterfaceType:
return "interface type"
case *ast.KeyValueExpr:

View file

@ -253,6 +253,10 @@ func (a *application) apply(parent ast.Node, name string, iter *iterator, n ast.
a.apply(n, "X", nil, n.X)
a.apply(n, "Index", nil, n.Index)
case *typeparams.IndexListExpr:
a.apply(n, "X", nil, n.X)
a.applyList(n, "Indices")
case *ast.SliceExpr:
a.apply(n, "X", nil, n.X)
a.apply(n, "Low", nil, n.Low)
@ -439,11 +443,7 @@ func (a *application) apply(parent ast.Node, name string, iter *iterator, n ast.
}
default:
if typeparams.IsListExpr(n) {
a.applyList(n, "ElemList")
} else {
panic(fmt.Sprintf("Apply: unexpected node type %T", n))
}
panic(fmt.Sprintf("Apply: unexpected node type %T", n))
}
if a.post != nil && !a.post(&a.cursor) {

View file

@ -9,7 +9,11 @@ package inspector
// The initial map-based implementation was too slow;
// see https://go-review.googlesource.com/c/tools/+/135655/1/go/ast/inspector/inspector.go#196
import "go/ast"
import (
"go/ast"
"golang.org/x/tools/internal/typeparams"
)
const (
nArrayType = iota
@ -47,6 +51,7 @@ const (
nImportSpec
nIncDecStmt
nIndexExpr
nIndexListExpr
nInterfaceType
nKeyValueExpr
nLabeledStmt
@ -164,6 +169,8 @@ func typeOf(n ast.Node) uint64 {
return 1 << nIncDecStmt
case *ast.IndexExpr:
return 1 << nIndexExpr
case *typeparams.IndexListExpr:
return 1 << nIndexListExpr
case *ast.InterfaceType:
return 1 << nInterfaceType
case *ast.KeyValueExpr:

View file

@ -50,11 +50,24 @@ func Find(importPath, srcDir string) (filename, path string) {
// additional trailing data beyond the end of the export data.
func NewReader(r io.Reader) (io.Reader, error) {
buf := bufio.NewReader(r)
_, err := gcimporter.FindExportData(buf)
// If we ever switch to a zip-like archive format with the ToC
// at the end, we can return the correct portion of export data,
// but for now we must return the entire rest of the file.
return buf, err
_, size, err := gcimporter.FindExportData(buf)
if err != nil {
return nil, err
}
if size >= 0 {
// We were given an archive and found the __.PKGDEF in it.
// This tells us the size of the export data, and we don't
// need to return the entire file.
return &io.LimitedReader{
R: buf,
N: size,
}, nil
} else {
// We were given an object file. As such, we don't know how large
// the export data is and must return the entire file.
return buf, nil
}
}
// Read reads export data from in, decodes it, and returns type

View file

@ -34,9 +34,6 @@ import (
// (suspected) format errors, and whenever a change is made to the format.
const debugFormat = false // default: false
// If trace is set, debugging output is printed to std out.
const trace = false // default: false
// Current export format version. Increase with each format change.
// Note: The latest binary (non-indexed) export format is at version 6.
// This exporter is still at level 4, but it doesn't matter since
@ -92,16 +89,18 @@ func internalErrorf(format string, args ...interface{}) error {
// BExportData returns binary export data for pkg.
// If no file set is provided, position info will be missing.
func BExportData(fset *token.FileSet, pkg *types.Package) (b []byte, err error) {
defer func() {
if e := recover(); e != nil {
if ierr, ok := e.(internalError); ok {
err = ierr
return
if !debug {
defer func() {
if e := recover(); e != nil {
if ierr, ok := e.(internalError); ok {
err = ierr
return
}
// Not an internal error; panic again.
panic(e)
}
// Not an internal error; panic again.
panic(e)
}
}()
}()
}
p := exporter{
fset: fset,

View file

@ -74,9 +74,10 @@ func BImportData(fset *token.FileSet, imports map[string]*types.Package, data []
pathList: []string{""}, // empty string is mapped to 0
fake: fakeFileSet{
fset: fset,
files: make(map[string]*token.File),
files: make(map[string]*fileInfo),
},
}
defer p.fake.setLines() // set lines for files in fset
// read version info
var versionstr string
@ -338,37 +339,49 @@ func (p *importer) pos() token.Pos {
// Synthesize a token.Pos
type fakeFileSet struct {
fset *token.FileSet
files map[string]*token.File
files map[string]*fileInfo
}
type fileInfo struct {
file *token.File
lastline int
}
const maxlines = 64 * 1024
func (s *fakeFileSet) pos(file string, line, column int) token.Pos {
// TODO(mdempsky): Make use of column.
// Since we don't know the set of needed file positions, we
// reserve maxlines positions per file.
const maxlines = 64 * 1024
// Since we don't know the set of needed file positions, we reserve maxlines
// positions per file. We delay calling token.File.SetLines until all
// positions have been calculated (by way of fakeFileSet.setLines), so that
// we can avoid setting unnecessary lines. See also golang/go#46586.
f := s.files[file]
if f == nil {
f = s.fset.AddFile(file, -1, maxlines)
f = &fileInfo{file: s.fset.AddFile(file, -1, maxlines)}
s.files[file] = f
// Allocate the fake linebreak indices on first use.
// TODO(adonovan): opt: save ~512KB using a more complex scheme?
fakeLinesOnce.Do(func() {
fakeLines = make([]int, maxlines)
for i := range fakeLines {
fakeLines[i] = i
}
})
f.SetLines(fakeLines)
}
if line > maxlines {
line = 1
}
if line > f.lastline {
f.lastline = line
}
// Treat the file as if it contained only newlines
// and column=1: use the line number as the offset.
return f.Pos(line - 1)
// Return a fake position assuming that f.file consists only of newlines.
return token.Pos(f.file.Base() + line - 1)
}
func (s *fakeFileSet) setLines() {
fakeLinesOnce.Do(func() {
fakeLines = make([]int, maxlines)
for i := range fakeLines {
fakeLines[i] = i
}
})
for _, f := range s.files {
f.file.SetLines(fakeLines[:f.lastline])
}
}
var (
@ -1029,6 +1042,7 @@ func predeclared() []types.Type {
// used internally by gc; never used by this package or in .a files
anyType{},
}
predecl = append(predecl, additionalPredeclared()...)
})
return predecl
}

View file

@ -16,7 +16,7 @@ import (
"strings"
)
func readGopackHeader(r *bufio.Reader) (name string, size int, err error) {
func readGopackHeader(r *bufio.Reader) (name string, size int64, err error) {
// See $GOROOT/include/ar.h.
hdr := make([]byte, 16+12+6+6+8+10+2)
_, err = io.ReadFull(r, hdr)
@ -28,7 +28,8 @@ func readGopackHeader(r *bufio.Reader) (name string, size int, err error) {
fmt.Printf("header: %s", hdr)
}
s := strings.TrimSpace(string(hdr[16+12+6+6+8:][:10]))
size, err = strconv.Atoi(s)
length, err := strconv.Atoi(s)
size = int64(length)
if err != nil || hdr[len(hdr)-2] != '`' || hdr[len(hdr)-1] != '\n' {
err = fmt.Errorf("invalid archive header")
return
@ -42,8 +43,8 @@ func readGopackHeader(r *bufio.Reader) (name string, size int, err error) {
// file by reading from it. The reader must be positioned at the
// start of the file before calling this function. The hdr result
// is the string before the export data, either "$$" or "$$B".
//
func FindExportData(r *bufio.Reader) (hdr string, err error) {
// The size result is the length of the export data in bytes, or -1 if not known.
func FindExportData(r *bufio.Reader) (hdr string, size int64, err error) {
// Read first line to make sure this is an object file.
line, err := r.ReadSlice('\n')
if err != nil {
@ -54,7 +55,7 @@ func FindExportData(r *bufio.Reader) (hdr string, err error) {
if string(line) == "!<arch>\n" {
// Archive file. Scan to __.PKGDEF.
var name string
if name, _, err = readGopackHeader(r); err != nil {
if name, size, err = readGopackHeader(r); err != nil {
return
}
@ -70,6 +71,7 @@ func FindExportData(r *bufio.Reader) (hdr string, err error) {
err = fmt.Errorf("can't find export data (%v)", err)
return
}
size -= int64(len(line))
}
// Now at __.PKGDEF in archive or still at beginning of file.
@ -86,8 +88,12 @@ func FindExportData(r *bufio.Reader) (hdr string, err error) {
err = fmt.Errorf("can't find export data (%v)", err)
return
}
size -= int64(len(line))
}
hdr = string(line)
if size < 0 {
size = -1
}
return
}

View file

@ -29,8 +29,14 @@ import (
"text/scanner"
)
// debugging/development support
const debug = false
const (
// Enable debug during development: it adds some additional checks, and
// prevents errors from being recovered.
debug = false
// If trace is set, debugging output is printed to std out.
trace = false
)
var pkgExts = [...]string{".a", ".o"}
@ -179,7 +185,7 @@ func Import(packages map[string]*types.Package, path, srcDir string, lookup func
var hdr string
buf := bufio.NewReader(rc)
if hdr, err = FindExportData(buf); err != nil {
if hdr, _, err = FindExportData(buf); err != nil {
return
}

View file

@ -11,6 +11,7 @@ package gcimporter
import (
"bytes"
"encoding/binary"
"fmt"
"go/ast"
"go/constant"
"go/token"
@ -19,11 +20,11 @@ import (
"math/big"
"reflect"
"sort"
)
"strconv"
"strings"
// Current indexed export format version. Increase with each format change.
// 0: Go1.11 encoding
const iexportVersion = 0
"golang.org/x/tools/internal/typeparams"
)
// Current bundled export format version. Increase with each format change.
// 0: initial implementation
@ -35,31 +36,35 @@ const bundleVersion = 0
// The package path of the top-level package will not be recorded,
// so that calls to IImportData can override with a provided package path.
func IExportData(out io.Writer, fset *token.FileSet, pkg *types.Package) error {
return iexportCommon(out, fset, false, []*types.Package{pkg})
return iexportCommon(out, fset, false, iexportVersion, []*types.Package{pkg})
}
// IExportBundle writes an indexed export bundle for pkgs to out.
func IExportBundle(out io.Writer, fset *token.FileSet, pkgs []*types.Package) error {
return iexportCommon(out, fset, true, pkgs)
return iexportCommon(out, fset, true, iexportVersion, pkgs)
}
func iexportCommon(out io.Writer, fset *token.FileSet, bundle bool, pkgs []*types.Package) (err error) {
defer func() {
if e := recover(); e != nil {
if ierr, ok := e.(internalError); ok {
err = ierr
return
func iexportCommon(out io.Writer, fset *token.FileSet, bundle bool, version int, pkgs []*types.Package) (err error) {
if !debug {
defer func() {
if e := recover(); e != nil {
if ierr, ok := e.(internalError); ok {
err = ierr
return
}
// Not an internal error; panic again.
panic(e)
}
// Not an internal error; panic again.
panic(e)
}
}()
}()
}
p := iexporter{
fset: fset,
version: version,
allPkgs: map[*types.Package]bool{},
stringIndex: map[string]uint64{},
declIndex: map[types.Object]uint64{},
tparamNames: map[types.Object]string{},
typIndex: map[types.Type]uint64{},
}
if !bundle {
@ -119,7 +124,7 @@ func iexportCommon(out io.Writer, fset *token.FileSet, bundle bool, pkgs []*type
if bundle {
hdr.uint64(bundleVersion)
}
hdr.uint64(iexportVersion)
hdr.uint64(uint64(p.version))
hdr.uint64(uint64(p.strings.Len()))
hdr.uint64(dataLen)
@ -136,8 +141,12 @@ func iexportCommon(out io.Writer, fset *token.FileSet, bundle bool, pkgs []*type
// non-compiler tools and includes a complete package description
// (i.e., name and height).
func (w *exportWriter) writeIndex(index map[types.Object]uint64) {
type pkgObj struct {
obj types.Object
name string // qualified name; differs from obj.Name for type params
}
// Build a map from packages to objects from that package.
pkgObjs := map[*types.Package][]types.Object{}
pkgObjs := map[*types.Package][]pkgObj{}
// For the main index, make sure to include every package that
// we reference, even if we're not exporting (or reexporting)
@ -150,7 +159,8 @@ func (w *exportWriter) writeIndex(index map[types.Object]uint64) {
}
for obj := range index {
pkgObjs[obj.Pkg()] = append(pkgObjs[obj.Pkg()], obj)
name := w.p.exportName(obj)
pkgObjs[obj.Pkg()] = append(pkgObjs[obj.Pkg()], pkgObj{obj, name})
}
var pkgs []*types.Package
@ -158,7 +168,7 @@ func (w *exportWriter) writeIndex(index map[types.Object]uint64) {
pkgs = append(pkgs, pkg)
sort.Slice(objs, func(i, j int) bool {
return objs[i].Name() < objs[j].Name()
return objs[i].name < objs[j].name
})
}
@ -175,15 +185,25 @@ func (w *exportWriter) writeIndex(index map[types.Object]uint64) {
objs := pkgObjs[pkg]
w.uint64(uint64(len(objs)))
for _, obj := range objs {
w.string(obj.Name())
w.uint64(index[obj])
w.string(obj.name)
w.uint64(index[obj.obj])
}
}
}
// exportName returns the 'exported' name of an object. It differs from
// obj.Name() only for type parameters (see tparamExportName for details).
func (p *iexporter) exportName(obj types.Object) (res string) {
if name := p.tparamNames[obj]; name != "" {
return name
}
return obj.Name()
}
type iexporter struct {
fset *token.FileSet
out *bytes.Buffer
fset *token.FileSet
out *bytes.Buffer
version int
localpkg *types.Package
@ -197,9 +217,21 @@ type iexporter struct {
strings intWriter
stringIndex map[string]uint64
data0 intWriter
declIndex map[types.Object]uint64
typIndex map[types.Type]uint64
data0 intWriter
declIndex map[types.Object]uint64
tparamNames map[types.Object]string // typeparam->exported name
typIndex map[types.Type]uint64
indent int // for tracing support
}
func (p *iexporter) trace(format string, args ...interface{}) {
if !trace {
// Call sites should also be guarded, but having this check here allows
// easily enabling/disabling debug trace statements.
return
}
fmt.Printf(strings.Repeat("..", p.indent)+format+"\n", args...)
}
// stringOff returns the offset of s within the string section.
@ -225,7 +257,7 @@ func (p *iexporter) pushDecl(obj types.Object) {
return
}
p.declIndex[obj] = ^uint64(0) // mark n present in work queue
p.declIndex[obj] = ^uint64(0) // mark obj present in work queue
p.declTodo.pushTail(obj)
}
@ -233,10 +265,11 @@ func (p *iexporter) pushDecl(obj types.Object) {
type exportWriter struct {
p *iexporter
data intWriter
currPkg *types.Package
prevFile string
prevLine int64
data intWriter
currPkg *types.Package
prevFile string
prevLine int64
prevColumn int64
}
func (w *exportWriter) exportPath(pkg *types.Package) string {
@ -247,6 +280,14 @@ func (w *exportWriter) exportPath(pkg *types.Package) string {
}
func (p *iexporter) doDecl(obj types.Object) {
if trace {
p.trace("exporting decl %v (%T)", obj, obj)
p.indent++
defer func() {
p.indent--
p.trace("=> %s", obj)
}()
}
w := p.newWriter()
w.setPkg(obj.Pkg(), false)
@ -261,8 +302,24 @@ func (p *iexporter) doDecl(obj types.Object) {
if sig.Recv() != nil {
panic(internalErrorf("unexpected method: %v", sig))
}
w.tag('F')
// Function.
if typeparams.ForSignature(sig).Len() == 0 {
w.tag('F')
} else {
w.tag('G')
}
w.pos(obj.Pos())
// The tparam list of the function type is the declaration of the type
// params. So, write out the type params right now. Then those type params
// will be referenced via their type offset (via typOff) in all other
// places in the signature and function where they are used.
//
// While importing the type parameters, tparamList computes and records
// their export name, so that it can be later used when writing the index.
if tparams := typeparams.ForSignature(sig); tparams.Len() > 0 {
w.tparamList(obj.Name(), tparams, obj.Pkg())
}
w.signature(sig)
case *types.Const:
@ -271,30 +328,56 @@ func (p *iexporter) doDecl(obj types.Object) {
w.value(obj.Type(), obj.Val())
case *types.TypeName:
t := obj.Type()
if tparam, ok := t.(*typeparams.TypeParam); ok {
w.tag('P')
w.pos(obj.Pos())
constraint := tparam.Constraint()
if p.version >= iexportVersionGo1_18 {
implicit := false
if iface, _ := constraint.(*types.Interface); iface != nil {
implicit = typeparams.IsImplicit(iface)
}
w.bool(implicit)
}
w.typ(constraint, obj.Pkg())
break
}
if obj.IsAlias() {
w.tag('A')
w.pos(obj.Pos())
w.typ(obj.Type(), obj.Pkg())
w.typ(t, obj.Pkg())
break
}
// Defined type.
w.tag('T')
named, ok := t.(*types.Named)
if !ok {
panic(internalErrorf("%s is not a defined type", t))
}
if typeparams.ForNamed(named).Len() == 0 {
w.tag('T')
} else {
w.tag('U')
}
w.pos(obj.Pos())
if typeparams.ForNamed(named).Len() > 0 {
// While importing the type parameters, tparamList computes and records
// their export name, so that it can be later used when writing the index.
w.tparamList(obj.Name(), typeparams.ForNamed(named), obj.Pkg())
}
underlying := obj.Type().Underlying()
w.typ(underlying, obj.Pkg())
t := obj.Type()
if types.IsInterface(t) {
break
}
named, ok := t.(*types.Named)
if !ok {
panic(internalErrorf("%s is not a defined type", t))
}
n := named.NumMethods()
w.uint64(uint64(n))
for i := 0; i < n; i++ {
@ -302,6 +385,17 @@ func (p *iexporter) doDecl(obj types.Object) {
w.pos(m.Pos())
w.string(m.Name())
sig, _ := m.Type().(*types.Signature)
// Receiver type parameters are type arguments of the receiver type, so
// their name must be qualified before exporting recv.
if rparams := typeparams.RecvTypeParams(sig); rparams.Len() > 0 {
prefix := obj.Name() + "." + m.Name()
for i := 0; i < rparams.Len(); i++ {
rparam := rparams.At(i)
name := tparamExportName(prefix, rparam)
w.p.tparamNames[rparam.Obj()] = name
}
}
w.param(sig.Recv())
w.signature(sig)
}
@ -318,6 +412,48 @@ func (w *exportWriter) tag(tag byte) {
}
func (w *exportWriter) pos(pos token.Pos) {
if w.p.version >= iexportVersionPosCol {
w.posV1(pos)
} else {
w.posV0(pos)
}
}
func (w *exportWriter) posV1(pos token.Pos) {
if w.p.fset == nil {
w.int64(0)
return
}
p := w.p.fset.Position(pos)
file := p.Filename
line := int64(p.Line)
column := int64(p.Column)
deltaColumn := (column - w.prevColumn) << 1
deltaLine := (line - w.prevLine) << 1
if file != w.prevFile {
deltaLine |= 1
}
if deltaLine != 0 {
deltaColumn |= 1
}
w.int64(deltaColumn)
if deltaColumn&1 != 0 {
w.int64(deltaLine)
if deltaLine&1 != 0 {
w.string(file)
}
}
w.prevFile = file
w.prevLine = line
w.prevColumn = column
}
func (w *exportWriter) posV0(pos token.Pos) {
if w.p.fset == nil {
w.int64(0)
return
@ -359,10 +495,11 @@ func (w *exportWriter) pkg(pkg *types.Package) {
}
func (w *exportWriter) qualifiedIdent(obj types.Object) {
name := w.p.exportName(obj)
// Ensure any referenced declarations are written out too.
w.p.pushDecl(obj)
w.string(obj.Name())
w.string(name)
w.pkg(obj.Pkg())
}
@ -396,11 +533,32 @@ func (w *exportWriter) startType(k itag) {
}
func (w *exportWriter) doTyp(t types.Type, pkg *types.Package) {
if trace {
w.p.trace("exporting type %s (%T)", t, t)
w.p.indent++
defer func() {
w.p.indent--
w.p.trace("=> %s", t)
}()
}
switch t := t.(type) {
case *types.Named:
if targs := typeparams.NamedTypeArgs(t); targs.Len() > 0 {
w.startType(instanceType)
// TODO(rfindley): investigate if this position is correct, and if it
// matters.
w.pos(t.Obj().Pos())
w.typeList(targs, pkg)
w.typ(typeparams.NamedTypeOrigin(t), pkg)
return
}
w.startType(definedType)
w.qualifiedIdent(t.Obj())
case *typeparams.TypeParam:
w.startType(typeParamType)
w.qualifiedIdent(t.Obj())
case *types.Pointer:
w.startType(pointerType)
w.typ(t.Elem(), pkg)
@ -461,9 +619,14 @@ func (w *exportWriter) doTyp(t types.Type, pkg *types.Package) {
n := t.NumEmbeddeds()
w.uint64(uint64(n))
for i := 0; i < n; i++ {
f := t.Embedded(i)
w.pos(f.Obj().Pos())
w.typ(f.Obj().Type(), f.Obj().Pkg())
ft := t.EmbeddedType(i)
tPkg := pkg
if named, _ := ft.(*types.Named); named != nil {
w.pos(named.Obj().Pos())
} else {
w.pos(token.NoPos)
}
w.typ(ft, tPkg)
}
n = t.NumExplicitMethods()
@ -476,6 +639,16 @@ func (w *exportWriter) doTyp(t types.Type, pkg *types.Package) {
w.signature(sig)
}
case *typeparams.Union:
w.startType(unionType)
nt := t.Len()
w.uint64(uint64(nt))
for i := 0; i < nt; i++ {
term := t.Term(i)
w.bool(term.Tilde())
w.typ(term.Type(), pkg)
}
default:
panic(internalErrorf("unexpected type: %v, %v", t, reflect.TypeOf(t)))
}
@ -497,6 +670,56 @@ func (w *exportWriter) signature(sig *types.Signature) {
}
}
func (w *exportWriter) typeList(ts *typeparams.TypeList, pkg *types.Package) {
w.uint64(uint64(ts.Len()))
for i := 0; i < ts.Len(); i++ {
w.typ(ts.At(i), pkg)
}
}
func (w *exportWriter) tparamList(prefix string, list *typeparams.TypeParamList, pkg *types.Package) {
ll := uint64(list.Len())
w.uint64(ll)
for i := 0; i < list.Len(); i++ {
tparam := list.At(i)
// Set the type parameter exportName before exporting its type.
exportName := tparamExportName(prefix, tparam)
w.p.tparamNames[tparam.Obj()] = exportName
w.typ(list.At(i), pkg)
}
}
const blankMarker = "$"
// tparamExportName returns the 'exported' name of a type parameter, which
// differs from its actual object name: it is prefixed with a qualifier, and
// blank type parameter names are disambiguated by their index in the type
// parameter list.
func tparamExportName(prefix string, tparam *typeparams.TypeParam) string {
assert(prefix != "")
name := tparam.Obj().Name()
if name == "_" {
name = blankMarker + strconv.Itoa(tparam.Index())
}
return prefix + "." + name
}
// tparamName returns the real name of a type parameter, after stripping its
// qualifying prefix and reverting blank-name encoding. See tparamExportName
// for details.
func tparamName(exportName string) string {
// Remove the "path" from the type param name that makes it unique.
ix := strings.LastIndex(exportName, ".")
if ix < 0 {
errorf("malformed type parameter export name %s: missing prefix", exportName)
}
name := exportName[ix+1:]
if strings.HasPrefix(name, blankMarker) {
return "_"
}
return name
}
func (w *exportWriter) paramList(tup *types.Tuple) {
n := tup.Len()
w.uint64(uint64(n))
@ -513,6 +736,9 @@ func (w *exportWriter) param(obj types.Object) {
func (w *exportWriter) value(typ types.Type, v constant.Value) {
w.typ(typ, nil)
if w.p.version >= iexportVersionGo1_18 {
w.int64(int64(v.Kind()))
}
switch b := typ.Underlying().(*types.Basic); b.Info() & types.IsConstType {
case types.IsBoolean:

View file

@ -18,6 +18,9 @@ import (
"go/types"
"io"
"sort"
"strings"
"golang.org/x/tools/internal/typeparams"
)
type intReader struct {
@ -41,6 +44,19 @@ func (r *intReader) uint64() uint64 {
return i
}
// Keep this in sync with constants in iexport.go.
const (
iexportVersionGo1_11 = 0
iexportVersionPosCol = 1
iexportVersionGo1_18 = 2
iexportVersionGenerics = 2
)
type ident struct {
pkg string
name string
}
const predeclReserved = 32
type itag uint64
@ -56,6 +72,9 @@ const (
signatureType
structType
interfaceType
typeParamType
instanceType
unionType
)
// IImportData imports a package from the serialized package data
@ -78,15 +97,17 @@ func IImportBundle(fset *token.FileSet, imports map[string]*types.Package, data
func iimportCommon(fset *token.FileSet, imports map[string]*types.Package, data []byte, bundle bool, path string) (pkgs []*types.Package, err error) {
const currentVersion = 1
version := int64(-1)
defer func() {
if e := recover(); e != nil {
if version > currentVersion {
err = fmt.Errorf("cannot import %q (%v), export data is newer version - update tool", path, e)
} else {
err = fmt.Errorf("cannot import %q (%v), possibly version skew - reinstall package", path, e)
if !debug {
defer func() {
if e := recover(); e != nil {
if version > currentVersion {
err = fmt.Errorf("cannot import %q (%v), export data is newer version - update tool", path, e)
} else {
err = fmt.Errorf("cannot import %q (%v), possibly version skew - reinstall package", path, e)
}
}
}
}()
}()
}
r := &intReader{bytes.NewReader(data), path}
@ -101,9 +122,13 @@ func iimportCommon(fset *token.FileSet, imports map[string]*types.Package, data
version = int64(r.uint64())
switch version {
case currentVersion, 0:
case iexportVersionGo1_18, iexportVersionPosCol, iexportVersionGo1_11:
default:
errorf("unknown iexport format version %d", version)
if version > iexportVersionGo1_18 {
errorf("unstable iexport format version %d, just rebuild compiler and std library", version)
} else {
errorf("unknown iexport format version %d", version)
}
}
sLen := int64(r.uint64())
@ -115,8 +140,8 @@ func iimportCommon(fset *token.FileSet, imports map[string]*types.Package, data
r.Seek(sLen+dLen, io.SeekCurrent)
p := iimporter{
ipath: path,
version: int(version),
ipath: path,
stringData: stringData,
stringCache: make(map[uint64]string),
@ -125,12 +150,16 @@ func iimportCommon(fset *token.FileSet, imports map[string]*types.Package, data
declData: declData,
pkgIndex: make(map[*types.Package]map[string]uint64),
typCache: make(map[uint64]types.Type),
// Separate map for typeparams, keyed by their package and unique
// name.
tparamIndex: make(map[ident]types.Type),
fake: fakeFileSet{
fset: fset,
files: make(map[string]*token.File),
files: make(map[string]*fileInfo),
},
}
defer p.fake.setLines() // set lines for files in fset
for i, pt := range predeclared() {
p.typCache[uint64(i)] = pt
@ -216,22 +245,42 @@ func iimportCommon(fset *token.FileSet, imports map[string]*types.Package, data
}
type iimporter struct {
ipath string
version int
ipath string
stringData []byte
stringCache map[uint64]string
pkgCache map[uint64]*types.Package
declData []byte
pkgIndex map[*types.Package]map[string]uint64
typCache map[uint64]types.Type
declData []byte
pkgIndex map[*types.Package]map[string]uint64
typCache map[uint64]types.Type
tparamIndex map[ident]types.Type
fake fakeFileSet
interfaceList []*types.Interface
indent int // for tracing support
}
func (p *iimporter) trace(format string, args ...interface{}) {
if !trace {
// Call sites should also be guarded, but having this check here allows
// easily enabling/disabling debug trace statements.
return
}
fmt.Printf(strings.Repeat("..", p.indent)+format+"\n", args...)
}
func (p *iimporter) doDecl(pkg *types.Package, name string) {
if debug {
p.trace("import decl %s", name)
p.indent++
defer func() {
p.indent--
p.trace("=> %s", name)
}()
}
// See if we've already imported this declaration.
if obj := pkg.Scope().Lookup(name); obj != nil {
return
@ -273,7 +322,7 @@ func (p *iimporter) pkgAt(off uint64) *types.Package {
}
func (p *iimporter) typAt(off uint64, base *types.Named) types.Type {
if t, ok := p.typCache[off]; ok && (base == nil || !isInterface(t)) {
if t, ok := p.typCache[off]; ok && canReuse(base, t) {
return t
}
@ -285,12 +334,30 @@ func (p *iimporter) typAt(off uint64, base *types.Named) types.Type {
r.declReader.Reset(p.declData[off-predeclReserved:])
t := r.doType(base)
if base == nil || !isInterface(t) {
if canReuse(base, t) {
p.typCache[off] = t
}
return t
}
// canReuse reports whether the type rhs on the RHS of the declaration for def
// may be re-used.
//
// Specifically, if def is non-nil and rhs is an interface type with methods, it
// may not be re-used because we have a convention of setting the receiver type
// for interface methods to def.
func canReuse(def *types.Named, rhs types.Type) bool {
if def == nil {
return true
}
iface, _ := rhs.(*types.Interface)
if iface == nil {
return true
}
// Don't use iface.Empty() here as iface may not be complete.
return iface.NumEmbeddeds() == 0 && iface.NumExplicitMethods() == 0
}
type importReader struct {
p *iimporter
declReader bytes.Reader
@ -315,17 +382,26 @@ func (r *importReader) obj(name string) {
r.declare(types.NewConst(pos, r.currPkg, name, typ, val))
case 'F':
sig := r.signature(nil)
case 'F', 'G':
var tparams []*typeparams.TypeParam
if tag == 'G' {
tparams = r.tparamList()
}
sig := r.signature(nil, nil, tparams)
r.declare(types.NewFunc(pos, r.currPkg, name, sig))
case 'T':
case 'T', 'U':
// Types can be recursive. We need to setup a stub
// declaration before recursing.
obj := types.NewTypeName(pos, r.currPkg, name, nil)
named := types.NewNamed(obj, nil, nil)
// Declare obj before calling r.tparamList, so the new type name is recognized
// if used in the constraint of one of its own typeparams (see #48280).
r.declare(obj)
if tag == 'U' {
tparams := r.tparamList()
typeparams.SetForNamed(named, tparams)
}
underlying := r.p.typAt(r.uint64(), named).Underlying()
named.SetUnderlying(underlying)
@ -335,12 +411,55 @@ func (r *importReader) obj(name string) {
mpos := r.pos()
mname := r.ident()
recv := r.param()
msig := r.signature(recv)
// If the receiver has any targs, set those as the
// rparams of the method (since those are the
// typeparams being used in the method sig/body).
base := baseType(recv.Type())
assert(base != nil)
targs := typeparams.NamedTypeArgs(base)
var rparams []*typeparams.TypeParam
if targs.Len() > 0 {
rparams = make([]*typeparams.TypeParam, targs.Len())
for i := range rparams {
rparams[i] = targs.At(i).(*typeparams.TypeParam)
}
}
msig := r.signature(recv, rparams, nil)
named.AddMethod(types.NewFunc(mpos, r.currPkg, mname, msig))
}
}
case 'P':
// We need to "declare" a typeparam in order to have a name that
// can be referenced recursively (if needed) in the type param's
// bound.
if r.p.version < iexportVersionGenerics {
errorf("unexpected type param type")
}
name0 := tparamName(name)
tn := types.NewTypeName(pos, r.currPkg, name0, nil)
t := typeparams.NewTypeParam(tn, nil)
// To handle recursive references to the typeparam within its
// bound, save the partial type in tparamIndex before reading the bounds.
id := ident{r.currPkg.Name(), name}
r.p.tparamIndex[id] = t
var implicit bool
if r.p.version >= iexportVersionGo1_18 {
implicit = r.bool()
}
constraint := r.typ()
if implicit {
iface, _ := constraint.(*types.Interface)
if iface == nil {
errorf("non-interface constraint marked implicit")
}
typeparams.MarkImplicit(iface)
}
typeparams.SetTypeParamConstraint(t, constraint)
case 'V':
typ := r.typ()
@ -357,6 +476,10 @@ func (r *importReader) declare(obj types.Object) {
func (r *importReader) value() (typ types.Type, val constant.Value) {
typ = r.typ()
if r.p.version >= iexportVersionGo1_18 {
// TODO: add support for using the kind.
_ = constant.Kind(r.int64())
}
switch b := typ.Underlying().(*types.Basic); b.Info() & types.IsConstType {
case types.IsBoolean:
@ -499,7 +622,7 @@ func (r *importReader) qualifiedIdent() (*types.Package, string) {
}
func (r *importReader) pos() token.Pos {
if r.p.version >= 1 {
if r.p.version >= iexportVersionPosCol {
r.posv1()
} else {
r.posv0()
@ -547,8 +670,17 @@ func isInterface(t types.Type) bool {
func (r *importReader) pkg() *types.Package { return r.p.pkgAt(r.uint64()) }
func (r *importReader) string() string { return r.p.stringAt(r.uint64()) }
func (r *importReader) doType(base *types.Named) types.Type {
switch k := r.kind(); k {
func (r *importReader) doType(base *types.Named) (res types.Type) {
k := r.kind()
if debug {
r.p.trace("importing type %d (base: %s)", k, base)
r.p.indent++
defer func() {
r.p.indent--
r.p.trace("=> %s", res)
}()
}
switch k {
default:
errorf("unexpected kind tag in %q: %v", r.p.ipath, k)
return nil
@ -571,7 +703,7 @@ func (r *importReader) doType(base *types.Named) types.Type {
return types.NewMap(r.typ(), r.typ())
case signatureType:
r.currPkg = r.pkg()
return r.signature(nil)
return r.signature(nil, nil, nil)
case structType:
r.currPkg = r.pkg()
@ -611,13 +743,56 @@ func (r *importReader) doType(base *types.Named) types.Type {
recv = types.NewVar(token.NoPos, r.currPkg, "", base)
}
msig := r.signature(recv)
msig := r.signature(recv, nil, nil)
methods[i] = types.NewFunc(mpos, r.currPkg, mname, msig)
}
typ := newInterface(methods, embeddeds)
r.p.interfaceList = append(r.p.interfaceList, typ)
return typ
case typeParamType:
if r.p.version < iexportVersionGenerics {
errorf("unexpected type param type")
}
pkg, name := r.qualifiedIdent()
id := ident{pkg.Name(), name}
if t, ok := r.p.tparamIndex[id]; ok {
// We're already in the process of importing this typeparam.
return t
}
// Otherwise, import the definition of the typeparam now.
r.p.doDecl(pkg, name)
return r.p.tparamIndex[id]
case instanceType:
if r.p.version < iexportVersionGenerics {
errorf("unexpected instantiation type")
}
// pos does not matter for instances: they are positioned on the original
// type.
_ = r.pos()
len := r.uint64()
targs := make([]types.Type, len)
for i := range targs {
targs[i] = r.typ()
}
baseType := r.typ()
// The imported instantiated type doesn't include any methods, so
// we must always use the methods of the base (orig) type.
// TODO provide a non-nil *Environment
t, _ := typeparams.Instantiate(nil, baseType, targs, false)
return t
case unionType:
if r.p.version < iexportVersionGenerics {
errorf("unexpected instantiation type")
}
terms := make([]*typeparams.Term, r.uint64())
for i := range terms {
terms[i] = typeparams.NewTerm(r.bool(), r.typ())
}
return typeparams.NewUnion(terms)
}
}
@ -625,11 +800,25 @@ func (r *importReader) kind() itag {
return itag(r.uint64())
}
func (r *importReader) signature(recv *types.Var) *types.Signature {
func (r *importReader) signature(recv *types.Var, rparams []*typeparams.TypeParam, tparams []*typeparams.TypeParam) *types.Signature {
params := r.paramList()
results := r.paramList()
variadic := params.Len() > 0 && r.bool()
return types.NewSignature(recv, params, results, variadic)
return typeparams.NewSignatureType(recv, rparams, tparams, params, results, variadic)
}
func (r *importReader) tparamList() []*typeparams.TypeParam {
n := r.uint64()
if n == 0 {
return nil
}
xs := make([]*typeparams.TypeParam, n)
for i := range xs {
// Note: the standard library importer is tolerant of nil types here,
// though would panic in SetTypeParams.
xs[i] = r.typ().(*typeparams.TypeParam)
}
return xs
}
func (r *importReader) paramList() *types.Tuple {
@ -674,3 +863,13 @@ func (r *importReader) byte() byte {
}
return x
}
func baseType(typ types.Type) *types.Named {
// pointer receivers are never types.Named types
if p, _ := typ.(*types.Pointer); p != nil {
typ = p.Elem()
}
// receiver base types are always (possibly generic) types.Named types
n, _ := typ.(*types.Named)
return n
}

View file

@ -0,0 +1,16 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !go1.18
// +build !go1.18
package gcimporter
import "go/types"
const iexportVersion = iexportVersionGo1_11
func additionalPredeclared() []types.Type {
return nil
}

View file

@ -0,0 +1,23 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.18
// +build go1.18
package gcimporter
import "go/types"
const iexportVersion = iexportVersionGenerics
// additionalPredeclared returns additional predeclared types in go.1.18.
func additionalPredeclared() []types.Type {
return []types.Type{
// comparable
types.Universe.Lookup("comparable").Type(),
// any
types.Universe.Lookup("any").Type(),
}
}

View file

@ -26,6 +26,7 @@ import (
"golang.org/x/tools/go/gcexportdata"
"golang.org/x/tools/internal/gocommand"
"golang.org/x/tools/internal/packagesinternal"
"golang.org/x/tools/internal/typeparams"
"golang.org/x/tools/internal/typesinternal"
)
@ -327,6 +328,9 @@ type Package struct {
// The NeedSyntax LoadMode bit populates this field for packages matching the patterns.
// If NeedDeps and NeedImports are also set, this field will also be populated
// for dependencies.
//
// Syntax is kept in the same order as CompiledGoFiles, with the caveat that nils are
// removed. If parsing returned nil, Syntax may be shorter than CompiledGoFiles.
Syntax []*ast.File
// TypesInfo provides type information about the package's syntax trees.
@ -910,6 +914,7 @@ func (ld *loader) loadPackage(lpkg *loaderPackage) {
Scopes: make(map[ast.Node]*types.Scope),
Selections: make(map[*ast.SelectorExpr]*types.Selection),
}
typeparams.InitInstanceInfo(lpkg.TypesInfo)
lpkg.TypesSizes = ld.sizes
importer := importerFunc(func(path string) (*types.Package, error) {

View file

@ -25,8 +25,8 @@
//
// The simplest way to create the SSA representation of a package is
// to load typed syntax trees using golang.org/x/tools/go/packages, then
// invoke the ssautil.Packages helper function. See ExampleLoadPackages
// and ExampleWholeProgram for examples.
// invoke the ssautil.Packages helper function. See Example_loadPackages
// and Example_loadWholeProgram for examples.
// The resulting ssa.Program contains all the packages and their
// members, but SSA code is not created for function bodies until a
// subsequent call to (*Package).Build or (*Program).Build.
@ -59,7 +59,6 @@
// *ChangeType ✔ ✔
// *Const ✔
// *Convert ✔ ✔
// *SliceToArrayPointer ✔ ✔
// *DebugRef ✔
// *Defer ✔
// *Extract ✔ ✔
@ -91,6 +90,7 @@
// *Select ✔ ✔
// *Send ✔
// *Slice ✔ ✔
// *SliceToArrayPointer ✔ ✔
// *Store ✔
// *Type ✔ (type)
// *TypeAssert ✔ ✔

View file

@ -231,7 +231,7 @@ func emitConv(f *Function, val Value, typ types.Type) Value {
// Conversion from slice to array pointer?
if slice, ok := ut_src.(*types.Slice); ok {
if ptr, ok := ut_dst.(*types.Pointer); ok {
if arr, ok := ptr.Elem().(*types.Array); ok && types.Identical(slice.Elem(), arr.Elem()) {
if arr, ok := ptr.Elem().Underlying().(*types.Array); ok && types.Identical(slice.Elem(), arr.Elem()) {
c := &SliceToArrayPointer{X: val}
c.setType(ut_dst)
return f.emit(c)

View file

@ -14,6 +14,7 @@ import (
"io"
"reflect"
"sort"
"strings"
"golang.org/x/tools/go/types/typeutil"
)
@ -38,8 +39,16 @@ func relName(v Value, i Instruction) string {
return v.Name()
}
// normalizeAnyFortesting controls whether we replace occurrences of
// interface{} with any. It is only used for normalizing test output.
var normalizeAnyForTesting bool
func relType(t types.Type, from *types.Package) string {
return types.TypeString(t, types.RelativeTo(from))
s := types.TypeString(t, types.RelativeTo(from))
if normalizeAnyForTesting {
s = strings.ReplaceAll(s, "interface{}", "any")
}
return s
}
func relString(m Member, from *types.Package) string {

View file

@ -102,7 +102,7 @@ func doPackages(initial []*packages.Package, mode ssa.BuilderMode, deps bool) (*
// The mode parameter controls diagnostics and checking during SSA construction.
//
// Deprecated: Use golang.org/x/tools/go/packages and the Packages
// function instead; see ssa.ExampleLoadPackages.
// function instead; see ssa.Example_loadPackages.
//
func CreateProgram(lprog *loader.Program, mode ssa.BuilderMode) *ssa.Program {
prog := ssa.NewProgram(lprog.Fset, mode)

View file

@ -1,274 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
// CreateTestMainPackage synthesizes a main package that runs all the
// tests of the supplied packages.
// It is closely coupled to $GOROOT/src/cmd/go/test.go and $GOROOT/src/testing.
//
// TODO(adonovan): throws this all away now that x/tools/go/packages
// provides access to the actual synthetic test main files.
import (
"bytes"
"fmt"
"go/ast"
"go/parser"
"go/types"
"log"
"os"
"strings"
"text/template"
)
// FindTests returns the Test, Benchmark, and Example functions
// (as defined by "go test") defined in the specified package,
// and its TestMain function, if any.
//
// Deprecated: Use golang.org/x/tools/go/packages to access synthetic
// testmain packages.
func FindTests(pkg *Package) (tests, benchmarks, examples []*Function, main *Function) {
prog := pkg.Prog
// The first two of these may be nil: if the program doesn't import "testing",
// it can't contain any tests, but it may yet contain Examples.
var testSig *types.Signature // func(*testing.T)
var benchmarkSig *types.Signature // func(*testing.B)
var exampleSig = types.NewSignature(nil, nil, nil, false) // func()
// Obtain the types from the parameters of testing.MainStart.
if testingPkg := prog.ImportedPackage("testing"); testingPkg != nil {
mainStart := testingPkg.Func("MainStart")
params := mainStart.Signature.Params()
testSig = funcField(params.At(1).Type())
benchmarkSig = funcField(params.At(2).Type())
// Does the package define this function?
// func TestMain(*testing.M)
if f := pkg.Func("TestMain"); f != nil {
sig := f.Type().(*types.Signature)
starM := mainStart.Signature.Results().At(0).Type() // *testing.M
if sig.Results().Len() == 0 &&
sig.Params().Len() == 1 &&
types.Identical(sig.Params().At(0).Type(), starM) {
main = f
}
}
}
// TODO(adonovan): use a stable order, e.g. lexical.
for _, mem := range pkg.Members {
if f, ok := mem.(*Function); ok &&
ast.IsExported(f.Name()) &&
strings.HasSuffix(prog.Fset.Position(f.Pos()).Filename, "_test.go") {
switch {
case testSig != nil && isTestSig(f, "Test", testSig):
tests = append(tests, f)
case benchmarkSig != nil && isTestSig(f, "Benchmark", benchmarkSig):
benchmarks = append(benchmarks, f)
case isTestSig(f, "Example", exampleSig):
examples = append(examples, f)
default:
continue
}
}
}
return
}
// Like isTest, but checks the signature too.
func isTestSig(f *Function, prefix string, sig *types.Signature) bool {
return isTest(f.Name(), prefix) && types.Identical(f.Signature, sig)
}
// Given the type of one of the three slice parameters of testing.Main,
// returns the function type.
func funcField(slice types.Type) *types.Signature {
return slice.(*types.Slice).Elem().Underlying().(*types.Struct).Field(1).Type().(*types.Signature)
}
// isTest tells whether name looks like a test (or benchmark, according to prefix).
// It is a Test (say) if there is a character after Test that is not a lower-case letter.
// We don't want TesticularCancer.
// Plundered from $GOROOT/src/cmd/go/test.go
func isTest(name, prefix string) bool {
if !strings.HasPrefix(name, prefix) {
return false
}
if len(name) == len(prefix) { // "Test" is ok
return true
}
return ast.IsExported(name[len(prefix):])
}
// CreateTestMainPackage creates and returns a synthetic "testmain"
// package for the specified package if it defines tests, benchmarks or
// executable examples, or nil otherwise. The new package is named
// "main" and provides a function named "main" that runs the tests,
// similar to the one that would be created by the 'go test' tool.
//
// Subsequent calls to prog.AllPackages include the new package.
// The package pkg must belong to the program prog.
//
// Deprecated: Use golang.org/x/tools/go/packages to access synthetic
// testmain packages.
func (prog *Program) CreateTestMainPackage(pkg *Package) *Package {
if pkg.Prog != prog {
log.Fatal("Package does not belong to Program")
}
// Template data
var data struct {
Pkg *Package
Tests, Benchmarks, Examples []*Function
Main *Function
Go18 bool
}
data.Pkg = pkg
// Enumerate tests.
data.Tests, data.Benchmarks, data.Examples, data.Main = FindTests(pkg)
if data.Main == nil &&
data.Tests == nil && data.Benchmarks == nil && data.Examples == nil {
return nil
}
// Synthesize source for testmain package.
path := pkg.Pkg.Path() + "$testmain"
tmpl := testmainTmpl
if testingPkg := prog.ImportedPackage("testing"); testingPkg != nil {
// In Go 1.8, testing.MainStart's first argument is an interface, not a func.
data.Go18 = types.IsInterface(testingPkg.Func("MainStart").Signature.Params().At(0).Type())
} else {
// The program does not import "testing", but FindTests
// returned non-nil, which must mean there were Examples
// but no Test, Benchmark, or TestMain functions.
// We'll simply call them from testmain.main; this will
// ensure they don't panic, but will not check any
// "Output:" comments.
// (We should not execute an Example that has no
// "Output:" comment, but it's impossible to tell here.)
tmpl = examplesOnlyTmpl
}
var buf bytes.Buffer
if err := tmpl.Execute(&buf, data); err != nil {
log.Fatalf("internal error expanding template for %s: %v", path, err)
}
if false { // debugging
fmt.Fprintln(os.Stderr, buf.String())
}
// Parse and type-check the testmain package.
f, err := parser.ParseFile(prog.Fset, path+".go", &buf, parser.Mode(0))
if err != nil {
log.Fatalf("internal error parsing %s: %v", path, err)
}
conf := types.Config{
DisableUnusedImportCheck: true,
Importer: importer{pkg},
}
files := []*ast.File{f}
info := &types.Info{
Types: make(map[ast.Expr]types.TypeAndValue),
Defs: make(map[*ast.Ident]types.Object),
Uses: make(map[*ast.Ident]types.Object),
Implicits: make(map[ast.Node]types.Object),
Scopes: make(map[ast.Node]*types.Scope),
Selections: make(map[*ast.SelectorExpr]*types.Selection),
}
testmainPkg, err := conf.Check(path, prog.Fset, files, info)
if err != nil {
log.Fatalf("internal error type-checking %s: %v", path, err)
}
// Create and build SSA code.
testmain := prog.CreatePackage(testmainPkg, files, info, false)
testmain.SetDebugMode(false)
testmain.Build()
testmain.Func("main").Synthetic = "test main function"
testmain.Func("init").Synthetic = "package initializer"
return testmain
}
// An implementation of types.Importer for an already loaded SSA program.
type importer struct {
pkg *Package // package under test; may be non-importable
}
func (imp importer) Import(path string) (*types.Package, error) {
if p := imp.pkg.Prog.ImportedPackage(path); p != nil {
return p.Pkg, nil
}
if path == imp.pkg.Pkg.Path() {
return imp.pkg.Pkg, nil
}
return nil, fmt.Errorf("not found") // can't happen
}
var testmainTmpl = template.Must(template.New("testmain").Parse(`
package main
import "io"
import "os"
import "testing"
import p {{printf "%q" .Pkg.Pkg.Path}}
{{if .Go18}}
type deps struct{}
func (deps) ImportPath() string { return "" }
func (deps) MatchString(pat, str string) (bool, error) { return true, nil }
func (deps) SetPanicOnExit0(bool) {}
func (deps) StartCPUProfile(io.Writer) error { return nil }
func (deps) StartTestLog(io.Writer) {}
func (deps) StopCPUProfile() {}
func (deps) StopTestLog() error { return nil }
func (deps) WriteHeapProfile(io.Writer) error { return nil }
func (deps) WriteProfileTo(string, io.Writer, int) error { return nil }
var match deps
{{else}}
func match(_, _ string) (bool, error) { return true, nil }
{{end}}
func main() {
tests := []testing.InternalTest{
{{range .Tests}}
{ {{printf "%q" .Name}}, p.{{.Name}} },
{{end}}
}
benchmarks := []testing.InternalBenchmark{
{{range .Benchmarks}}
{ {{printf "%q" .Name}}, p.{{.Name}} },
{{end}}
}
examples := []testing.InternalExample{
{{range .Examples}}
{Name: {{printf "%q" .Name}}, F: p.{{.Name}}},
{{end}}
}
m := testing.MainStart(match, tests, benchmarks, examples)
{{with .Main}}
p.{{.Name}}(m)
{{else}}
os.Exit(m.Run())
{{end}}
}
`))
var examplesOnlyTmpl = template.Must(template.New("examples").Parse(`
package main
import p {{printf "%q" .Pkg.Pkg.Path}}
func main() {
{{range .Examples}}
p.{{.Name}}()
{{end}}
}
`))

View file

@ -23,10 +23,12 @@ package objectpath
import (
"fmt"
"go/types"
"sort"
"strconv"
"strings"
"go/types"
"golang.org/x/tools/internal/typeparams"
)
// A Path is an opaque name that identifies a types.Object
@ -57,12 +59,16 @@ type Path string
// - The only PO operator is Package.Scope.Lookup, which requires an identifier.
// - The only OT operator is Object.Type,
// which we encode as '.' because dot cannot appear in an identifier.
// - The TT operators are encoded as [EKPRU].
// - The OT operators are encoded as [AFMO];
// - The TT operators are encoded as [EKPRUTC];
// one of these (TypeParam) requires an integer operand,
// which is encoded as a string of decimal digits.
// - The TO operators are encoded as [AFMO];
// three of these (At,Field,Method) require an integer operand,
// which is encoded as a string of decimal digits.
// These indices are stable across different representations
// of the same package, even source and export data.
// The indices used are implementation specific and may not correspond to
// the argument to the go/types function.
//
// In the example below,
//
@ -89,17 +95,19 @@ const (
opType = '.' // .Type() (Object)
// type->type operators
opElem = 'E' // .Elem() (Pointer, Slice, Array, Chan, Map)
opKey = 'K' // .Key() (Map)
opParams = 'P' // .Params() (Signature)
opResults = 'R' // .Results() (Signature)
opUnderlying = 'U' // .Underlying() (Named)
opElem = 'E' // .Elem() (Pointer, Slice, Array, Chan, Map)
opKey = 'K' // .Key() (Map)
opParams = 'P' // .Params() (Signature)
opResults = 'R' // .Results() (Signature)
opUnderlying = 'U' // .Underlying() (Named)
opTypeParam = 'T' // .TypeParams.At(i) (Named, Signature)
opConstraint = 'C' // .Constraint() (TypeParam)
// type->object operators
opAt = 'A' // .At(i) (Tuple)
opField = 'F' // .Field(i) (Struct)
opMethod = 'M' // .Method(i) (Named or Interface; not Struct: "promoted" names are ignored)
opObj = 'O' // .Obj() (Named)
opAt = 'A' // .At(i) (Tuple)
opField = 'F' // .Field(i) (Struct)
opMethod = 'M' // .Method(i) (Named or Interface; not Struct: "promoted" names are ignored)
opObj = 'O' // .Obj() (Named, TypeParam)
)
// The For function returns the path to an object relative to its package,
@ -190,10 +198,15 @@ func For(obj types.Object) (Path, error) {
// 3. Not a package-level object.
// Reject obviously non-viable cases.
switch obj := obj.(type) {
case *types.TypeName:
if _, ok := obj.Type().(*typeparams.TypeParam); !ok {
// With the exception of type parameters, only package-level type names
// have a path.
return "", fmt.Errorf("no path for %v", obj)
}
case *types.Const, // Only package-level constants have a path.
*types.TypeName, // Only package-level types have a path.
*types.Label, // Labels are function-local.
*types.PkgName: // PkgNames are file-local.
*types.Label, // Labels are function-local.
*types.PkgName: // PkgNames are file-local.
return "", fmt.Errorf("no path for %v", obj)
case *types.Var:
@ -245,6 +258,12 @@ func For(obj types.Object) (Path, error) {
return Path(r), nil
}
} else {
if named, _ := T.(*types.Named); named != nil {
if r := findTypeParam(obj, typeparams.ForNamed(named), path); r != nil {
// generic named type
return Path(r), nil
}
}
// defined (named) type
if r := find(obj, T.Underlying(), append(path, opUnderlying)); r != nil {
return Path(r), nil
@ -270,8 +289,12 @@ func For(obj types.Object) (Path, error) {
// Inspect declared methods of defined types.
if T, ok := o.Type().(*types.Named); ok {
path = append(path, opType)
for i := 0; i < T.NumMethods(); i++ {
m := T.Method(i)
// Note that method index here is always with respect
// to canonical ordering of methods, regardless of how
// they appear in the underlying type.
canonical := canonicalize(T)
for i := 0; i < len(canonical); i++ {
m := canonical[i]
path2 := appendOpArg(path, opMethod, i)
if m == obj {
return Path(path2), nil // found declared method
@ -313,6 +336,9 @@ func find(obj types.Object, T types.Type, path []byte) []byte {
}
return find(obj, T.Elem(), append(path, opElem))
case *types.Signature:
if r := findTypeParam(obj, typeparams.ForSignature(T), path); r != nil {
return r
}
if r := find(obj, T.Params(), append(path, opParams)); r != nil {
return r
}
@ -353,10 +379,30 @@ func find(obj types.Object, T types.Type, path []byte) []byte {
}
}
return nil
case *typeparams.TypeParam:
name := T.Obj()
if name == obj {
return append(path, opObj)
}
if r := find(obj, T.Constraint(), append(path, opConstraint)); r != nil {
return r
}
return nil
}
panic(T)
}
func findTypeParam(obj types.Object, list *typeparams.TypeParamList, path []byte) []byte {
for i := 0; i < list.Len(); i++ {
tparam := list.At(i)
path2 := appendOpArg(path, opTypeParam, i)
if r := find(obj, tparam, path2); r != nil {
return r
}
}
return nil
}
// Object returns the object denoted by path p within the package pkg.
func Object(pkg *types.Package, p Path) (types.Object, error) {
if p == "" {
@ -381,10 +427,13 @@ func Object(pkg *types.Package, p Path) (types.Object, error) {
type hasElem interface {
Elem() types.Type
}
// abstraction of *types.{Interface,Named}
type hasMethods interface {
Method(int) *types.Func
NumMethods() int
// abstraction of *types.{Named,Signature}
type hasTypeParams interface {
TypeParams() *typeparams.TypeParamList
}
// abstraction of *types.{Named,TypeParam}
type hasObj interface {
Obj() *types.TypeName
}
// The loop state is the pair (t, obj),
@ -401,7 +450,7 @@ func Object(pkg *types.Package, p Path) (types.Object, error) {
// Codes [AFM] have an integer operand.
var index int
switch code {
case opAt, opField, opMethod:
case opAt, opField, opMethod, opTypeParam:
rest := strings.TrimLeft(suffix, "0123456789")
numerals := suffix[:len(suffix)-len(rest)]
suffix = rest
@ -466,14 +515,32 @@ func Object(pkg *types.Package, p Path) (types.Object, error) {
case opUnderlying:
named, ok := t.(*types.Named)
if !ok {
return nil, fmt.Errorf("cannot apply %q to %s (got %s, want named)", code, t, t)
return nil, fmt.Errorf("cannot apply %q to %s (got %T, want named)", code, t, t)
}
t = named.Underlying()
case opTypeParam:
hasTypeParams, ok := t.(hasTypeParams) // Named, Signature
if !ok {
return nil, fmt.Errorf("cannot apply %q to %s (got %T, want named or signature)", code, t, t)
}
tparams := hasTypeParams.TypeParams()
if n := tparams.Len(); index >= n {
return nil, fmt.Errorf("tuple index %d out of range [0-%d)", index, n)
}
t = tparams.At(index)
case opConstraint:
tparam, ok := t.(*typeparams.TypeParam)
if !ok {
return nil, fmt.Errorf("cannot apply %q to %s (got %T, want type parameter)", code, t, t)
}
t = tparam.Constraint()
case opAt:
tuple, ok := t.(*types.Tuple)
if !ok {
return nil, fmt.Errorf("cannot apply %q to %s (got %s, want tuple)", code, t, t)
return nil, fmt.Errorf("cannot apply %q to %s (got %T, want tuple)", code, t, t)
}
if n := tuple.Len(); index >= n {
return nil, fmt.Errorf("tuple index %d out of range [0-%d)", index, n)
@ -495,20 +562,21 @@ func Object(pkg *types.Package, p Path) (types.Object, error) {
case opMethod:
hasMethods, ok := t.(hasMethods) // Interface or Named
if !ok {
return nil, fmt.Errorf("cannot apply %q to %s (got %s, want interface or named)", code, t, t)
return nil, fmt.Errorf("cannot apply %q to %s (got %T, want interface or named)", code, t, t)
}
if n := hasMethods.NumMethods(); index >= n {
canonical := canonicalize(hasMethods)
if n := len(canonical); index >= n {
return nil, fmt.Errorf("method index %d out of range [0-%d)", index, n)
}
obj = hasMethods.Method(index)
obj = canonical[index]
t = nil
case opObj:
named, ok := t.(*types.Named)
hasObj, ok := t.(hasObj)
if !ok {
return nil, fmt.Errorf("cannot apply %q to %s (got %s, want named)", code, t, t)
return nil, fmt.Errorf("cannot apply %q to %s (got %T, want named or type param)", code, t, t)
}
obj = named.Obj()
obj = hasObj.Obj()
t = nil
default:
@ -522,3 +590,28 @@ func Object(pkg *types.Package, p Path) (types.Object, error) {
return obj, nil // success
}
// hasMethods is an abstraction of *types.{Interface,Named}. This is pulled up
// because it is used by methodOrdering, which is in turn used by both encoding
// and decoding.
type hasMethods interface {
Method(int) *types.Func
NumMethods() int
}
// canonicalize returns a canonical order for the methods in a hasMethod.
func canonicalize(hm hasMethods) []*types.Func {
count := hm.NumMethods()
if count <= 0 {
return nil
}
canon := make([]*types.Func, count)
for i := 0; i < count; i++ {
canon[i] = hm.Method(i)
}
less := func(i, j int) bool {
return canon[i].Id() < canon[j].Id()
}
sort.Slice(canon, less)
return canon
}

View file

@ -9,13 +9,29 @@ import (
"go/types"
"golang.org/x/tools/go/ast/astutil"
"golang.org/x/tools/internal/typeparams"
)
// Callee returns the named target of a function call, if any:
// a function, method, builtin, or variable.
//
// Functions and methods may potentially have type parameters.
func Callee(info *types.Info, call *ast.CallExpr) types.Object {
fun := astutil.Unparen(call.Fun)
// Look through type instantiation if necessary.
isInstance := false
switch fun.(type) {
case *ast.IndexExpr, *typeparams.IndexListExpr:
// When extracting the callee from an *IndexExpr, we need to check that
// it is a *types.Func and not a *types.Var.
// Example: Don't match a slice m within the expression `m[0]()`.
isInstance = true
fun, _, _, _ = typeparams.UnpackIndexExpr(fun)
}
var obj types.Object
switch fun := astutil.Unparen(call.Fun).(type) {
switch fun := fun.(type) {
case *ast.Ident:
obj = info.Uses[fun] // type, var, builtin, or declared func
case *ast.SelectorExpr:
@ -28,11 +44,18 @@ func Callee(info *types.Info, call *ast.CallExpr) types.Object {
if _, ok := obj.(*types.TypeName); ok {
return nil // T(x) is a conversion, not a call
}
// A Func is required to match instantiations.
if _, ok := obj.(*types.Func); isInstance && !ok {
return nil // Was not a Func.
}
return obj
}
// StaticCallee returns the target (function or method) of a static
// function call, if any. It returns nil for calls to builtins.
// StaticCallee returns the target (function or method) of a static function
// call, if any. It returns nil for calls to builtins.
//
// Note: for calls of instantiated functions and methods, StaticCallee returns
// the corresponding generic function or method on the generic type.
func StaticCallee(info *types.Info, call *ast.CallExpr) *types.Func {
if f, ok := Callee(info, call).(*types.Func); ok && !interfaceMethod(f) {
return f

View file

@ -11,6 +11,8 @@ import (
"fmt"
"go/types"
"reflect"
"golang.org/x/tools/internal/typeparams"
)
// Map is a hash-table-based mapping from types (types.Type) to
@ -211,11 +213,29 @@ func (m *Map) KeysString() string {
// Call MakeHasher to create a Hasher.
type Hasher struct {
memo map[types.Type]uint32
// ptrMap records pointer identity.
ptrMap map[interface{}]uint32
// sigTParams holds type parameters from the signature being hashed.
// Signatures are considered identical modulo renaming of type parameters, so
// within the scope of a signature type the identity of the signature's type
// parameters is just their index.
//
// Since the language does not currently support referring to uninstantiated
// generic types or functions, and instantiated signatures do not have type
// parameter lists, we should never encounter a second non-empty type
// parameter list when hashing a generic signature.
sigTParams *typeparams.TypeParamList
}
// MakeHasher returns a new Hasher instance.
func MakeHasher() Hasher {
return Hasher{make(map[types.Type]uint32)}
return Hasher{
memo: make(map[types.Type]uint32),
ptrMap: make(map[interface{}]uint32),
sigTParams: nil,
}
}
// Hash computes a hash value for the given type t such that
@ -273,17 +293,62 @@ func (h Hasher) hashFor(t types.Type) uint32 {
if t.Variadic() {
hash *= 8863
}
// Use a separate hasher for types inside of the signature, where type
// parameter identity is modified to be (index, constraint). We must use a
// new memo for this hasher as type identity may be affected by this
// masking. For example, in func[T any](*T), the identity of *T depends on
// whether we are mapping the argument in isolation, or recursively as part
// of hashing the signature.
//
// We should never encounter a generic signature while hashing another
// generic signature, but defensively set sigTParams only if h.mask is
// unset.
tparams := typeparams.ForSignature(t)
if h.sigTParams == nil && tparams.Len() != 0 {
h = Hasher{
// There may be something more efficient than discarding the existing
// memo, but it would require detecting whether types are 'tainted' by
// references to type parameters.
memo: make(map[types.Type]uint32),
// Re-using ptrMap ensures that pointer identity is preserved in this
// hasher.
ptrMap: h.ptrMap,
sigTParams: tparams,
}
}
for i := 0; i < tparams.Len(); i++ {
tparam := tparams.At(i)
hash += 7 * h.Hash(tparam.Constraint())
}
return hash + 3*h.hashTuple(t.Params()) + 5*h.hashTuple(t.Results())
case *typeparams.Union:
return h.hashUnion(t)
case *types.Interface:
// Interfaces are identical if they have the same set of methods, with
// identical names and types, and they have the same set of type
// restrictions. See go/types.identical for more details.
var hash uint32 = 9103
// Hash methods.
for i, n := 0, t.NumMethods(); i < n; i++ {
// See go/types.identicalMethods for rationale.
// Method order is not significant.
// Ignore m.Pkg().
m := t.Method(i)
hash += 3*hashString(m.Name()) + 5*h.Hash(m.Type())
}
// Hash type restrictions.
terms, err := typeparams.InterfaceTermSet(t)
// if err != nil t has invalid type restrictions.
if err == nil {
hash += h.hashTermSet(terms)
}
return hash
case *types.Map:
@ -293,13 +358,22 @@ func (h Hasher) hashFor(t types.Type) uint32 {
return 9127 + 2*uint32(t.Dir()) + 3*h.Hash(t.Elem())
case *types.Named:
// Not safe with a copying GC; objects may move.
return uint32(reflect.ValueOf(t.Obj()).Pointer())
hash := h.hashPtr(t.Obj())
targs := typeparams.NamedTypeArgs(t)
for i := 0; i < targs.Len(); i++ {
targ := targs.At(i)
hash += 2 * h.Hash(targ)
}
return hash
case *typeparams.TypeParam:
return h.hashTypeParam(t)
case *types.Tuple:
return h.hashTuple(t)
}
panic(t)
panic(fmt.Sprintf("%T: %v", t, t))
}
func (h Hasher) hashTuple(tuple *types.Tuple) uint32 {
@ -311,3 +385,57 @@ func (h Hasher) hashTuple(tuple *types.Tuple) uint32 {
}
return hash
}
func (h Hasher) hashUnion(t *typeparams.Union) uint32 {
// Hash type restrictions.
terms, err := typeparams.UnionTermSet(t)
// if err != nil t has invalid type restrictions. Fall back on a non-zero
// hash.
if err != nil {
return 9151
}
return h.hashTermSet(terms)
}
func (h Hasher) hashTermSet(terms []*typeparams.Term) uint32 {
var hash uint32 = 9157 + 2*uint32(len(terms))
for _, term := range terms {
// term order is not significant.
termHash := h.Hash(term.Type())
if term.Tilde() {
termHash *= 9161
}
hash += 3 * termHash
}
return hash
}
// hashTypeParam returns a hash of the type parameter t, with a hash value
// depending on whether t is contained in h.sigTParams.
//
// If h.sigTParams is set and contains t, then we are in the process of hashing
// a signature, and the hash value of t must depend only on t's index and
// constraint: signatures are considered identical modulo type parameter
// renaming.
//
// Otherwise the hash of t depends only on t's pointer identity.
func (h Hasher) hashTypeParam(t *typeparams.TypeParam) uint32 {
if h.sigTParams != nil {
i := t.Index()
if i >= 0 && i < h.sigTParams.Len() && t == h.sigTParams.At(i) {
return 9173 + 2*h.Hash(t.Constraint()) + 3*uint32(i)
}
}
return h.hashPtr(t.Obj())
}
// hashPtr hashes the pointer identity of ptr. It uses h.ptrMap to ensure that
// pointers values are not dependent on the GC.
func (h Hasher) hashPtr(ptr interface{}) uint32 {
if hash, ok := h.ptrMap[ptr]; ok {
return hash
}
hash := uint32(reflect.ValueOf(ptr).Pointer())
h.ptrMap[ptr] = hash
return hash
}

View file

@ -9,6 +9,7 @@ package imports
import (
"go/ast"
"go/token"
"log"
"sort"
"strconv"
)
@ -60,6 +61,7 @@ func sortImports(localPrefix string, fset *token.FileSet, f *ast.File) {
// mergeImports merges all the import declarations into the first one.
// Taken from golang.org/x/tools/ast/astutil.
// This does not adjust line numbers properly
func mergeImports(fset *token.FileSet, f *ast.File) {
if len(f.Decls) <= 1 {
return
@ -237,8 +239,17 @@ func sortSpecs(localPrefix string, fset *token.FileSet, f *ast.File, specs []ast
p := s.Pos()
line := fset.File(p).Line(p)
for previousLine := line - 1; previousLine >= firstSpecLine; {
fset.File(p).MergeLine(previousLine)
previousLine--
// MergeLine can panic. Avoid the panic at the cost of not removing the blank line
// golang/go#50329
if previousLine > 0 && previousLine < fset.File(p).LineCount() {
fset.File(p).MergeLine(previousLine)
previousLine--
} else {
// try to gather some data to diagnose how this could happen
req := "Please report what the imports section of your go file looked like."
log.Printf("panic avoided: first:%d line:%d previous:%d max:%d. %s",
firstSpecLine, line, previousLine, fset.File(p).LineCount(), req)
}
}
}
return specs

View file

@ -180,6 +180,8 @@ var stdlib = map[string][]string{
"NewReader",
"NewWriter",
"Order",
"Reader",
"Writer",
},
"compress/zlib": []string{
"BestCompression",
@ -641,7 +643,9 @@ var stdlib = map[string][]string{
"Named",
"NamedArg",
"NullBool",
"NullByte",
"NullFloat64",
"NullInt16",
"NullInt32",
"NullInt64",
"NullString",
@ -2248,6 +2252,7 @@ var stdlib = map[string][]string{
"SHT_LOOS",
"SHT_LOPROC",
"SHT_LOUSER",
"SHT_MIPS_ABIFLAGS",
"SHT_NOBITS",
"SHT_NOTE",
"SHT_NULL",
@ -3061,6 +3066,7 @@ var stdlib = map[string][]string{
"ParseExpr",
"ParseExprFrom",
"ParseFile",
"SkipObjectResolution",
"SpuriousErrors",
"Trace",
},
@ -3441,6 +3447,7 @@ var stdlib = map[string][]string{
"Pt",
"RGBA",
"RGBA64",
"RGBA64Image",
"Rect",
"Rectangle",
"RegisterFormat",
@ -3507,6 +3514,7 @@ var stdlib = map[string][]string{
"Op",
"Over",
"Quantizer",
"RGBA64Image",
"Src",
},
"image/gif": []string{
@ -3612,6 +3620,7 @@ var stdlib = map[string][]string{
"FS",
"File",
"FileInfo",
"FileInfoToDirEntry",
"FileMode",
"Glob",
"GlobFS",
@ -3772,15 +3781,18 @@ var stdlib = map[string][]string{
"Max",
"MaxFloat32",
"MaxFloat64",
"MaxInt",
"MaxInt16",
"MaxInt32",
"MaxInt64",
"MaxInt8",
"MaxUint",
"MaxUint16",
"MaxUint32",
"MaxUint64",
"MaxUint8",
"Min",
"MinInt",
"MinInt16",
"MinInt32",
"MinInt64",
@ -4078,6 +4090,7 @@ var stdlib = map[string][]string{
"UnknownNetworkError",
},
"net/http": []string{
"AllowQuerySemicolons",
"CanonicalHeaderKey",
"Client",
"CloseNotifier",
@ -4660,6 +4673,7 @@ var stdlib = map[string][]string{
"Value",
"ValueError",
"ValueOf",
"VisibleFields",
"Zero",
},
"regexp": []string{
@ -4799,6 +4813,10 @@ var stdlib = map[string][]string{
"UnlockOSThread",
"Version",
},
"runtime/cgo": []string{
"Handle",
"NewHandle",
},
"runtime/debug": []string{
"BuildInfo",
"FreeOSMemory",
@ -4915,6 +4933,7 @@ var stdlib = map[string][]string{
"QuoteRuneToGraphic",
"QuoteToASCII",
"QuoteToGraphic",
"QuotedPrefix",
"Unquote",
"UnquoteChar",
},
@ -10334,6 +10353,7 @@ var stdlib = map[string][]string{
"PipeNode",
"Pos",
"RangeNode",
"SkipFuncCheck",
"StringNode",
"TemplateNode",
"TextNode",
@ -10358,6 +10378,7 @@ var stdlib = map[string][]string{
"July",
"June",
"Kitchen",
"Layout",
"LoadLocation",
"LoadLocationFromTZData",
"Local",
@ -10406,6 +10427,8 @@ var stdlib = map[string][]string{
"UTC",
"Unix",
"UnixDate",
"UnixMicro",
"UnixMilli",
"Until",
"Wednesday",
"Weekday",

View file

@ -27,23 +27,23 @@ const (
// RuneRoles detects the roles of each byte rune in an input string and stores it in the output
// slice. The rune role depends on the input type. Stops when it parsed all the runes in the string
// or when it filled the output. If output is nil, then it gets created.
func RuneRoles(str string, reuse []RuneRole) []RuneRole {
func RuneRoles(candidate []byte, reuse []RuneRole) []RuneRole {
var output []RuneRole
if cap(reuse) < len(str) {
output = make([]RuneRole, 0, len(str))
if cap(reuse) < len(candidate) {
output = make([]RuneRole, 0, len(candidate))
} else {
output = reuse[:0]
}
prev, prev2 := rtNone, rtNone
for i := 0; i < len(str); i++ {
r := rune(str[i])
for i := 0; i < len(candidate); i++ {
r := rune(candidate[i])
role := RNone
curr := rtLower
if str[i] <= unicode.MaxASCII {
curr = runeType(rt[str[i]] - '0')
if candidate[i] <= unicode.MaxASCII {
curr = runeType(rt[candidate[i]] - '0')
}
if curr == rtLower {
@ -58,7 +58,7 @@ func RuneRoles(str string, reuse []RuneRole) []RuneRole {
if prev == rtUpper {
// This and previous characters are both upper case.
if i+1 == len(str) {
if i+1 == len(candidate) {
// This is last character, previous was also uppercase -> this is UCTail
// i.e., (current char is C): aBC / BC / ABC
role = RUCTail
@ -118,11 +118,26 @@ func LastSegment(input string, roles []RuneRole) string {
return input[start+1 : end+1]
}
// ToLower transforms the input string to lower case, which is stored in the output byte slice.
// fromChunks copies string chunks into the given buffer.
func fromChunks(chunks []string, buffer []byte) []byte {
ii := 0
for _, chunk := range chunks {
for i := 0; i < len(chunk); i++ {
if ii >= cap(buffer) {
break
}
buffer[ii] = chunk[i]
ii++
}
}
return buffer[:ii]
}
// toLower transforms the input string to lower case, which is stored in the output byte slice.
// The lower casing considers only ASCII values - non ASCII values are left unmodified.
// Stops when parsed all input or when it filled the output slice. If output is nil, then it gets
// created.
func ToLower(input string, reuse []byte) []byte {
func toLower(input []byte, reuse []byte) []byte {
output := reuse
if cap(reuse) < len(input) {
output = make([]byte, len(input))
@ -130,7 +145,7 @@ func ToLower(input string, reuse []byte) []byte {
for i := 0; i < len(input); i++ {
r := rune(input[i])
if r <= unicode.MaxASCII {
if input[i] <= unicode.MaxASCII {
if 'A' <= r && r <= 'Z' {
r += 'a' - 'A'
}

View file

@ -51,8 +51,12 @@ type Matcher struct {
lastCandidateLen int // in bytes
lastCandidateMatched bool
// Here we save the last candidate in lower-case. This is basically a byte slice we reuse for
// performance reasons, so the slice is not reallocated for every candidate.
// Reusable buffers to avoid allocating for every candidate.
// - inputBuf stores the concatenated input chunks
// - lowerBuf stores the last candidate in lower-case
// - rolesBuf stores the calculated roles for each rune in the last
// candidate.
inputBuf [MaxInputSize]byte
lowerBuf [MaxInputSize]byte
rolesBuf [MaxInputSize]RuneRole
}
@ -72,7 +76,7 @@ func NewMatcher(pattern string) *Matcher {
m := &Matcher{
pattern: pattern,
patternLower: ToLower(pattern, nil),
patternLower: toLower([]byte(pattern), nil),
}
for i, c := range m.patternLower {
@ -88,7 +92,7 @@ func NewMatcher(pattern string) *Matcher {
m.patternShort = m.patternLower
}
m.patternRoles = RuneRoles(pattern, nil)
m.patternRoles = RuneRoles([]byte(pattern), nil)
if len(pattern) > 0 {
maxCharScore := 4
@ -102,10 +106,15 @@ func NewMatcher(pattern string) *Matcher {
// This is not designed for parallel use. Multiple candidates must be scored sequentially.
// Returns a score between 0 and 1 (0 - no match, 1 - perfect match).
func (m *Matcher) Score(candidate string) float32 {
return m.ScoreChunks([]string{candidate})
}
func (m *Matcher) ScoreChunks(chunks []string) float32 {
candidate := fromChunks(chunks, m.inputBuf[:])
if len(candidate) > MaxInputSize {
candidate = candidate[:MaxInputSize]
}
lower := ToLower(candidate, m.lowerBuf[:])
lower := toLower(candidate, m.lowerBuf[:])
m.lastCandidateLen = len(candidate)
if len(m.pattern) == 0 {
@ -174,7 +183,7 @@ func (m *Matcher) MatchedRanges() []int {
return ret
}
func (m *Matcher) match(candidate string, candidateLower []byte) bool {
func (m *Matcher) match(candidate []byte, candidateLower []byte) bool {
i, j := 0, 0
for ; i < len(candidateLower) && j < len(m.patternLower); i++ {
if candidateLower[i] == m.patternLower[j] {
@ -192,7 +201,7 @@ func (m *Matcher) match(candidate string, candidateLower []byte) bool {
return true
}
func (m *Matcher) computeScore(candidate string, candidateLower []byte) int {
func (m *Matcher) computeScore(candidate []byte, candidateLower []byte) int {
pattLen, candLen := len(m.pattern), len(candidate)
for j := 0; j <= len(m.pattern); j++ {

236
vendor/golang.org/x/tools/internal/lsp/fuzzy/symbol.go generated vendored Normal file
View file

@ -0,0 +1,236 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fuzzy
import (
"unicode"
)
// SymbolMatcher implements a fuzzy matching algorithm optimized for Go symbols
// of the form:
// example.com/path/to/package.object.field
//
// Knowing that we are matching symbols like this allows us to make the
// following optimizations:
// - We can incorporate right-to-left relevance directly into the score
// calculation.
// - We can match from right to left, discarding leading bytes if the input is
// too long.
// - We just take the right-most match without losing too much precision. This
// allows us to use an O(n) algorithm.
// - We can operate directly on chunked strings; in many cases we will
// be storing the package path and/or package name separately from the
// symbol or identifiers, so doing this avoids allocating strings.
// - We can return the index of the right-most match, allowing us to trim
// irrelevant qualification.
//
// This implementation is experimental, serving as a reference fast algorithm
// to compare to the fuzzy algorithm implemented by Matcher.
type SymbolMatcher struct {
// Using buffers of length 256 is both a reasonable size for most qualified
// symbols, and makes it easy to avoid bounds checks by using uint8 indexes.
pattern [256]rune
patternLen uint8
inputBuffer [256]rune // avoid allocating when considering chunks
roles [256]uint32 // which roles does a rune play (word start, etc.)
segments [256]uint8 // how many segments from the right is each rune
}
const (
segmentStart uint32 = 1 << iota
wordStart
separator
)
// NewSymbolMatcher creates a SymbolMatcher that may be used to match the given
// search pattern.
//
// Currently this matcher only accepts case-insensitive fuzzy patterns.
//
// An empty pattern matches no input.
func NewSymbolMatcher(pattern string) *SymbolMatcher {
m := &SymbolMatcher{}
for _, p := range pattern {
m.pattern[m.patternLen] = unicode.ToLower(p)
m.patternLen++
if m.patternLen == 255 || int(m.patternLen) == len(pattern) {
// break at 255 so that we can represent patternLen with a uint8.
break
}
}
return m
}
// Match looks for the right-most match of the search pattern within the symbol
// represented by concatenating the given chunks, returning its offset and
// score.
//
// If a match is found, the first return value will hold the absolute byte
// offset within all chunks for the start of the symbol. In other words, the
// index of the match within strings.Join(chunks, ""). If no match is found,
// the first return value will be -1.
//
// The second return value will be the score of the match, which is always
// between 0 and 1, inclusive. A score of 0 indicates no match.
func (m *SymbolMatcher) Match(chunks []string) (int, float64) {
// Explicit behavior for an empty pattern.
//
// As a minor optimization, this also avoids nilness checks later on, since
// the compiler can prove that m != nil.
if m.patternLen == 0 {
return -1, 0
}
// First phase: populate the input buffer with lower-cased runes.
//
// We could also check for a forward match here, but since we'd have to write
// the entire input anyway this has negligible impact on performance.
var (
inputLen = uint8(0)
modifiers = wordStart | segmentStart
)
input:
for _, chunk := range chunks {
for _, r := range chunk {
if r == '.' || r == '/' {
modifiers |= separator
}
// optimization: avoid calls to unicode.ToLower, which can't be inlined.
l := r
if r <= unicode.MaxASCII {
if 'A' <= r && r <= 'Z' {
l = r + 'a' - 'A'
}
} else {
l = unicode.ToLower(r)
}
if l != r {
modifiers |= wordStart
}
m.inputBuffer[inputLen] = l
m.roles[inputLen] = modifiers
inputLen++
if m.roles[inputLen-1]&separator != 0 {
modifiers = wordStart | segmentStart
} else {
modifiers = 0
}
// TODO: we should prefer the right-most input if it overflows, rather
// than the left-most as we're doing here.
if inputLen == 255 {
break input
}
}
}
// Second phase: find the right-most match, and count segments from the
// right.
var (
pi = uint8(m.patternLen - 1) // pattern index
p = m.pattern[pi] // pattern rune
start = -1 // start offset of match
rseg = uint8(0)
)
const maxSeg = 3 // maximum number of segments from the right to count, for scoring purposes.
for ii := inputLen - 1; ; ii-- {
r := m.inputBuffer[ii]
if rseg < maxSeg && m.roles[ii]&separator != 0 {
rseg++
}
m.segments[ii] = rseg
if p == r {
if pi == 0 {
start = int(ii)
break
}
pi--
p = m.pattern[pi]
}
// Don't check ii >= 0 in the loop condition: ii is a uint8.
if ii == 0 {
break
}
}
if start < 0 {
// no match: skip scoring
return -1, 0
}
// Third phase: find the shortest match, and compute the score.
// Score is the average score for each character.
//
// A character score is the multiple of:
// 1. 1.0 if the character starts a segment, .8 if the character start a
// mid-segment word, otherwise 0.6. This carries over to immediately
// following characters.
// 2. For the final character match, the multiplier from (1) is reduced to
// .8 if the next character in the input is a mid-segment word, or 0.6 if
// the next character in the input is not a word or segment start. This
// ensures that we favor whole-word or whole-segment matches over prefix
// matches.
// 3. 1.0 if the character is part of the last segment, otherwise
// 1.0-.2*<segments from the right>, with a max segment count of 3.
//
// This is a very naive algorithm, but it is fast. There's lots of prior art
// here, and we should leverage it. For example, we could explicitly consider
// character distance, and exact matches of words or segments.
//
// Also note that this might not actually find the highest scoring match, as
// doing so could require a non-linear algorithm, depending on how the score
// is calculated.
pi = 0
p = m.pattern[pi]
const (
segStreak = 1.0
wordStreak = 0.8
noStreak = 0.6
perSegment = 0.2 // we count at most 3 segments above
)
streakBonus := noStreak
totScore := 0.0
for ii := uint8(start); ii < inputLen; ii++ {
r := m.inputBuffer[ii]
if r == p {
pi++
p = m.pattern[pi]
// Note: this could be optimized with some bit operations.
switch {
case m.roles[ii]&segmentStart != 0 && segStreak > streakBonus:
streakBonus = segStreak
case m.roles[ii]&wordStart != 0 && wordStreak > streakBonus:
streakBonus = wordStreak
}
finalChar := pi >= m.patternLen
// finalCost := 1.0
if finalChar && streakBonus > noStreak {
switch {
case ii == inputLen-1 || m.roles[ii+1]&segmentStart != 0:
// Full segment: no reduction
case m.roles[ii+1]&wordStart != 0:
streakBonus = wordStreak
default:
streakBonus = noStreak
}
}
totScore += streakBonus * (1.0 - float64(m.segments[ii])*perSegment)
if finalChar {
break
}
} else {
streakBonus = noStreak
}
}
return start, totScore / float64(m.patternLen)
}

View file

@ -0,0 +1,79 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package typeparams contains common utilities for writing tools that interact
// with generic Go code, as introduced with Go 1.18.
//
// Many of the types and functions in this package are proxies for the new APIs
// introduced in the standard library with Go 1.18. For example, the
// typeparams.Union type is an alias for go/types.Union, and the ForTypeSpec
// function returns the value of the go/ast.TypeSpec.TypeParams field. At Go
// versions older than 1.18 these helpers are implemented as stubs, allowing
// users of this package to write code that handles generic constructs inline,
// even if the Go version being used to compile does not support generics.
//
// Additionally, this package contains common utilities for working with the
// new generic constructs, to supplement the standard library APIs. Notably,
// the StructuralTerms API computes a minimal representation of the structural
// restrictions on a type parameter. In the future, this API may be available
// from go/types.
//
// See the example/README.md for a more detailed guide on how to update tools
// to support generics.
package typeparams
import (
"go/ast"
"go/token"
"go/types"
)
// UnpackIndexExpr extracts data from AST nodes that represent index
// expressions.
//
// For an ast.IndexExpr, the resulting indices slice will contain exactly one
// index expression. For an ast.IndexListExpr (go1.18+), it may have a variable
// number of index expressions.
//
// For nodes that don't represent index expressions, the first return value of
// UnpackIndexExpr will be nil.
func UnpackIndexExpr(n ast.Node) (x ast.Expr, lbrack token.Pos, indices []ast.Expr, rbrack token.Pos) {
switch e := n.(type) {
case *ast.IndexExpr:
return e.X, e.Lbrack, []ast.Expr{e.Index}, e.Rbrack
case *IndexListExpr:
return e.X, e.Lbrack, e.Indices, e.Rbrack
}
return nil, token.NoPos, nil, token.NoPos
}
// PackIndexExpr returns an *ast.IndexExpr or *ast.IndexListExpr, depending on
// the cardinality of indices. Calling PackIndexExpr with len(indices) == 0
// will panic.
func PackIndexExpr(x ast.Expr, lbrack token.Pos, indices []ast.Expr, rbrack token.Pos) ast.Expr {
switch len(indices) {
case 0:
panic("empty indices")
case 1:
return &ast.IndexExpr{
X: x,
Lbrack: lbrack,
Index: indices[0],
Rbrack: rbrack,
}
default:
return &IndexListExpr{
X: x,
Lbrack: lbrack,
Indices: indices,
Rbrack: rbrack,
}
}
}
// IsTypeParam reports whether t is a type parameter.
func IsTypeParam(t types.Type) bool {
_, ok := t.(*TypeParam)
return ok
}

View file

@ -1,11 +0,0 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package typeparams provides functions to work indirectly with type parameter
// data stored in go/ast and go/types objects, while these API are guarded by a
// build constraint.
//
// This package exists to make it easier for tools to work with generic code,
// while also compiling against older Go versions.
package typeparams

View file

@ -0,0 +1,12 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !go1.18
// +build !go1.18
package typeparams
// Enabled reports whether type parameters are enabled in the current build
// environment.
const Enabled = false

View file

@ -0,0 +1,15 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.18
// +build go1.18
package typeparams
// Note: this constant is in a separate file as this is the only acceptable
// diff between the <1.18 API of this package and the 1.18 API.
// Enabled reports whether type parameters are enabled in the current build
// environment.
const Enabled = true

View file

@ -0,0 +1,216 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package typeparams
import (
"errors"
"fmt"
"go/types"
"os"
"strings"
)
//go:generate go run copytermlist.go
const debug = false
var ErrEmptyTypeSet = errors.New("empty type set")
// StructuralTerms returns a slice of terms representing the normalized
// structural type restrictions of a type parameter, if any.
//
// Structural type restrictions of a type parameter are created via
// non-interface types embedded in its constraint interface (directly, or via a
// chain of interface embeddings). For example, in the declaration
// type T[P interface{~int; m()}] int
// the structural restriction of the type parameter P is ~int.
//
// With interface embedding and unions, the specification of structural type
// restrictions may be arbitrarily complex. For example, consider the
// following:
//
// type A interface{ ~string|~[]byte }
//
// type B interface{ int|string }
//
// type C interface { ~string|~int }
//
// type T[P interface{ A|B; C }] int
//
// In this example, the structural type restriction of P is ~string|int: A|B
// expands to ~string|~[]byte|int|string, which reduces to ~string|~[]byte|int,
// which when intersected with C (~string|~int) yields ~string|int.
//
// StructuralTerms computes these expansions and reductions, producing a
// "normalized" form of the embeddings. A structural restriction is normalized
// if it is a single union containing no interface terms, and is minimal in the
// sense that removing any term changes the set of types satisfying the
// constraint. It is left as a proof for the reader that, modulo sorting, there
// is exactly one such normalized form.
//
// Because the minimal representation always takes this form, StructuralTerms
// returns a slice of tilde terms corresponding to the terms of the union in
// the normalized structural restriction. An error is returned if the
// constraint interface is invalid, exceeds complexity bounds, or has an empty
// type set. In the latter case, StructuralTerms returns ErrEmptyTypeSet.
//
// StructuralTerms makes no guarantees about the order of terms, except that it
// is deterministic.
func StructuralTerms(tparam *TypeParam) ([]*Term, error) {
constraint := tparam.Constraint()
if constraint == nil {
return nil, fmt.Errorf("%s has nil constraint", tparam)
}
iface, _ := constraint.Underlying().(*types.Interface)
if iface == nil {
return nil, fmt.Errorf("constraint is %T, not *types.Interface", constraint.Underlying())
}
return InterfaceTermSet(iface)
}
// InterfaceTermSet computes the normalized terms for a constraint interface,
// returning an error if the term set cannot be computed or is empty. In the
// latter case, the error will be ErrEmptyTypeSet.
//
// See the documentation of StructuralTerms for more information on
// normalization.
func InterfaceTermSet(iface *types.Interface) ([]*Term, error) {
return computeTermSet(iface)
}
// UnionTermSet computes the normalized terms for a union, returning an error
// if the term set cannot be computed or is empty. In the latter case, the
// error will be ErrEmptyTypeSet.
//
// See the documentation of StructuralTerms for more information on
// normalization.
func UnionTermSet(union *Union) ([]*Term, error) {
return computeTermSet(union)
}
func computeTermSet(typ types.Type) ([]*Term, error) {
tset, err := computeTermSetInternal(typ, make(map[types.Type]*termSet), 0)
if err != nil {
return nil, err
}
if tset.terms.isEmpty() {
return nil, ErrEmptyTypeSet
}
if tset.terms.isAll() {
return nil, nil
}
var terms []*Term
for _, term := range tset.terms {
terms = append(terms, NewTerm(term.tilde, term.typ))
}
return terms, nil
}
// A termSet holds the normalized set of terms for a given type.
//
// The name termSet is intentionally distinct from 'type set': a type set is
// all types that implement a type (and includes method restrictions), whereas
// a term set just represents the structural restrictions on a type.
type termSet struct {
complete bool
terms termlist
}
func indentf(depth int, format string, args ...interface{}) {
fmt.Fprintf(os.Stderr, strings.Repeat(".", depth)+format+"\n", args...)
}
func computeTermSetInternal(t types.Type, seen map[types.Type]*termSet, depth int) (res *termSet, err error) {
if t == nil {
panic("nil type")
}
if debug {
indentf(depth, "%s", t.String())
defer func() {
if err != nil {
indentf(depth, "=> %s", err)
} else {
indentf(depth, "=> %s", res.terms.String())
}
}()
}
const maxTermCount = 100
if tset, ok := seen[t]; ok {
if !tset.complete {
return nil, fmt.Errorf("cycle detected in the declaration of %s", t)
}
return tset, nil
}
// Mark the current type as seen to avoid infinite recursion.
tset := new(termSet)
defer func() {
tset.complete = true
}()
seen[t] = tset
switch u := t.Underlying().(type) {
case *types.Interface:
// The term set of an interface is the intersection of the term sets of its
// embedded types.
tset.terms = allTermlist
for i := 0; i < u.NumEmbeddeds(); i++ {
embedded := u.EmbeddedType(i)
if _, ok := embedded.Underlying().(*TypeParam); ok {
return nil, fmt.Errorf("invalid embedded type %T", embedded)
}
tset2, err := computeTermSetInternal(embedded, seen, depth+1)
if err != nil {
return nil, err
}
tset.terms = tset.terms.intersect(tset2.terms)
}
case *Union:
// The term set of a union is the union of term sets of its terms.
tset.terms = nil
for i := 0; i < u.Len(); i++ {
t := u.Term(i)
var terms termlist
switch t.Type().Underlying().(type) {
case *types.Interface:
tset2, err := computeTermSetInternal(t.Type(), seen, depth+1)
if err != nil {
return nil, err
}
terms = tset2.terms
case *TypeParam, *Union:
// A stand-alone type parameter or union is not permitted as union
// term.
return nil, fmt.Errorf("invalid union term %T", t)
default:
if t.Type() == types.Typ[types.Invalid] {
continue
}
terms = termlist{{t.Tilde(), t.Type()}}
}
tset.terms = tset.terms.union(terms)
if len(tset.terms) > maxTermCount {
return nil, fmt.Errorf("exceeded max term count %d", maxTermCount)
}
}
case *TypeParam:
panic("unreachable")
default:
// For all other types, the term set is just a single non-tilde term
// holding the type itself.
if u != types.Typ[types.Invalid] {
tset.terms = termlist{{false, t}}
}
}
return tset, nil
}
// under is a facade for the go/types internal function of the same name. It is
// used by typeterm.go.
func under(t types.Type) types.Type {
return t.Underlying()
}

View file

@ -1,90 +0,0 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !typeparams || !go1.17
// +build !typeparams !go1.17
package typeparams
import (
"go/ast"
"go/types"
)
// NOTE: doc comments must be kept in sync with typeparams.go.
// Enabled reports whether type parameters are enabled in the current build
// environment.
const Enabled = false
// UnpackIndex extracts all index expressions from e. For non-generic code this
// is always one expression: e.Index, but may be more than one expression for
// generic type instantiation.
func UnpackIndex(e *ast.IndexExpr) []ast.Expr {
return []ast.Expr{e.Index}
}
// IsListExpr reports whether n is an *ast.ListExpr, which is a new node type
// introduced to hold type arguments for generic type instantiation.
func IsListExpr(n ast.Node) bool {
return false
}
// ForTypeDecl extracts the (possibly nil) type parameter node list from n.
func ForTypeDecl(*ast.TypeSpec) *ast.FieldList {
return nil
}
// ForFuncDecl extracts the (possibly nil) type parameter node list from n.
func ForFuncDecl(*ast.FuncDecl) *ast.FieldList {
return nil
}
// ForSignature extracts the (possibly empty) type parameter object list from
// sig.
func ForSignature(*types.Signature) []*types.TypeName {
return nil
}
// HasTypeSet reports if iface has a type set.
func HasTypeSet(*types.Interface) bool {
return false
}
// IsComparable reports if iface is the comparable interface.
func IsComparable(*types.Interface) bool {
return false
}
// IsConstraint reports whether iface may only be used as a type parameter
// constraint (i.e. has a type set or is the comparable interface).
func IsConstraint(*types.Interface) bool {
return false
}
// ForNamed extracts the (possibly empty) type parameter object list from
// named.
func ForNamed(*types.Named) []*types.TypeName {
return nil
}
// NamedTArgs extracts the (possibly empty) type argument list from named.
func NamedTArgs(*types.Named) []types.Type {
return nil
}
// InitInferred initializes info to record inferred type information.
func InitInferred(*types.Info) {
}
// GetInferred extracts inferred type information from info for e.
//
// The expression e may have an inferred type if it is an *ast.IndexExpr
// representing partial instantiation of a generic function type for which type
// arguments have been inferred using constraint type inference, or if it is an
// *ast.CallExpr for which type type arguments have be inferred using both
// constraint type inference and function argument inference.
func GetInferred(*types.Info, ast.Expr) ([]types.Type, *types.Signature) {
return nil, nil
}

View file

@ -0,0 +1,172 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by copytermlist.go DO NOT EDIT.
package typeparams
import (
"bytes"
"go/types"
)
// A termlist represents the type set represented by the union
// t1 ∪ y2 ∪ ... tn of the type sets of the terms t1 to tn.
// A termlist is in normal form if all terms are disjoint.
// termlist operations don't require the operands to be in
// normal form.
type termlist []*term
// allTermlist represents the set of all types.
// It is in normal form.
var allTermlist = termlist{new(term)}
// String prints the termlist exactly (without normalization).
func (xl termlist) String() string {
if len(xl) == 0 {
return "∅"
}
var buf bytes.Buffer
for i, x := range xl {
if i > 0 {
buf.WriteString(" ∪ ")
}
buf.WriteString(x.String())
}
return buf.String()
}
// isEmpty reports whether the termlist xl represents the empty set of types.
func (xl termlist) isEmpty() bool {
// If there's a non-nil term, the entire list is not empty.
// If the termlist is in normal form, this requires at most
// one iteration.
for _, x := range xl {
if x != nil {
return false
}
}
return true
}
// isAll reports whether the termlist xl represents the set of all types.
func (xl termlist) isAll() bool {
// If there's a 𝓤 term, the entire list is 𝓤.
// If the termlist is in normal form, this requires at most
// one iteration.
for _, x := range xl {
if x != nil && x.typ == nil {
return true
}
}
return false
}
// norm returns the normal form of xl.
func (xl termlist) norm() termlist {
// Quadratic algorithm, but good enough for now.
// TODO(gri) fix asymptotic performance
used := make([]bool, len(xl))
var rl termlist
for i, xi := range xl {
if xi == nil || used[i] {
continue
}
for j := i + 1; j < len(xl); j++ {
xj := xl[j]
if xj == nil || used[j] {
continue
}
if u1, u2 := xi.union(xj); u2 == nil {
// If we encounter a 𝓤 term, the entire list is 𝓤.
// Exit early.
// (Note that this is not just an optimization;
// if we continue, we may end up with a 𝓤 term
// and other terms and the result would not be
// in normal form.)
if u1.typ == nil {
return allTermlist
}
xi = u1
used[j] = true // xj is now unioned into xi - ignore it in future iterations
}
}
rl = append(rl, xi)
}
return rl
}
// If the type set represented by xl is specified by a single (non-𝓤) term,
// structuralType returns that type. Otherwise it returns nil.
func (xl termlist) structuralType() types.Type {
if nl := xl.norm(); len(nl) == 1 {
return nl[0].typ // if nl.isAll() then typ is nil, which is ok
}
return nil
}
// union returns the union xl ∪ yl.
func (xl termlist) union(yl termlist) termlist {
return append(xl, yl...).norm()
}
// intersect returns the intersection xl ∩ yl.
func (xl termlist) intersect(yl termlist) termlist {
if xl.isEmpty() || yl.isEmpty() {
return nil
}
// Quadratic algorithm, but good enough for now.
// TODO(gri) fix asymptotic performance
var rl termlist
for _, x := range xl {
for _, y := range yl {
if r := x.intersect(y); r != nil {
rl = append(rl, r)
}
}
}
return rl.norm()
}
// equal reports whether xl and yl represent the same type set.
func (xl termlist) equal(yl termlist) bool {
// TODO(gri) this should be more efficient
return xl.subsetOf(yl) && yl.subsetOf(xl)
}
// includes reports whether t ∈ xl.
func (xl termlist) includes(t types.Type) bool {
for _, x := range xl {
if x.includes(t) {
return true
}
}
return false
}
// supersetOf reports whether y ⊆ xl.
func (xl termlist) supersetOf(y *term) bool {
for _, x := range xl {
if y.subsetOf(x) {
return true
}
}
return false
}
// subsetOf reports whether xl ⊆ yl.
func (xl termlist) subsetOf(yl termlist) bool {
if yl.isEmpty() {
return xl.isEmpty()
}
// each term x of xl must be a subset of yl
for _, x := range xl {
if !yl.supersetOf(x) {
return false // x is not a subset yl
}
}
return true
}

View file

@ -1,105 +0,0 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build typeparams && go1.17
// +build typeparams,go1.17
package typeparams
import (
"go/ast"
"go/types"
)
// NOTE: doc comments must be kept in sync with notypeparams.go.
// Enabled reports whether type parameters are enabled in the current build
// environment.
const Enabled = true
// UnpackIndex extracts all index expressions from e. For non-generic code this
// is always one expression: e.Index, but may be more than one expression for
// generic type instantiation.
func UnpackIndex(e *ast.IndexExpr) []ast.Expr {
if x, _ := e.Index.(*ast.ListExpr); x != nil {
return x.ElemList
}
if e.Index != nil {
return []ast.Expr{e.Index}
}
return nil
}
// IsListExpr reports whether n is an *ast.ListExpr, which is a new node type
// introduced to hold type arguments for generic type instantiation.
func IsListExpr(n ast.Node) bool {
_, ok := n.(*ast.ListExpr)
return ok
}
// ForTypeDecl extracts the (possibly nil) type parameter node list from n.
func ForTypeDecl(n *ast.TypeSpec) *ast.FieldList {
return n.TParams
}
// ForFuncDecl extracts the (possibly nil) type parameter node list from n.
func ForFuncDecl(n *ast.FuncDecl) *ast.FieldList {
if n.Type != nil {
return n.Type.TParams
}
return nil
}
// ForSignature extracts the (possibly empty) type parameter object list from
// sig.
func ForSignature(sig *types.Signature) []*types.TypeName {
return sig.TParams()
}
// HasTypeSet reports if iface has a type set.
func HasTypeSet(iface *types.Interface) bool {
return iface.HasTypeList()
}
// IsComparable reports if iface is the comparable interface.
func IsComparable(iface *types.Interface) bool {
return iface.IsComparable()
}
// IsConstraint reports whether iface may only be used as a type parameter
// constraint (i.e. has a type set or is the comparable interface).
func IsConstraint(iface *types.Interface) bool {
return iface.IsConstraint()
}
// ForNamed extracts the (possibly empty) type parameter object list from
// named.
func ForNamed(named *types.Named) []*types.TypeName {
return named.TParams()
}
// NamedTArgs extracts the (possibly empty) type argument list from named.
func NamedTArgs(named *types.Named) []types.Type {
return named.TArgs()
}
// InitInferred initializes info to record inferred type information.
func InitInferred(info *types.Info) {
info.Inferred = make(map[ast.Expr]types.Inferred)
}
// GetInferred extracts inferred type information from info for e.
//
// The expression e may have an inferred type if it is an *ast.IndexExpr
// representing partial instantiation of a generic function type for which type
// arguments have been inferred using constraint type inference, or if it is an
// *ast.CallExpr for which type type arguments have be inferred using both
// constraint type inference and function argument inference.
func GetInferred(info *types.Info, e ast.Expr) ([]types.Type, *types.Signature) {
if info.Inferred == nil {
return nil, nil
}
inf := info.Inferred[e]
return inf.TArgs, inf.Sig
}

View file

@ -0,0 +1,192 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !go1.18
// +build !go1.18
package typeparams
import (
"go/ast"
"go/token"
"go/types"
)
func unsupported() {
panic("type parameters are unsupported at this go version")
}
// IndexListExpr is a placeholder type, as type parameters are not supported at
// this Go version. Its methods panic on use.
type IndexListExpr struct {
ast.Expr
X ast.Expr // expression
Lbrack token.Pos // position of "["
Indices []ast.Expr // index expressions
Rbrack token.Pos // position of "]"
}
// ForTypeSpec returns an empty field list, as type parameters on not supported
// at this Go version.
func ForTypeSpec(*ast.TypeSpec) *ast.FieldList {
return nil
}
// ForFuncType returns an empty field list, as type parameters are not
// supported at this Go version.
func ForFuncType(*ast.FuncType) *ast.FieldList {
return nil
}
// TypeParam is a placeholder type, as type parameters are not supported at
// this Go version. Its methods panic on use.
type TypeParam struct{ types.Type }
func (*TypeParam) Index() int { unsupported(); return 0 }
func (*TypeParam) Constraint() types.Type { unsupported(); return nil }
func (*TypeParam) Obj() *types.TypeName { unsupported(); return nil }
// TypeParamList is a placeholder for an empty type parameter list.
type TypeParamList struct{}
func (*TypeParamList) Len() int { return 0 }
func (*TypeParamList) At(int) *TypeParam { unsupported(); return nil }
// TypeList is a placeholder for an empty type list.
type TypeList struct{}
func (*TypeList) Len() int { return 0 }
func (*TypeList) At(int) types.Type { unsupported(); return nil }
// NewTypeParam is unsupported at this Go version, and panics.
func NewTypeParam(name *types.TypeName, constraint types.Type) *TypeParam {
unsupported()
return nil
}
// SetTypeParamConstraint is unsupported at this Go version, and panics.
func SetTypeParamConstraint(tparam *TypeParam, constraint types.Type) {
unsupported()
}
// NewSignatureType calls types.NewSignature, panicking if recvTypeParams or
// typeParams is non-empty.
func NewSignatureType(recv *types.Var, recvTypeParams, typeParams []*TypeParam, params, results *types.Tuple, variadic bool) *types.Signature {
if len(recvTypeParams) != 0 || len(typeParams) != 0 {
panic("signatures cannot have type parameters at this Go version")
}
return types.NewSignature(recv, params, results, variadic)
}
// ForSignature returns an empty slice.
func ForSignature(*types.Signature) *TypeParamList {
return nil
}
// RecvTypeParams returns a nil slice.
func RecvTypeParams(sig *types.Signature) *TypeParamList {
return nil
}
// IsComparable returns false, as no interfaces are type-restricted at this Go
// version.
func IsComparable(*types.Interface) bool {
return false
}
// IsMethodSet returns true, as no interfaces are type-restricted at this Go
// version.
func IsMethodSet(*types.Interface) bool {
return true
}
// IsImplicit returns false, as no interfaces are implicit at this Go version.
func IsImplicit(*types.Interface) bool {
return false
}
// MarkImplicit does nothing, because this Go version does not have implicit
// interfaces.
func MarkImplicit(*types.Interface) {}
// ForNamed returns an empty type parameter list, as type parameters are not
// supported at this Go version.
func ForNamed(*types.Named) *TypeParamList {
return nil
}
// SetForNamed panics if tparams is non-empty.
func SetForNamed(_ *types.Named, tparams []*TypeParam) {
if len(tparams) > 0 {
unsupported()
}
}
// NamedTypeArgs returns nil.
func NamedTypeArgs(*types.Named) *TypeList {
return nil
}
// NamedTypeOrigin is the identity method at this Go version.
func NamedTypeOrigin(named *types.Named) types.Type {
return named
}
// Term holds information about a structural type restriction.
type Term struct {
tilde bool
typ types.Type
}
func (m *Term) Tilde() bool { return m.tilde }
func (m *Term) Type() types.Type { return m.typ }
func (m *Term) String() string {
pre := ""
if m.tilde {
pre = "~"
}
return pre + m.typ.String()
}
// NewTerm is unsupported at this Go version, and panics.
func NewTerm(tilde bool, typ types.Type) *Term {
return &Term{tilde, typ}
}
// Union is a placeholder type, as type parameters are not supported at this Go
// version. Its methods panic on use.
type Union struct{ types.Type }
func (*Union) Len() int { return 0 }
func (*Union) Term(i int) *Term { unsupported(); return nil }
// NewUnion is unsupported at this Go version, and panics.
func NewUnion(terms []*Term) *Union {
unsupported()
return nil
}
// InitInstanceInfo is a noop at this Go version.
func InitInstanceInfo(*types.Info) {}
// Instance is a placeholder type, as type parameters are not supported at this
// Go version.
type Instance struct {
TypeArgs *TypeList
Type types.Type
}
// GetInstances returns a nil map, as type parameters are not supported at this
// Go version.
func GetInstances(info *types.Info) map[*ast.Ident]Instance { return nil }
// Context is a placeholder type, as type parameters are not supported at
// this Go version.
type Context struct{}
// Instantiate is unsupported on this Go version, and panics.
func Instantiate(ctxt *Context, typ types.Type, targs []types.Type, validate bool) (types.Type, error) {
unsupported()
return nil, nil
}

View file

@ -0,0 +1,146 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.18
// +build go1.18
package typeparams
import (
"go/ast"
"go/types"
)
// IndexListExpr is an alias for ast.IndexListExpr.
type IndexListExpr = ast.IndexListExpr
// ForTypeSpec returns n.TypeParams.
func ForTypeSpec(n *ast.TypeSpec) *ast.FieldList {
if n == nil {
return nil
}
return n.TypeParams
}
// ForFuncType returns n.TypeParams.
func ForFuncType(n *ast.FuncType) *ast.FieldList {
if n == nil {
return nil
}
return n.TypeParams
}
// TypeParam is an alias for types.TypeParam
type TypeParam = types.TypeParam
// TypeParamList is an alias for types.TypeParamList
type TypeParamList = types.TypeParamList
// TypeList is an alias for types.TypeList
type TypeList = types.TypeList
// NewTypeParam calls types.NewTypeParam.
func NewTypeParam(name *types.TypeName, constraint types.Type) *TypeParam {
return types.NewTypeParam(name, constraint)
}
// SetTypeParamConstraint calls tparam.SetConstraint(constraint).
func SetTypeParamConstraint(tparam *TypeParam, constraint types.Type) {
tparam.SetConstraint(constraint)
}
// NewSignatureType calls types.NewSignatureType.
func NewSignatureType(recv *types.Var, recvTypeParams, typeParams []*TypeParam, params, results *types.Tuple, variadic bool) *types.Signature {
return types.NewSignatureType(recv, recvTypeParams, typeParams, params, results, variadic)
}
// ForSignature returns sig.TypeParams()
func ForSignature(sig *types.Signature) *TypeParamList {
return sig.TypeParams()
}
// RecvTypeParams returns sig.RecvTypeParams().
func RecvTypeParams(sig *types.Signature) *TypeParamList {
return sig.RecvTypeParams()
}
// IsComparable calls iface.IsComparable().
func IsComparable(iface *types.Interface) bool {
return iface.IsComparable()
}
// IsMethodSet calls iface.IsMethodSet().
func IsMethodSet(iface *types.Interface) bool {
return iface.IsMethodSet()
}
// IsImplicit calls iface.IsImplicit().
func IsImplicit(iface *types.Interface) bool {
return iface.IsImplicit()
}
// MarkImplicit calls iface.MarkImplicit().
func MarkImplicit(iface *types.Interface) {
iface.MarkImplicit()
}
// ForNamed extracts the (possibly empty) type parameter object list from
// named.
func ForNamed(named *types.Named) *TypeParamList {
return named.TypeParams()
}
// SetForNamed sets the type params tparams on n. Each tparam must be of
// dynamic type *types.TypeParam.
func SetForNamed(n *types.Named, tparams []*TypeParam) {
n.SetTypeParams(tparams)
}
// NamedTypeArgs returns named.TypeArgs().
func NamedTypeArgs(named *types.Named) *TypeList {
return named.TypeArgs()
}
// NamedTypeOrigin returns named.Orig().
func NamedTypeOrigin(named *types.Named) types.Type {
return named.Origin()
}
// Term is an alias for types.Term.
type Term = types.Term
// NewTerm calls types.NewTerm.
func NewTerm(tilde bool, typ types.Type) *Term {
return types.NewTerm(tilde, typ)
}
// Union is an alias for types.Union
type Union = types.Union
// NewUnion calls types.NewUnion.
func NewUnion(terms []*Term) *Union {
return types.NewUnion(terms)
}
// InitInstanceInfo initializes info to record information about type and
// function instances.
func InitInstanceInfo(info *types.Info) {
info.Instances = make(map[*ast.Ident]types.Instance)
}
// Instance is an alias for types.Instance.
type Instance = types.Instance
// GetInstances returns info.Instances.
func GetInstances(info *types.Info) map[*ast.Ident]Instance {
return info.Instances
}
// Context is an alias for types.Context.
type Context = types.Context
// Instantiate calls types.Instantiate.
func Instantiate(ctxt *Context, typ types.Type, targs []types.Type, validate bool) (types.Type, error) {
return types.Instantiate(ctxt, typ, targs, validate)
}

View file

@ -0,0 +1,170 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by copytermlist.go DO NOT EDIT.
package typeparams
import "go/types"
// A term describes elementary type sets:
//
// ∅: (*term)(nil) == ∅ // set of no types (empty set)
// 𝓤: &term{} == 𝓤 // set of all types (𝓤niverse)
// T: &term{false, T} == {T} // set of type T
// ~t: &term{true, t} == {t' | under(t') == t} // set of types with underlying type t
//
type term struct {
tilde bool // valid if typ != nil
typ types.Type
}
func (x *term) String() string {
switch {
case x == nil:
return "∅"
case x.typ == nil:
return "𝓤"
case x.tilde:
return "~" + x.typ.String()
default:
return x.typ.String()
}
}
// equal reports whether x and y represent the same type set.
func (x *term) equal(y *term) bool {
// easy cases
switch {
case x == nil || y == nil:
return x == y
case x.typ == nil || y.typ == nil:
return x.typ == y.typ
}
// ∅ ⊂ x, y ⊂ 𝓤
return x.tilde == y.tilde && types.Identical(x.typ, y.typ)
}
// union returns the union x ∪ y: zero, one, or two non-nil terms.
func (x *term) union(y *term) (_, _ *term) {
// easy cases
switch {
case x == nil && y == nil:
return nil, nil // ∅ ∪ ∅ == ∅
case x == nil:
return y, nil // ∅ ∪ y == y
case y == nil:
return x, nil // x ∪ ∅ == x
case x.typ == nil:
return x, nil // 𝓤 ∪ y == 𝓤
case y.typ == nil:
return y, nil // x ∪ 𝓤 == 𝓤
}
// ∅ ⊂ x, y ⊂ 𝓤
if x.disjoint(y) {
return x, y // x ∪ y == (x, y) if x ∩ y == ∅
}
// x.typ == y.typ
// ~t ∪ ~t == ~t
// ~t ∪ T == ~t
// T ∪ ~t == ~t
// T ∪ T == T
if x.tilde || !y.tilde {
return x, nil
}
return y, nil
}
// intersect returns the intersection x ∩ y.
func (x *term) intersect(y *term) *term {
// easy cases
switch {
case x == nil || y == nil:
return nil // ∅ ∩ y == ∅ and ∩ ∅ == ∅
case x.typ == nil:
return y // 𝓤 ∩ y == y
case y.typ == nil:
return x // x ∩ 𝓤 == x
}
// ∅ ⊂ x, y ⊂ 𝓤
if x.disjoint(y) {
return nil // x ∩ y == ∅ if x ∩ y == ∅
}
// x.typ == y.typ
// ~t ∩ ~t == ~t
// ~t ∩ T == T
// T ∩ ~t == T
// T ∩ T == T
if !x.tilde || y.tilde {
return x
}
return y
}
// includes reports whether t ∈ x.
func (x *term) includes(t types.Type) bool {
// easy cases
switch {
case x == nil:
return false // t ∈ ∅ == false
case x.typ == nil:
return true // t ∈ 𝓤 == true
}
// ∅ ⊂ x ⊂ 𝓤
u := t
if x.tilde {
u = under(u)
}
return types.Identical(x.typ, u)
}
// subsetOf reports whether x ⊆ y.
func (x *term) subsetOf(y *term) bool {
// easy cases
switch {
case x == nil:
return true // ∅ ⊆ y == true
case y == nil:
return false // x ⊆ ∅ == false since x != ∅
case y.typ == nil:
return true // x ⊆ 𝓤 == true
case x.typ == nil:
return false // 𝓤 ⊆ y == false since y != 𝓤
}
// ∅ ⊂ x, y ⊂ 𝓤
if x.disjoint(y) {
return false // x ⊆ y == false if x ∩ y == ∅
}
// x.typ == y.typ
// ~t ⊆ ~t == true
// ~t ⊆ T == false
// T ⊆ ~t == true
// T ⊆ T == true
return !x.tilde || y.tilde
}
// disjoint reports whether x ∩ y == ∅.
// x.typ and y.typ must not be nil.
func (x *term) disjoint(y *term) bool {
if debug && (x.typ == nil || y.typ == nil) {
panic("invalid argument(s)")
}
ux := x.typ
if y.tilde {
ux = under(ux)
}
uy := y.typ
if x.tilde {
uy = under(uy)
}
return !types.Identical(ux, uy)
}

View file

@ -30,10 +30,15 @@ func SetUsesCgo(conf *types.Config) bool {
return true
}
func ReadGo116ErrorData(terr types.Error) (ErrorCode, token.Pos, token.Pos, bool) {
// ReadGo116ErrorData extracts additional information from types.Error values
// generated by Go version 1.16 and later: the error code, start position, and
// end position. If all positions are valid, start <= err.Pos <= end.
//
// If the data could not be read, the final result parameter will be false.
func ReadGo116ErrorData(err types.Error) (code ErrorCode, start, end token.Pos, ok bool) {
var data [3]int
// By coincidence all of these fields are ints, which simplifies things.
v := reflect.ValueOf(terr)
v := reflect.ValueOf(err)
for i, name := range []string{"go116code", "go116start", "go116end"} {
f := v.FieldByName(name)
if !f.IsValid() {