Update deps

This commit is contained in:
Frank Denis 2020-11-06 07:43:29 +01:00
parent 078f69357e
commit e6fdb08d3d
270 changed files with 44752 additions and 558 deletions

View file

@ -0,0 +1,791 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package prototext
import (
"fmt"
"strings"
"unicode/utf8"
"google.golang.org/protobuf/internal/encoding/messageset"
"google.golang.org/protobuf/internal/encoding/text"
"google.golang.org/protobuf/internal/errors"
"google.golang.org/protobuf/internal/flags"
"google.golang.org/protobuf/internal/genid"
"google.golang.org/protobuf/internal/pragma"
"google.golang.org/protobuf/internal/set"
"google.golang.org/protobuf/internal/strs"
"google.golang.org/protobuf/proto"
pref "google.golang.org/protobuf/reflect/protoreflect"
"google.golang.org/protobuf/reflect/protoregistry"
)
// Unmarshal reads the given []byte into the given proto.Message.
func Unmarshal(b []byte, m proto.Message) error {
return UnmarshalOptions{}.Unmarshal(b, m)
}
// UnmarshalOptions is a configurable textproto format unmarshaler.
type UnmarshalOptions struct {
pragma.NoUnkeyedLiterals
// AllowPartial accepts input for messages that will result in missing
// required fields. If AllowPartial is false (the default), Unmarshal will
// return error if there are any missing required fields.
AllowPartial bool
// DiscardUnknown specifies whether to ignore unknown fields when parsing.
// An unknown field is any field whose field name or field number does not
// resolve to any known or extension field in the message.
// By default, unmarshal rejects unknown fields as an error.
DiscardUnknown bool
// Resolver is used for looking up types when unmarshaling
// google.protobuf.Any messages or extension fields.
// If nil, this defaults to using protoregistry.GlobalTypes.
Resolver interface {
protoregistry.MessageTypeResolver
protoregistry.ExtensionTypeResolver
}
}
// Unmarshal reads the given []byte and populates the given proto.Message using options in
// UnmarshalOptions object.
func (o UnmarshalOptions) Unmarshal(b []byte, m proto.Message) error {
return o.unmarshal(b, m)
}
// unmarshal is a centralized function that all unmarshal operations go through.
// For profiling purposes, avoid changing the name of this function or
// introducing other code paths for unmarshal that do not go through this.
func (o UnmarshalOptions) unmarshal(b []byte, m proto.Message) error {
proto.Reset(m)
if o.Resolver == nil {
o.Resolver = protoregistry.GlobalTypes
}
dec := decoder{text.NewDecoder(b), o}
if err := dec.unmarshalMessage(m.ProtoReflect(), false); err != nil {
return err
}
if o.AllowPartial {
return nil
}
return proto.CheckInitialized(m)
}
type decoder struct {
*text.Decoder
opts UnmarshalOptions
}
// newError returns an error object with position info.
func (d decoder) newError(pos int, f string, x ...interface{}) error {
line, column := d.Position(pos)
head := fmt.Sprintf("(line %d:%d): ", line, column)
return errors.New(head+f, x...)
}
// unexpectedTokenError returns a syntax error for the given unexpected token.
func (d decoder) unexpectedTokenError(tok text.Token) error {
return d.syntaxError(tok.Pos(), "unexpected token: %s", tok.RawString())
}
// syntaxError returns a syntax error for given position.
func (d decoder) syntaxError(pos int, f string, x ...interface{}) error {
line, column := d.Position(pos)
head := fmt.Sprintf("syntax error (line %d:%d): ", line, column)
return errors.New(head+f, x...)
}
// unmarshalMessage unmarshals into the given protoreflect.Message.
func (d decoder) unmarshalMessage(m pref.Message, checkDelims bool) error {
messageDesc := m.Descriptor()
if !flags.ProtoLegacy && messageset.IsMessageSet(messageDesc) {
return errors.New("no support for proto1 MessageSets")
}
if messageDesc.FullName() == genid.Any_message_fullname {
return d.unmarshalAny(m, checkDelims)
}
if checkDelims {
tok, err := d.Read()
if err != nil {
return err
}
if tok.Kind() != text.MessageOpen {
return d.unexpectedTokenError(tok)
}
}
var seenNums set.Ints
var seenOneofs set.Ints
fieldDescs := messageDesc.Fields()
for {
// Read field name.
tok, err := d.Read()
if err != nil {
return err
}
switch typ := tok.Kind(); typ {
case text.Name:
// Continue below.
case text.EOF:
if checkDelims {
return text.ErrUnexpectedEOF
}
return nil
default:
if checkDelims && typ == text.MessageClose {
return nil
}
return d.unexpectedTokenError(tok)
}
// Resolve the field descriptor.
var name pref.Name
var fd pref.FieldDescriptor
var xt pref.ExtensionType
var xtErr error
var isFieldNumberName bool
switch tok.NameKind() {
case text.IdentName:
name = pref.Name(tok.IdentName())
fd = fieldDescs.ByName(name)
if fd == nil {
// The proto name of a group field is in all lowercase,
// while the textproto field name is the group message name.
gd := fieldDescs.ByName(pref.Name(strings.ToLower(string(name))))
if gd != nil && gd.Kind() == pref.GroupKind && gd.Message().Name() == name {
fd = gd
}
} else if fd.Kind() == pref.GroupKind && fd.Message().Name() != name {
fd = nil // reset since field name is actually the message name
}
case text.TypeName:
// Handle extensions only. This code path is not for Any.
xt, xtErr = d.findExtension(pref.FullName(tok.TypeName()))
case text.FieldNumber:
isFieldNumberName = true
num := pref.FieldNumber(tok.FieldNumber())
if !num.IsValid() {
return d.newError(tok.Pos(), "invalid field number: %d", num)
}
fd = fieldDescs.ByNumber(num)
if fd == nil {
xt, xtErr = d.opts.Resolver.FindExtensionByNumber(messageDesc.FullName(), num)
}
}
if xt != nil {
fd = xt.TypeDescriptor()
if !messageDesc.ExtensionRanges().Has(fd.Number()) || fd.ContainingMessage().FullName() != messageDesc.FullName() {
return d.newError(tok.Pos(), "message %v cannot be extended by %v", messageDesc.FullName(), fd.FullName())
}
} else if xtErr != nil && xtErr != protoregistry.NotFound {
return d.newError(tok.Pos(), "unable to resolve [%s]: %v", tok.RawString(), xtErr)
}
if flags.ProtoLegacy {
if fd != nil && fd.IsWeak() && fd.Message().IsPlaceholder() {
fd = nil // reset since the weak reference is not linked in
}
}
// Handle unknown fields.
if fd == nil {
if d.opts.DiscardUnknown || messageDesc.ReservedNames().Has(name) {
d.skipValue()
continue
}
return d.newError(tok.Pos(), "unknown field: %v", tok.RawString())
}
// Handle fields identified by field number.
if isFieldNumberName {
// TODO: Add an option to permit parsing field numbers.
//
// This requires careful thought as the MarshalOptions.EmitUnknown
// option allows formatting unknown fields as the field number and the
// best-effort textual representation of the field value. In that case,
// it may not be possible to unmarshal the value from a parser that does
// have information about the unknown field.
return d.newError(tok.Pos(), "cannot specify field by number: %v", tok.RawString())
}
switch {
case fd.IsList():
kind := fd.Kind()
if kind != pref.MessageKind && kind != pref.GroupKind && !tok.HasSeparator() {
return d.syntaxError(tok.Pos(), "missing field separator :")
}
list := m.Mutable(fd).List()
if err := d.unmarshalList(fd, list); err != nil {
return err
}
case fd.IsMap():
mmap := m.Mutable(fd).Map()
if err := d.unmarshalMap(fd, mmap); err != nil {
return err
}
default:
kind := fd.Kind()
if kind != pref.MessageKind && kind != pref.GroupKind && !tok.HasSeparator() {
return d.syntaxError(tok.Pos(), "missing field separator :")
}
// If field is a oneof, check if it has already been set.
if od := fd.ContainingOneof(); od != nil {
idx := uint64(od.Index())
if seenOneofs.Has(idx) {
return d.newError(tok.Pos(), "error parsing %q, oneof %v is already set", tok.RawString(), od.FullName())
}
seenOneofs.Set(idx)
}
num := uint64(fd.Number())
if seenNums.Has(num) {
return d.newError(tok.Pos(), "non-repeated field %q is repeated", tok.RawString())
}
if err := d.unmarshalSingular(fd, m); err != nil {
return err
}
seenNums.Set(num)
}
}
return nil
}
// findExtension returns protoreflect.ExtensionType from the Resolver if found.
func (d decoder) findExtension(xtName pref.FullName) (pref.ExtensionType, error) {
xt, err := d.opts.Resolver.FindExtensionByName(xtName)
if err == nil {
return xt, nil
}
return messageset.FindMessageSetExtension(d.opts.Resolver, xtName)
}
// unmarshalSingular unmarshals a non-repeated field value specified by the
// given FieldDescriptor.
func (d decoder) unmarshalSingular(fd pref.FieldDescriptor, m pref.Message) error {
var val pref.Value
var err error
switch fd.Kind() {
case pref.MessageKind, pref.GroupKind:
val = m.NewField(fd)
err = d.unmarshalMessage(val.Message(), true)
default:
val, err = d.unmarshalScalar(fd)
}
if err == nil {
m.Set(fd, val)
}
return err
}
// unmarshalScalar unmarshals a scalar/enum protoreflect.Value specified by the
// given FieldDescriptor.
func (d decoder) unmarshalScalar(fd pref.FieldDescriptor) (pref.Value, error) {
tok, err := d.Read()
if err != nil {
return pref.Value{}, err
}
if tok.Kind() != text.Scalar {
return pref.Value{}, d.unexpectedTokenError(tok)
}
kind := fd.Kind()
switch kind {
case pref.BoolKind:
if b, ok := tok.Bool(); ok {
return pref.ValueOfBool(b), nil
}
case pref.Int32Kind, pref.Sint32Kind, pref.Sfixed32Kind:
if n, ok := tok.Int32(); ok {
return pref.ValueOfInt32(n), nil
}
case pref.Int64Kind, pref.Sint64Kind, pref.Sfixed64Kind:
if n, ok := tok.Int64(); ok {
return pref.ValueOfInt64(n), nil
}
case pref.Uint32Kind, pref.Fixed32Kind:
if n, ok := tok.Uint32(); ok {
return pref.ValueOfUint32(n), nil
}
case pref.Uint64Kind, pref.Fixed64Kind:
if n, ok := tok.Uint64(); ok {
return pref.ValueOfUint64(n), nil
}
case pref.FloatKind:
if n, ok := tok.Float32(); ok {
return pref.ValueOfFloat32(n), nil
}
case pref.DoubleKind:
if n, ok := tok.Float64(); ok {
return pref.ValueOfFloat64(n), nil
}
case pref.StringKind:
if s, ok := tok.String(); ok {
if strs.EnforceUTF8(fd) && !utf8.ValidString(s) {
return pref.Value{}, d.newError(tok.Pos(), "contains invalid UTF-8")
}
return pref.ValueOfString(s), nil
}
case pref.BytesKind:
if b, ok := tok.String(); ok {
return pref.ValueOfBytes([]byte(b)), nil
}
case pref.EnumKind:
if lit, ok := tok.Enum(); ok {
// Lookup EnumNumber based on name.
if enumVal := fd.Enum().Values().ByName(pref.Name(lit)); enumVal != nil {
return pref.ValueOfEnum(enumVal.Number()), nil
}
}
if num, ok := tok.Int32(); ok {
return pref.ValueOfEnum(pref.EnumNumber(num)), nil
}
default:
panic(fmt.Sprintf("invalid scalar kind %v", kind))
}
return pref.Value{}, d.newError(tok.Pos(), "invalid value for %v type: %v", kind, tok.RawString())
}
// unmarshalList unmarshals into given protoreflect.List. A list value can
// either be in [] syntax or simply just a single scalar/message value.
func (d decoder) unmarshalList(fd pref.FieldDescriptor, list pref.List) error {
tok, err := d.Peek()
if err != nil {
return err
}
switch fd.Kind() {
case pref.MessageKind, pref.GroupKind:
switch tok.Kind() {
case text.ListOpen:
d.Read()
for {
tok, err := d.Peek()
if err != nil {
return err
}
switch tok.Kind() {
case text.ListClose:
d.Read()
return nil
case text.MessageOpen:
pval := list.NewElement()
if err := d.unmarshalMessage(pval.Message(), true); err != nil {
return err
}
list.Append(pval)
default:
return d.unexpectedTokenError(tok)
}
}
case text.MessageOpen:
pval := list.NewElement()
if err := d.unmarshalMessage(pval.Message(), true); err != nil {
return err
}
list.Append(pval)
return nil
}
default:
switch tok.Kind() {
case text.ListOpen:
d.Read()
for {
tok, err := d.Peek()
if err != nil {
return err
}
switch tok.Kind() {
case text.ListClose:
d.Read()
return nil
case text.Scalar:
pval, err := d.unmarshalScalar(fd)
if err != nil {
return err
}
list.Append(pval)
default:
return d.unexpectedTokenError(tok)
}
}
case text.Scalar:
pval, err := d.unmarshalScalar(fd)
if err != nil {
return err
}
list.Append(pval)
return nil
}
}
return d.unexpectedTokenError(tok)
}
// unmarshalMap unmarshals into given protoreflect.Map. A map value is a
// textproto message containing {key: <kvalue>, value: <mvalue>}.
func (d decoder) unmarshalMap(fd pref.FieldDescriptor, mmap pref.Map) error {
// Determine ahead whether map entry is a scalar type or a message type in
// order to call the appropriate unmarshalMapValue func inside
// unmarshalMapEntry.
var unmarshalMapValue func() (pref.Value, error)
switch fd.MapValue().Kind() {
case pref.MessageKind, pref.GroupKind:
unmarshalMapValue = func() (pref.Value, error) {
pval := mmap.NewValue()
if err := d.unmarshalMessage(pval.Message(), true); err != nil {
return pref.Value{}, err
}
return pval, nil
}
default:
unmarshalMapValue = func() (pref.Value, error) {
return d.unmarshalScalar(fd.MapValue())
}
}
tok, err := d.Read()
if err != nil {
return err
}
switch tok.Kind() {
case text.MessageOpen:
return d.unmarshalMapEntry(fd, mmap, unmarshalMapValue)
case text.ListOpen:
for {
tok, err := d.Read()
if err != nil {
return err
}
switch tok.Kind() {
case text.ListClose:
return nil
case text.MessageOpen:
if err := d.unmarshalMapEntry(fd, mmap, unmarshalMapValue); err != nil {
return err
}
default:
return d.unexpectedTokenError(tok)
}
}
default:
return d.unexpectedTokenError(tok)
}
}
// unmarshalMap unmarshals into given protoreflect.Map. A map value is a
// textproto message containing {key: <kvalue>, value: <mvalue>}.
func (d decoder) unmarshalMapEntry(fd pref.FieldDescriptor, mmap pref.Map, unmarshalMapValue func() (pref.Value, error)) error {
var key pref.MapKey
var pval pref.Value
Loop:
for {
// Read field name.
tok, err := d.Read()
if err != nil {
return err
}
switch tok.Kind() {
case text.Name:
if tok.NameKind() != text.IdentName {
if !d.opts.DiscardUnknown {
return d.newError(tok.Pos(), "unknown map entry field %q", tok.RawString())
}
d.skipValue()
continue Loop
}
// Continue below.
case text.MessageClose:
break Loop
default:
return d.unexpectedTokenError(tok)
}
switch name := pref.Name(tok.IdentName()); name {
case genid.MapEntry_Key_field_name:
if !tok.HasSeparator() {
return d.syntaxError(tok.Pos(), "missing field separator :")
}
if key.IsValid() {
return d.newError(tok.Pos(), "map entry %q cannot be repeated", name)
}
val, err := d.unmarshalScalar(fd.MapKey())
if err != nil {
return err
}
key = val.MapKey()
case genid.MapEntry_Value_field_name:
if kind := fd.MapValue().Kind(); (kind != pref.MessageKind) && (kind != pref.GroupKind) {
if !tok.HasSeparator() {
return d.syntaxError(tok.Pos(), "missing field separator :")
}
}
if pval.IsValid() {
return d.newError(tok.Pos(), "map entry %q cannot be repeated", name)
}
pval, err = unmarshalMapValue()
if err != nil {
return err
}
default:
if !d.opts.DiscardUnknown {
return d.newError(tok.Pos(), "unknown map entry field %q", name)
}
d.skipValue()
}
}
if !key.IsValid() {
key = fd.MapKey().Default().MapKey()
}
if !pval.IsValid() {
switch fd.MapValue().Kind() {
case pref.MessageKind, pref.GroupKind:
// If value field is not set for message/group types, construct an
// empty one as default.
pval = mmap.NewValue()
default:
pval = fd.MapValue().Default()
}
}
mmap.Set(key, pval)
return nil
}
// unmarshalAny unmarshals an Any textproto. It can either be in expanded form
// or non-expanded form.
func (d decoder) unmarshalAny(m pref.Message, checkDelims bool) error {
var typeURL string
var bValue []byte
var seenTypeUrl bool
var seenValue bool
var isExpanded bool
if checkDelims {
tok, err := d.Read()
if err != nil {
return err
}
if tok.Kind() != text.MessageOpen {
return d.unexpectedTokenError(tok)
}
}
Loop:
for {
// Read field name. Can only have 3 possible field names, i.e. type_url,
// value and type URL name inside [].
tok, err := d.Read()
if err != nil {
return err
}
if typ := tok.Kind(); typ != text.Name {
if checkDelims {
if typ == text.MessageClose {
break Loop
}
} else if typ == text.EOF {
break Loop
}
return d.unexpectedTokenError(tok)
}
switch tok.NameKind() {
case text.IdentName:
// Both type_url and value fields require field separator :.
if !tok.HasSeparator() {
return d.syntaxError(tok.Pos(), "missing field separator :")
}
switch name := pref.Name(tok.IdentName()); name {
case genid.Any_TypeUrl_field_name:
if seenTypeUrl {
return d.newError(tok.Pos(), "duplicate %v field", genid.Any_TypeUrl_field_fullname)
}
if isExpanded {
return d.newError(tok.Pos(), "conflict with [%s] field", typeURL)
}
tok, err := d.Read()
if err != nil {
return err
}
var ok bool
typeURL, ok = tok.String()
if !ok {
return d.newError(tok.Pos(), "invalid %v field value: %v", genid.Any_TypeUrl_field_fullname, tok.RawString())
}
seenTypeUrl = true
case genid.Any_Value_field_name:
if seenValue {
return d.newError(tok.Pos(), "duplicate %v field", genid.Any_Value_field_fullname)
}
if isExpanded {
return d.newError(tok.Pos(), "conflict with [%s] field", typeURL)
}
tok, err := d.Read()
if err != nil {
return err
}
s, ok := tok.String()
if !ok {
return d.newError(tok.Pos(), "invalid %v field value: %v", genid.Any_Value_field_fullname, tok.RawString())
}
bValue = []byte(s)
seenValue = true
default:
if !d.opts.DiscardUnknown {
return d.newError(tok.Pos(), "invalid field name %q in %v message", tok.RawString(), genid.Any_message_fullname)
}
}
case text.TypeName:
if isExpanded {
return d.newError(tok.Pos(), "cannot have more than one type")
}
if seenTypeUrl {
return d.newError(tok.Pos(), "conflict with type_url field")
}
typeURL = tok.TypeName()
var err error
bValue, err = d.unmarshalExpandedAny(typeURL, tok.Pos())
if err != nil {
return err
}
isExpanded = true
default:
if !d.opts.DiscardUnknown {
return d.newError(tok.Pos(), "invalid field name %q in %v message", tok.RawString(), genid.Any_message_fullname)
}
}
}
fds := m.Descriptor().Fields()
if len(typeURL) > 0 {
m.Set(fds.ByNumber(genid.Any_TypeUrl_field_number), pref.ValueOfString(typeURL))
}
if len(bValue) > 0 {
m.Set(fds.ByNumber(genid.Any_Value_field_number), pref.ValueOfBytes(bValue))
}
return nil
}
func (d decoder) unmarshalExpandedAny(typeURL string, pos int) ([]byte, error) {
mt, err := d.opts.Resolver.FindMessageByURL(typeURL)
if err != nil {
return nil, d.newError(pos, "unable to resolve message [%v]: %v", typeURL, err)
}
// Create new message for the embedded message type and unmarshal the value
// field into it.
m := mt.New()
if err := d.unmarshalMessage(m, true); err != nil {
return nil, err
}
// Serialize the embedded message and return the resulting bytes.
b, err := proto.MarshalOptions{
AllowPartial: true, // Never check required fields inside an Any.
Deterministic: true,
}.Marshal(m.Interface())
if err != nil {
return nil, d.newError(pos, "error in marshaling message into Any.value: %v", err)
}
return b, nil
}
// skipValue makes the decoder parse a field value in order to advance the read
// to the next field. It relies on Read returning an error if the types are not
// in valid sequence.
func (d decoder) skipValue() error {
tok, err := d.Read()
if err != nil {
return err
}
// Only need to continue reading for messages and lists.
switch tok.Kind() {
case text.MessageOpen:
return d.skipMessageValue()
case text.ListOpen:
for {
tok, err := d.Read()
if err != nil {
return err
}
switch tok.Kind() {
case text.ListClose:
return nil
case text.MessageOpen:
return d.skipMessageValue()
default:
// Skip items. This will not validate whether skipped values are
// of the same type or not, same behavior as C++
// TextFormat::Parser::AllowUnknownField(true) version 3.8.0.
if err := d.skipValue(); err != nil {
return err
}
}
}
}
return nil
}
// skipMessageValue makes the decoder parse and skip over all fields in a
// message. It assumes that the previous read type is MessageOpen.
func (d decoder) skipMessageValue() error {
for {
tok, err := d.Read()
if err != nil {
return err
}
switch tok.Kind() {
case text.MessageClose:
return nil
case text.Name:
if err := d.skipValue(); err != nil {
return err
}
}
}
}

View file

@ -0,0 +1,7 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package prototext marshals and unmarshals protocol buffer messages as the
// textproto format.
package prototext

View file

@ -0,0 +1,433 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package prototext
import (
"fmt"
"sort"
"strconv"
"unicode/utf8"
"google.golang.org/protobuf/encoding/protowire"
"google.golang.org/protobuf/internal/encoding/messageset"
"google.golang.org/protobuf/internal/encoding/text"
"google.golang.org/protobuf/internal/errors"
"google.golang.org/protobuf/internal/flags"
"google.golang.org/protobuf/internal/genid"
"google.golang.org/protobuf/internal/mapsort"
"google.golang.org/protobuf/internal/pragma"
"google.golang.org/protobuf/internal/strs"
"google.golang.org/protobuf/proto"
pref "google.golang.org/protobuf/reflect/protoreflect"
"google.golang.org/protobuf/reflect/protoregistry"
)
const defaultIndent = " "
// Format formats the message as a multiline string.
// This function is only intended for human consumption and ignores errors.
// Do not depend on the output being stable. It may change over time across
// different versions of the program.
func Format(m proto.Message) string {
return MarshalOptions{Multiline: true}.Format(m)
}
// Marshal writes the given proto.Message in textproto format using default
// options. Do not depend on the output being stable. It may change over time
// across different versions of the program.
func Marshal(m proto.Message) ([]byte, error) {
return MarshalOptions{}.Marshal(m)
}
// MarshalOptions is a configurable text format marshaler.
type MarshalOptions struct {
pragma.NoUnkeyedLiterals
// Multiline specifies whether the marshaler should format the output in
// indented-form with every textual element on a new line.
// If Indent is an empty string, then an arbitrary indent is chosen.
Multiline bool
// Indent specifies the set of indentation characters to use in a multiline
// formatted output such that every entry is preceded by Indent and
// terminated by a newline. If non-empty, then Multiline is treated as true.
// Indent can only be composed of space or tab characters.
Indent string
// EmitASCII specifies whether to format strings and bytes as ASCII only
// as opposed to using UTF-8 encoding when possible.
EmitASCII bool
// allowInvalidUTF8 specifies whether to permit the encoding of strings
// with invalid UTF-8. This is unexported as it is intended to only
// be specified by the Format method.
allowInvalidUTF8 bool
// AllowPartial allows messages that have missing required fields to marshal
// without returning an error. If AllowPartial is false (the default),
// Marshal will return error if there are any missing required fields.
AllowPartial bool
// EmitUnknown specifies whether to emit unknown fields in the output.
// If specified, the unmarshaler may be unable to parse the output.
// The default is to exclude unknown fields.
EmitUnknown bool
// Resolver is used for looking up types when expanding google.protobuf.Any
// messages. If nil, this defaults to using protoregistry.GlobalTypes.
Resolver interface {
protoregistry.ExtensionTypeResolver
protoregistry.MessageTypeResolver
}
}
// Format formats the message as a string.
// This method is only intended for human consumption and ignores errors.
// Do not depend on the output being stable. It may change over time across
// different versions of the program.
func (o MarshalOptions) Format(m proto.Message) string {
if m == nil || !m.ProtoReflect().IsValid() {
return "<nil>" // invalid syntax, but okay since this is for debugging
}
o.allowInvalidUTF8 = true
o.AllowPartial = true
o.EmitUnknown = true
b, _ := o.Marshal(m)
return string(b)
}
// Marshal writes the given proto.Message in textproto format using options in
// MarshalOptions object. Do not depend on the output being stable. It may
// change over time across different versions of the program.
func (o MarshalOptions) Marshal(m proto.Message) ([]byte, error) {
return o.marshal(m)
}
// marshal is a centralized function that all marshal operations go through.
// For profiling purposes, avoid changing the name of this function or
// introducing other code paths for marshal that do not go through this.
func (o MarshalOptions) marshal(m proto.Message) ([]byte, error) {
var delims = [2]byte{'{', '}'}
if o.Multiline && o.Indent == "" {
o.Indent = defaultIndent
}
if o.Resolver == nil {
o.Resolver = protoregistry.GlobalTypes
}
internalEnc, err := text.NewEncoder(o.Indent, delims, o.EmitASCII)
if err != nil {
return nil, err
}
// Treat nil message interface as an empty message,
// in which case there is nothing to output.
if m == nil {
return []byte{}, nil
}
enc := encoder{internalEnc, o}
err = enc.marshalMessage(m.ProtoReflect(), false)
if err != nil {
return nil, err
}
out := enc.Bytes()
if len(o.Indent) > 0 && len(out) > 0 {
out = append(out, '\n')
}
if o.AllowPartial {
return out, nil
}
return out, proto.CheckInitialized(m)
}
type encoder struct {
*text.Encoder
opts MarshalOptions
}
// marshalMessage marshals the given protoreflect.Message.
func (e encoder) marshalMessage(m pref.Message, inclDelims bool) error {
messageDesc := m.Descriptor()
if !flags.ProtoLegacy && messageset.IsMessageSet(messageDesc) {
return errors.New("no support for proto1 MessageSets")
}
if inclDelims {
e.StartMessage()
defer e.EndMessage()
}
// Handle Any expansion.
if messageDesc.FullName() == genid.Any_message_fullname {
if e.marshalAny(m) {
return nil
}
// If unable to expand, continue on to marshal Any as a regular message.
}
// Marshal known fields.
fieldDescs := messageDesc.Fields()
size := fieldDescs.Len()
for i := 0; i < size; {
fd := fieldDescs.Get(i)
if od := fd.ContainingOneof(); od != nil {
fd = m.WhichOneof(od)
i += od.Fields().Len()
} else {
i++
}
if fd == nil || !m.Has(fd) {
continue
}
name := fd.Name()
// Use type name for group field name.
if fd.Kind() == pref.GroupKind {
name = fd.Message().Name()
}
val := m.Get(fd)
if err := e.marshalField(string(name), val, fd); err != nil {
return err
}
}
// Marshal extensions.
if err := e.marshalExtensions(m); err != nil {
return err
}
// Marshal unknown fields.
if e.opts.EmitUnknown {
e.marshalUnknown(m.GetUnknown())
}
return nil
}
// marshalField marshals the given field with protoreflect.Value.
func (e encoder) marshalField(name string, val pref.Value, fd pref.FieldDescriptor) error {
switch {
case fd.IsList():
return e.marshalList(name, val.List(), fd)
case fd.IsMap():
return e.marshalMap(name, val.Map(), fd)
default:
e.WriteName(name)
return e.marshalSingular(val, fd)
}
}
// marshalSingular marshals the given non-repeated field value. This includes
// all scalar types, enums, messages, and groups.
func (e encoder) marshalSingular(val pref.Value, fd pref.FieldDescriptor) error {
kind := fd.Kind()
switch kind {
case pref.BoolKind:
e.WriteBool(val.Bool())
case pref.StringKind:
s := val.String()
if !e.opts.allowInvalidUTF8 && strs.EnforceUTF8(fd) && !utf8.ValidString(s) {
return errors.InvalidUTF8(string(fd.FullName()))
}
e.WriteString(s)
case pref.Int32Kind, pref.Int64Kind,
pref.Sint32Kind, pref.Sint64Kind,
pref.Sfixed32Kind, pref.Sfixed64Kind:
e.WriteInt(val.Int())
case pref.Uint32Kind, pref.Uint64Kind,
pref.Fixed32Kind, pref.Fixed64Kind:
e.WriteUint(val.Uint())
case pref.FloatKind:
// Encoder.WriteFloat handles the special numbers NaN and infinites.
e.WriteFloat(val.Float(), 32)
case pref.DoubleKind:
// Encoder.WriteFloat handles the special numbers NaN and infinites.
e.WriteFloat(val.Float(), 64)
case pref.BytesKind:
e.WriteString(string(val.Bytes()))
case pref.EnumKind:
num := val.Enum()
if desc := fd.Enum().Values().ByNumber(num); desc != nil {
e.WriteLiteral(string(desc.Name()))
} else {
// Use numeric value if there is no enum description.
e.WriteInt(int64(num))
}
case pref.MessageKind, pref.GroupKind:
return e.marshalMessage(val.Message(), true)
default:
panic(fmt.Sprintf("%v has unknown kind: %v", fd.FullName(), kind))
}
return nil
}
// marshalList marshals the given protoreflect.List as multiple name-value fields.
func (e encoder) marshalList(name string, list pref.List, fd pref.FieldDescriptor) error {
size := list.Len()
for i := 0; i < size; i++ {
e.WriteName(name)
if err := e.marshalSingular(list.Get(i), fd); err != nil {
return err
}
}
return nil
}
// marshalMap marshals the given protoreflect.Map as multiple name-value fields.
func (e encoder) marshalMap(name string, mmap pref.Map, fd pref.FieldDescriptor) error {
var err error
mapsort.Range(mmap, fd.MapKey().Kind(), func(key pref.MapKey, val pref.Value) bool {
e.WriteName(name)
e.StartMessage()
defer e.EndMessage()
e.WriteName(string(genid.MapEntry_Key_field_name))
err = e.marshalSingular(key.Value(), fd.MapKey())
if err != nil {
return false
}
e.WriteName(string(genid.MapEntry_Value_field_name))
err = e.marshalSingular(val, fd.MapValue())
if err != nil {
return false
}
return true
})
return err
}
// marshalExtensions marshals extension fields.
func (e encoder) marshalExtensions(m pref.Message) error {
type entry struct {
key string
value pref.Value
desc pref.FieldDescriptor
}
// Get a sorted list based on field key first.
var entries []entry
m.Range(func(fd pref.FieldDescriptor, v pref.Value) bool {
if !fd.IsExtension() {
return true
}
// For MessageSet extensions, the name used is the parent message.
name := fd.FullName()
if messageset.IsMessageSetExtension(fd) {
name = name.Parent()
}
entries = append(entries, entry{
key: string(name),
value: v,
desc: fd,
})
return true
})
// Sort extensions lexicographically.
sort.Slice(entries, func(i, j int) bool {
return entries[i].key < entries[j].key
})
// Write out sorted list.
for _, entry := range entries {
// Extension field name is the proto field name enclosed in [].
name := "[" + entry.key + "]"
if err := e.marshalField(name, entry.value, entry.desc); err != nil {
return err
}
}
return nil
}
// marshalUnknown parses the given []byte and marshals fields out.
// This function assumes proper encoding in the given []byte.
func (e encoder) marshalUnknown(b []byte) {
const dec = 10
const hex = 16
for len(b) > 0 {
num, wtype, n := protowire.ConsumeTag(b)
b = b[n:]
e.WriteName(strconv.FormatInt(int64(num), dec))
switch wtype {
case protowire.VarintType:
var v uint64
v, n = protowire.ConsumeVarint(b)
e.WriteUint(v)
case protowire.Fixed32Type:
var v uint32
v, n = protowire.ConsumeFixed32(b)
e.WriteLiteral("0x" + strconv.FormatUint(uint64(v), hex))
case protowire.Fixed64Type:
var v uint64
v, n = protowire.ConsumeFixed64(b)
e.WriteLiteral("0x" + strconv.FormatUint(v, hex))
case protowire.BytesType:
var v []byte
v, n = protowire.ConsumeBytes(b)
e.WriteString(string(v))
case protowire.StartGroupType:
e.StartMessage()
var v []byte
v, n = protowire.ConsumeGroup(num, b)
e.marshalUnknown(v)
e.EndMessage()
default:
panic(fmt.Sprintf("prototext: error parsing unknown field wire type: %v", wtype))
}
b = b[n:]
}
}
// marshalAny marshals the given google.protobuf.Any message in expanded form.
// It returns true if it was able to marshal, else false.
func (e encoder) marshalAny(any pref.Message) bool {
// Construct the embedded message.
fds := any.Descriptor().Fields()
fdType := fds.ByNumber(genid.Any_TypeUrl_field_number)
typeURL := any.Get(fdType).String()
mt, err := e.opts.Resolver.FindMessageByURL(typeURL)
if err != nil {
return false
}
m := mt.New().Interface()
// Unmarshal bytes into embedded message.
fdValue := fds.ByNumber(genid.Any_Value_field_number)
value := any.Get(fdValue)
err = proto.UnmarshalOptions{
AllowPartial: true,
Resolver: e.opts.Resolver,
}.Unmarshal(value.Bytes(), m)
if err != nil {
return false
}
// Get current encoder position. If marshaling fails, reset encoder output
// back to this position.
pos := e.Snapshot()
// Field name is the proto field name enclosed in [].
e.WriteName("[" + typeURL + "]")
err = e.marshalMessage(m.ProtoReflect(), true)
if err != nil {
e.Reset(pos)
return false
}
return true
}

View file

@ -0,0 +1,538 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package protowire parses and formats the raw wire encoding.
// See https://developers.google.com/protocol-buffers/docs/encoding.
//
// For marshaling and unmarshaling entire protobuf messages,
// use the "google.golang.org/protobuf/proto" package instead.
package protowire
import (
"io"
"math"
"math/bits"
"google.golang.org/protobuf/internal/errors"
)
// Number represents the field number.
type Number int32
const (
MinValidNumber Number = 1
FirstReservedNumber Number = 19000
LastReservedNumber Number = 19999
MaxValidNumber Number = 1<<29 - 1
)
// IsValid reports whether the field number is semantically valid.
//
// Note that while numbers within the reserved range are semantically invalid,
// they are syntactically valid in the wire format.
// Implementations may treat records with reserved field numbers as unknown.
func (n Number) IsValid() bool {
return MinValidNumber <= n && n < FirstReservedNumber || LastReservedNumber < n && n <= MaxValidNumber
}
// Type represents the wire type.
type Type int8
const (
VarintType Type = 0
Fixed32Type Type = 5
Fixed64Type Type = 1
BytesType Type = 2
StartGroupType Type = 3
EndGroupType Type = 4
)
const (
_ = -iota
errCodeTruncated
errCodeFieldNumber
errCodeOverflow
errCodeReserved
errCodeEndGroup
)
var (
errFieldNumber = errors.New("invalid field number")
errOverflow = errors.New("variable length integer overflow")
errReserved = errors.New("cannot parse reserved wire type")
errEndGroup = errors.New("mismatching end group marker")
errParse = errors.New("parse error")
)
// ParseError converts an error code into an error value.
// This returns nil if n is a non-negative number.
func ParseError(n int) error {
if n >= 0 {
return nil
}
switch n {
case errCodeTruncated:
return io.ErrUnexpectedEOF
case errCodeFieldNumber:
return errFieldNumber
case errCodeOverflow:
return errOverflow
case errCodeReserved:
return errReserved
case errCodeEndGroup:
return errEndGroup
default:
return errParse
}
}
// ConsumeField parses an entire field record (both tag and value) and returns
// the field number, the wire type, and the total length.
// This returns a negative length upon an error (see ParseError).
//
// The total length includes the tag header and the end group marker (if the
// field is a group).
func ConsumeField(b []byte) (Number, Type, int) {
num, typ, n := ConsumeTag(b)
if n < 0 {
return 0, 0, n // forward error code
}
m := ConsumeFieldValue(num, typ, b[n:])
if m < 0 {
return 0, 0, m // forward error code
}
return num, typ, n + m
}
// ConsumeFieldValue parses a field value and returns its length.
// This assumes that the field Number and wire Type have already been parsed.
// This returns a negative length upon an error (see ParseError).
//
// When parsing a group, the length includes the end group marker and
// the end group is verified to match the starting field number.
func ConsumeFieldValue(num Number, typ Type, b []byte) (n int) {
switch typ {
case VarintType:
_, n = ConsumeVarint(b)
return n
case Fixed32Type:
_, n = ConsumeFixed32(b)
return n
case Fixed64Type:
_, n = ConsumeFixed64(b)
return n
case BytesType:
_, n = ConsumeBytes(b)
return n
case StartGroupType:
n0 := len(b)
for {
num2, typ2, n := ConsumeTag(b)
if n < 0 {
return n // forward error code
}
b = b[n:]
if typ2 == EndGroupType {
if num != num2 {
return errCodeEndGroup
}
return n0 - len(b)
}
n = ConsumeFieldValue(num2, typ2, b)
if n < 0 {
return n // forward error code
}
b = b[n:]
}
case EndGroupType:
return errCodeEndGroup
default:
return errCodeReserved
}
}
// AppendTag encodes num and typ as a varint-encoded tag and appends it to b.
func AppendTag(b []byte, num Number, typ Type) []byte {
return AppendVarint(b, EncodeTag(num, typ))
}
// ConsumeTag parses b as a varint-encoded tag, reporting its length.
// This returns a negative length upon an error (see ParseError).
func ConsumeTag(b []byte) (Number, Type, int) {
v, n := ConsumeVarint(b)
if n < 0 {
return 0, 0, n // forward error code
}
num, typ := DecodeTag(v)
if num < MinValidNumber {
return 0, 0, errCodeFieldNumber
}
return num, typ, n
}
func SizeTag(num Number) int {
return SizeVarint(EncodeTag(num, 0)) // wire type has no effect on size
}
// AppendVarint appends v to b as a varint-encoded uint64.
func AppendVarint(b []byte, v uint64) []byte {
switch {
case v < 1<<7:
b = append(b, byte(v))
case v < 1<<14:
b = append(b,
byte((v>>0)&0x7f|0x80),
byte(v>>7))
case v < 1<<21:
b = append(b,
byte((v>>0)&0x7f|0x80),
byte((v>>7)&0x7f|0x80),
byte(v>>14))
case v < 1<<28:
b = append(b,
byte((v>>0)&0x7f|0x80),
byte((v>>7)&0x7f|0x80),
byte((v>>14)&0x7f|0x80),
byte(v>>21))
case v < 1<<35:
b = append(b,
byte((v>>0)&0x7f|0x80),
byte((v>>7)&0x7f|0x80),
byte((v>>14)&0x7f|0x80),
byte((v>>21)&0x7f|0x80),
byte(v>>28))
case v < 1<<42:
b = append(b,
byte((v>>0)&0x7f|0x80),
byte((v>>7)&0x7f|0x80),
byte((v>>14)&0x7f|0x80),
byte((v>>21)&0x7f|0x80),
byte((v>>28)&0x7f|0x80),
byte(v>>35))
case v < 1<<49:
b = append(b,
byte((v>>0)&0x7f|0x80),
byte((v>>7)&0x7f|0x80),
byte((v>>14)&0x7f|0x80),
byte((v>>21)&0x7f|0x80),
byte((v>>28)&0x7f|0x80),
byte((v>>35)&0x7f|0x80),
byte(v>>42))
case v < 1<<56:
b = append(b,
byte((v>>0)&0x7f|0x80),
byte((v>>7)&0x7f|0x80),
byte((v>>14)&0x7f|0x80),
byte((v>>21)&0x7f|0x80),
byte((v>>28)&0x7f|0x80),
byte((v>>35)&0x7f|0x80),
byte((v>>42)&0x7f|0x80),
byte(v>>49))
case v < 1<<63:
b = append(b,
byte((v>>0)&0x7f|0x80),
byte((v>>7)&0x7f|0x80),
byte((v>>14)&0x7f|0x80),
byte((v>>21)&0x7f|0x80),
byte((v>>28)&0x7f|0x80),
byte((v>>35)&0x7f|0x80),
byte((v>>42)&0x7f|0x80),
byte((v>>49)&0x7f|0x80),
byte(v>>56))
default:
b = append(b,
byte((v>>0)&0x7f|0x80),
byte((v>>7)&0x7f|0x80),
byte((v>>14)&0x7f|0x80),
byte((v>>21)&0x7f|0x80),
byte((v>>28)&0x7f|0x80),
byte((v>>35)&0x7f|0x80),
byte((v>>42)&0x7f|0x80),
byte((v>>49)&0x7f|0x80),
byte((v>>56)&0x7f|0x80),
1)
}
return b
}
// ConsumeVarint parses b as a varint-encoded uint64, reporting its length.
// This returns a negative length upon an error (see ParseError).
func ConsumeVarint(b []byte) (v uint64, n int) {
var y uint64
if len(b) <= 0 {
return 0, errCodeTruncated
}
v = uint64(b[0])
if v < 0x80 {
return v, 1
}
v -= 0x80
if len(b) <= 1 {
return 0, errCodeTruncated
}
y = uint64(b[1])
v += y << 7
if y < 0x80 {
return v, 2
}
v -= 0x80 << 7
if len(b) <= 2 {
return 0, errCodeTruncated
}
y = uint64(b[2])
v += y << 14
if y < 0x80 {
return v, 3
}
v -= 0x80 << 14
if len(b) <= 3 {
return 0, errCodeTruncated
}
y = uint64(b[3])
v += y << 21
if y < 0x80 {
return v, 4
}
v -= 0x80 << 21
if len(b) <= 4 {
return 0, errCodeTruncated
}
y = uint64(b[4])
v += y << 28
if y < 0x80 {
return v, 5
}
v -= 0x80 << 28
if len(b) <= 5 {
return 0, errCodeTruncated
}
y = uint64(b[5])
v += y << 35
if y < 0x80 {
return v, 6
}
v -= 0x80 << 35
if len(b) <= 6 {
return 0, errCodeTruncated
}
y = uint64(b[6])
v += y << 42
if y < 0x80 {
return v, 7
}
v -= 0x80 << 42
if len(b) <= 7 {
return 0, errCodeTruncated
}
y = uint64(b[7])
v += y << 49
if y < 0x80 {
return v, 8
}
v -= 0x80 << 49
if len(b) <= 8 {
return 0, errCodeTruncated
}
y = uint64(b[8])
v += y << 56
if y < 0x80 {
return v, 9
}
v -= 0x80 << 56
if len(b) <= 9 {
return 0, errCodeTruncated
}
y = uint64(b[9])
v += y << 63
if y < 2 {
return v, 10
}
return 0, errCodeOverflow
}
// SizeVarint returns the encoded size of a varint.
// The size is guaranteed to be within 1 and 10, inclusive.
func SizeVarint(v uint64) int {
// This computes 1 + (bits.Len64(v)-1)/7.
// 9/64 is a good enough approximation of 1/7
return int(9*uint32(bits.Len64(v))+64) / 64
}
// AppendFixed32 appends v to b as a little-endian uint32.
func AppendFixed32(b []byte, v uint32) []byte {
return append(b,
byte(v>>0),
byte(v>>8),
byte(v>>16),
byte(v>>24))
}
// ConsumeFixed32 parses b as a little-endian uint32, reporting its length.
// This returns a negative length upon an error (see ParseError).
func ConsumeFixed32(b []byte) (v uint32, n int) {
if len(b) < 4 {
return 0, errCodeTruncated
}
v = uint32(b[0])<<0 | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
return v, 4
}
// SizeFixed32 returns the encoded size of a fixed32; which is always 4.
func SizeFixed32() int {
return 4
}
// AppendFixed64 appends v to b as a little-endian uint64.
func AppendFixed64(b []byte, v uint64) []byte {
return append(b,
byte(v>>0),
byte(v>>8),
byte(v>>16),
byte(v>>24),
byte(v>>32),
byte(v>>40),
byte(v>>48),
byte(v>>56))
}
// ConsumeFixed64 parses b as a little-endian uint64, reporting its length.
// This returns a negative length upon an error (see ParseError).
func ConsumeFixed64(b []byte) (v uint64, n int) {
if len(b) < 8 {
return 0, errCodeTruncated
}
v = uint64(b[0])<<0 | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 | uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
return v, 8
}
// SizeFixed64 returns the encoded size of a fixed64; which is always 8.
func SizeFixed64() int {
return 8
}
// AppendBytes appends v to b as a length-prefixed bytes value.
func AppendBytes(b []byte, v []byte) []byte {
return append(AppendVarint(b, uint64(len(v))), v...)
}
// ConsumeBytes parses b as a length-prefixed bytes value, reporting its length.
// This returns a negative length upon an error (see ParseError).
func ConsumeBytes(b []byte) (v []byte, n int) {
m, n := ConsumeVarint(b)
if n < 0 {
return nil, n // forward error code
}
if m > uint64(len(b[n:])) {
return nil, errCodeTruncated
}
return b[n:][:m], n + int(m)
}
// SizeBytes returns the encoded size of a length-prefixed bytes value,
// given only the length.
func SizeBytes(n int) int {
return SizeVarint(uint64(n)) + n
}
// AppendString appends v to b as a length-prefixed bytes value.
func AppendString(b []byte, v string) []byte {
return append(AppendVarint(b, uint64(len(v))), v...)
}
// ConsumeString parses b as a length-prefixed bytes value, reporting its length.
// This returns a negative length upon an error (see ParseError).
func ConsumeString(b []byte) (v string, n int) {
bb, n := ConsumeBytes(b)
return string(bb), n
}
// AppendGroup appends v to b as group value, with a trailing end group marker.
// The value v must not contain the end marker.
func AppendGroup(b []byte, num Number, v []byte) []byte {
return AppendVarint(append(b, v...), EncodeTag(num, EndGroupType))
}
// ConsumeGroup parses b as a group value until the trailing end group marker,
// and verifies that the end marker matches the provided num. The value v
// does not contain the end marker, while the length does contain the end marker.
// This returns a negative length upon an error (see ParseError).
func ConsumeGroup(num Number, b []byte) (v []byte, n int) {
n = ConsumeFieldValue(num, StartGroupType, b)
if n < 0 {
return nil, n // forward error code
}
b = b[:n]
// Truncate off end group marker, but need to handle denormalized varints.
// Assuming end marker is never 0 (which is always the case since
// EndGroupType is non-zero), we can truncate all trailing bytes where the
// lower 7 bits are all zero (implying that the varint is denormalized).
for len(b) > 0 && b[len(b)-1]&0x7f == 0 {
b = b[:len(b)-1]
}
b = b[:len(b)-SizeTag(num)]
return b, n
}
// SizeGroup returns the encoded size of a group, given only the length.
func SizeGroup(num Number, n int) int {
return n + SizeTag(num)
}
// DecodeTag decodes the field Number and wire Type from its unified form.
// The Number is -1 if the decoded field number overflows int32.
// Other than overflow, this does not check for field number validity.
func DecodeTag(x uint64) (Number, Type) {
// NOTE: MessageSet allows for larger field numbers than normal.
if x>>3 > uint64(math.MaxInt32) {
return -1, 0
}
return Number(x >> 3), Type(x & 7)
}
// EncodeTag encodes the field Number and wire Type into its unified form.
func EncodeTag(num Number, typ Type) uint64 {
return uint64(num)<<3 | uint64(typ&7)
}
// DecodeZigZag decodes a zig-zag-encoded uint64 as an int64.
// Input: {…, 5, 3, 1, 0, 2, 4, 6, …}
// Output: {…, -3, -2, -1, 0, +1, +2, +3, …}
func DecodeZigZag(x uint64) int64 {
return int64(x>>1) ^ int64(x)<<63>>63
}
// EncodeZigZag encodes an int64 as a zig-zag-encoded uint64.
// Input: {…, -3, -2, -1, 0, +1, +2, +3, …}
// Output: {…, 5, 3, 1, 0, 2, 4, 6, …}
func EncodeZigZag(x int64) uint64 {
return uint64(x<<1) ^ uint64(x>>63)
}
// DecodeBool decodes a uint64 as a bool.
// Input: { 0, 1, 2, …}
// Output: {false, true, true, …}
func DecodeBool(x uint64) bool {
return x != 0
}
// EncodeBool encodes a bool as a uint64.
// Input: {false, true}
// Output: { 0, 1}
func EncodeBool(x bool) uint64 {
if x {
return 1
}
return 0
}