mirror of
https://github.com/DNSCrypt/dnscrypt-proxy.git
synced 2025-04-05 14:17:36 +03:00
Switch from glide to dep. Check in vendor/
This commit is contained in:
parent
9a3cd91cd7
commit
f44e11fa65
498 changed files with 74787 additions and 32 deletions
704
vendor/golang.org/x/net/bpf/instructions.go
generated
vendored
Normal file
704
vendor/golang.org/x/net/bpf/instructions.go
generated
vendored
Normal file
|
@ -0,0 +1,704 @@
|
|||
// Copyright 2016 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package bpf
|
||||
|
||||
import "fmt"
|
||||
|
||||
// An Instruction is one instruction executed by the BPF virtual
|
||||
// machine.
|
||||
type Instruction interface {
|
||||
// Assemble assembles the Instruction into a RawInstruction.
|
||||
Assemble() (RawInstruction, error)
|
||||
}
|
||||
|
||||
// A RawInstruction is a raw BPF virtual machine instruction.
|
||||
type RawInstruction struct {
|
||||
// Operation to execute.
|
||||
Op uint16
|
||||
// For conditional jump instructions, the number of instructions
|
||||
// to skip if the condition is true/false.
|
||||
Jt uint8
|
||||
Jf uint8
|
||||
// Constant parameter. The meaning depends on the Op.
|
||||
K uint32
|
||||
}
|
||||
|
||||
// Assemble implements the Instruction Assemble method.
|
||||
func (ri RawInstruction) Assemble() (RawInstruction, error) { return ri, nil }
|
||||
|
||||
// Disassemble parses ri into an Instruction and returns it. If ri is
|
||||
// not recognized by this package, ri itself is returned.
|
||||
func (ri RawInstruction) Disassemble() Instruction {
|
||||
switch ri.Op & opMaskCls {
|
||||
case opClsLoadA, opClsLoadX:
|
||||
reg := Register(ri.Op & opMaskLoadDest)
|
||||
sz := 0
|
||||
switch ri.Op & opMaskLoadWidth {
|
||||
case opLoadWidth4:
|
||||
sz = 4
|
||||
case opLoadWidth2:
|
||||
sz = 2
|
||||
case opLoadWidth1:
|
||||
sz = 1
|
||||
default:
|
||||
return ri
|
||||
}
|
||||
switch ri.Op & opMaskLoadMode {
|
||||
case opAddrModeImmediate:
|
||||
if sz != 4 {
|
||||
return ri
|
||||
}
|
||||
return LoadConstant{Dst: reg, Val: ri.K}
|
||||
case opAddrModeScratch:
|
||||
if sz != 4 || ri.K > 15 {
|
||||
return ri
|
||||
}
|
||||
return LoadScratch{Dst: reg, N: int(ri.K)}
|
||||
case opAddrModeAbsolute:
|
||||
if ri.K > extOffset+0xffffffff {
|
||||
return LoadExtension{Num: Extension(-extOffset + ri.K)}
|
||||
}
|
||||
return LoadAbsolute{Size: sz, Off: ri.K}
|
||||
case opAddrModeIndirect:
|
||||
return LoadIndirect{Size: sz, Off: ri.K}
|
||||
case opAddrModePacketLen:
|
||||
if sz != 4 {
|
||||
return ri
|
||||
}
|
||||
return LoadExtension{Num: ExtLen}
|
||||
case opAddrModeMemShift:
|
||||
return LoadMemShift{Off: ri.K}
|
||||
default:
|
||||
return ri
|
||||
}
|
||||
|
||||
case opClsStoreA:
|
||||
if ri.Op != opClsStoreA || ri.K > 15 {
|
||||
return ri
|
||||
}
|
||||
return StoreScratch{Src: RegA, N: int(ri.K)}
|
||||
|
||||
case opClsStoreX:
|
||||
if ri.Op != opClsStoreX || ri.K > 15 {
|
||||
return ri
|
||||
}
|
||||
return StoreScratch{Src: RegX, N: int(ri.K)}
|
||||
|
||||
case opClsALU:
|
||||
switch op := ALUOp(ri.Op & opMaskOperator); op {
|
||||
case ALUOpAdd, ALUOpSub, ALUOpMul, ALUOpDiv, ALUOpOr, ALUOpAnd, ALUOpShiftLeft, ALUOpShiftRight, ALUOpMod, ALUOpXor:
|
||||
if ri.Op&opMaskOperandSrc != 0 {
|
||||
return ALUOpX{Op: op}
|
||||
}
|
||||
return ALUOpConstant{Op: op, Val: ri.K}
|
||||
case aluOpNeg:
|
||||
return NegateA{}
|
||||
default:
|
||||
return ri
|
||||
}
|
||||
|
||||
case opClsJump:
|
||||
if ri.Op&opMaskJumpConst != opClsJump {
|
||||
return ri
|
||||
}
|
||||
switch ri.Op & opMaskJumpCond {
|
||||
case opJumpAlways:
|
||||
return Jump{Skip: ri.K}
|
||||
case opJumpEqual:
|
||||
if ri.Jt == 0 {
|
||||
return JumpIf{
|
||||
Cond: JumpNotEqual,
|
||||
Val: ri.K,
|
||||
SkipTrue: ri.Jf,
|
||||
SkipFalse: 0,
|
||||
}
|
||||
}
|
||||
return JumpIf{
|
||||
Cond: JumpEqual,
|
||||
Val: ri.K,
|
||||
SkipTrue: ri.Jt,
|
||||
SkipFalse: ri.Jf,
|
||||
}
|
||||
case opJumpGT:
|
||||
if ri.Jt == 0 {
|
||||
return JumpIf{
|
||||
Cond: JumpLessOrEqual,
|
||||
Val: ri.K,
|
||||
SkipTrue: ri.Jf,
|
||||
SkipFalse: 0,
|
||||
}
|
||||
}
|
||||
return JumpIf{
|
||||
Cond: JumpGreaterThan,
|
||||
Val: ri.K,
|
||||
SkipTrue: ri.Jt,
|
||||
SkipFalse: ri.Jf,
|
||||
}
|
||||
case opJumpGE:
|
||||
if ri.Jt == 0 {
|
||||
return JumpIf{
|
||||
Cond: JumpLessThan,
|
||||
Val: ri.K,
|
||||
SkipTrue: ri.Jf,
|
||||
SkipFalse: 0,
|
||||
}
|
||||
}
|
||||
return JumpIf{
|
||||
Cond: JumpGreaterOrEqual,
|
||||
Val: ri.K,
|
||||
SkipTrue: ri.Jt,
|
||||
SkipFalse: ri.Jf,
|
||||
}
|
||||
case opJumpSet:
|
||||
return JumpIf{
|
||||
Cond: JumpBitsSet,
|
||||
Val: ri.K,
|
||||
SkipTrue: ri.Jt,
|
||||
SkipFalse: ri.Jf,
|
||||
}
|
||||
default:
|
||||
return ri
|
||||
}
|
||||
|
||||
case opClsReturn:
|
||||
switch ri.Op {
|
||||
case opClsReturn | opRetSrcA:
|
||||
return RetA{}
|
||||
case opClsReturn | opRetSrcConstant:
|
||||
return RetConstant{Val: ri.K}
|
||||
default:
|
||||
return ri
|
||||
}
|
||||
|
||||
case opClsMisc:
|
||||
switch ri.Op {
|
||||
case opClsMisc | opMiscTAX:
|
||||
return TAX{}
|
||||
case opClsMisc | opMiscTXA:
|
||||
return TXA{}
|
||||
default:
|
||||
return ri
|
||||
}
|
||||
|
||||
default:
|
||||
panic("unreachable") // switch is exhaustive on the bit pattern
|
||||
}
|
||||
}
|
||||
|
||||
// LoadConstant loads Val into register Dst.
|
||||
type LoadConstant struct {
|
||||
Dst Register
|
||||
Val uint32
|
||||
}
|
||||
|
||||
// Assemble implements the Instruction Assemble method.
|
||||
func (a LoadConstant) Assemble() (RawInstruction, error) {
|
||||
return assembleLoad(a.Dst, 4, opAddrModeImmediate, a.Val)
|
||||
}
|
||||
|
||||
// String returns the the instruction in assembler notation.
|
||||
func (a LoadConstant) String() string {
|
||||
switch a.Dst {
|
||||
case RegA:
|
||||
return fmt.Sprintf("ld #%d", a.Val)
|
||||
case RegX:
|
||||
return fmt.Sprintf("ldx #%d", a.Val)
|
||||
default:
|
||||
return fmt.Sprintf("unknown instruction: %#v", a)
|
||||
}
|
||||
}
|
||||
|
||||
// LoadScratch loads scratch[N] into register Dst.
|
||||
type LoadScratch struct {
|
||||
Dst Register
|
||||
N int // 0-15
|
||||
}
|
||||
|
||||
// Assemble implements the Instruction Assemble method.
|
||||
func (a LoadScratch) Assemble() (RawInstruction, error) {
|
||||
if a.N < 0 || a.N > 15 {
|
||||
return RawInstruction{}, fmt.Errorf("invalid scratch slot %d", a.N)
|
||||
}
|
||||
return assembleLoad(a.Dst, 4, opAddrModeScratch, uint32(a.N))
|
||||
}
|
||||
|
||||
// String returns the the instruction in assembler notation.
|
||||
func (a LoadScratch) String() string {
|
||||
switch a.Dst {
|
||||
case RegA:
|
||||
return fmt.Sprintf("ld M[%d]", a.N)
|
||||
case RegX:
|
||||
return fmt.Sprintf("ldx M[%d]", a.N)
|
||||
default:
|
||||
return fmt.Sprintf("unknown instruction: %#v", a)
|
||||
}
|
||||
}
|
||||
|
||||
// LoadAbsolute loads packet[Off:Off+Size] as an integer value into
|
||||
// register A.
|
||||
type LoadAbsolute struct {
|
||||
Off uint32
|
||||
Size int // 1, 2 or 4
|
||||
}
|
||||
|
||||
// Assemble implements the Instruction Assemble method.
|
||||
func (a LoadAbsolute) Assemble() (RawInstruction, error) {
|
||||
return assembleLoad(RegA, a.Size, opAddrModeAbsolute, a.Off)
|
||||
}
|
||||
|
||||
// String returns the the instruction in assembler notation.
|
||||
func (a LoadAbsolute) String() string {
|
||||
switch a.Size {
|
||||
case 1: // byte
|
||||
return fmt.Sprintf("ldb [%d]", a.Off)
|
||||
case 2: // half word
|
||||
return fmt.Sprintf("ldh [%d]", a.Off)
|
||||
case 4: // word
|
||||
if a.Off > extOffset+0xffffffff {
|
||||
return LoadExtension{Num: Extension(a.Off + 0x1000)}.String()
|
||||
}
|
||||
return fmt.Sprintf("ld [%d]", a.Off)
|
||||
default:
|
||||
return fmt.Sprintf("unknown instruction: %#v", a)
|
||||
}
|
||||
}
|
||||
|
||||
// LoadIndirect loads packet[X+Off:X+Off+Size] as an integer value
|
||||
// into register A.
|
||||
type LoadIndirect struct {
|
||||
Off uint32
|
||||
Size int // 1, 2 or 4
|
||||
}
|
||||
|
||||
// Assemble implements the Instruction Assemble method.
|
||||
func (a LoadIndirect) Assemble() (RawInstruction, error) {
|
||||
return assembleLoad(RegA, a.Size, opAddrModeIndirect, a.Off)
|
||||
}
|
||||
|
||||
// String returns the the instruction in assembler notation.
|
||||
func (a LoadIndirect) String() string {
|
||||
switch a.Size {
|
||||
case 1: // byte
|
||||
return fmt.Sprintf("ldb [x + %d]", a.Off)
|
||||
case 2: // half word
|
||||
return fmt.Sprintf("ldh [x + %d]", a.Off)
|
||||
case 4: // word
|
||||
return fmt.Sprintf("ld [x + %d]", a.Off)
|
||||
default:
|
||||
return fmt.Sprintf("unknown instruction: %#v", a)
|
||||
}
|
||||
}
|
||||
|
||||
// LoadMemShift multiplies the first 4 bits of the byte at packet[Off]
|
||||
// by 4 and stores the result in register X.
|
||||
//
|
||||
// This instruction is mainly useful to load into X the length of an
|
||||
// IPv4 packet header in a single instruction, rather than have to do
|
||||
// the arithmetic on the header's first byte by hand.
|
||||
type LoadMemShift struct {
|
||||
Off uint32
|
||||
}
|
||||
|
||||
// Assemble implements the Instruction Assemble method.
|
||||
func (a LoadMemShift) Assemble() (RawInstruction, error) {
|
||||
return assembleLoad(RegX, 1, opAddrModeMemShift, a.Off)
|
||||
}
|
||||
|
||||
// String returns the the instruction in assembler notation.
|
||||
func (a LoadMemShift) String() string {
|
||||
return fmt.Sprintf("ldx 4*([%d]&0xf)", a.Off)
|
||||
}
|
||||
|
||||
// LoadExtension invokes a linux-specific extension and stores the
|
||||
// result in register A.
|
||||
type LoadExtension struct {
|
||||
Num Extension
|
||||
}
|
||||
|
||||
// Assemble implements the Instruction Assemble method.
|
||||
func (a LoadExtension) Assemble() (RawInstruction, error) {
|
||||
if a.Num == ExtLen {
|
||||
return assembleLoad(RegA, 4, opAddrModePacketLen, 0)
|
||||
}
|
||||
return assembleLoad(RegA, 4, opAddrModeAbsolute, uint32(extOffset+a.Num))
|
||||
}
|
||||
|
||||
// String returns the the instruction in assembler notation.
|
||||
func (a LoadExtension) String() string {
|
||||
switch a.Num {
|
||||
case ExtLen:
|
||||
return "ld #len"
|
||||
case ExtProto:
|
||||
return "ld #proto"
|
||||
case ExtType:
|
||||
return "ld #type"
|
||||
case ExtPayloadOffset:
|
||||
return "ld #poff"
|
||||
case ExtInterfaceIndex:
|
||||
return "ld #ifidx"
|
||||
case ExtNetlinkAttr:
|
||||
return "ld #nla"
|
||||
case ExtNetlinkAttrNested:
|
||||
return "ld #nlan"
|
||||
case ExtMark:
|
||||
return "ld #mark"
|
||||
case ExtQueue:
|
||||
return "ld #queue"
|
||||
case ExtLinkLayerType:
|
||||
return "ld #hatype"
|
||||
case ExtRXHash:
|
||||
return "ld #rxhash"
|
||||
case ExtCPUID:
|
||||
return "ld #cpu"
|
||||
case ExtVLANTag:
|
||||
return "ld #vlan_tci"
|
||||
case ExtVLANTagPresent:
|
||||
return "ld #vlan_avail"
|
||||
case ExtVLANProto:
|
||||
return "ld #vlan_tpid"
|
||||
case ExtRand:
|
||||
return "ld #rand"
|
||||
default:
|
||||
return fmt.Sprintf("unknown instruction: %#v", a)
|
||||
}
|
||||
}
|
||||
|
||||
// StoreScratch stores register Src into scratch[N].
|
||||
type StoreScratch struct {
|
||||
Src Register
|
||||
N int // 0-15
|
||||
}
|
||||
|
||||
// Assemble implements the Instruction Assemble method.
|
||||
func (a StoreScratch) Assemble() (RawInstruction, error) {
|
||||
if a.N < 0 || a.N > 15 {
|
||||
return RawInstruction{}, fmt.Errorf("invalid scratch slot %d", a.N)
|
||||
}
|
||||
var op uint16
|
||||
switch a.Src {
|
||||
case RegA:
|
||||
op = opClsStoreA
|
||||
case RegX:
|
||||
op = opClsStoreX
|
||||
default:
|
||||
return RawInstruction{}, fmt.Errorf("invalid source register %v", a.Src)
|
||||
}
|
||||
|
||||
return RawInstruction{
|
||||
Op: op,
|
||||
K: uint32(a.N),
|
||||
}, nil
|
||||
}
|
||||
|
||||
// String returns the the instruction in assembler notation.
|
||||
func (a StoreScratch) String() string {
|
||||
switch a.Src {
|
||||
case RegA:
|
||||
return fmt.Sprintf("st M[%d]", a.N)
|
||||
case RegX:
|
||||
return fmt.Sprintf("stx M[%d]", a.N)
|
||||
default:
|
||||
return fmt.Sprintf("unknown instruction: %#v", a)
|
||||
}
|
||||
}
|
||||
|
||||
// ALUOpConstant executes A = A <Op> Val.
|
||||
type ALUOpConstant struct {
|
||||
Op ALUOp
|
||||
Val uint32
|
||||
}
|
||||
|
||||
// Assemble implements the Instruction Assemble method.
|
||||
func (a ALUOpConstant) Assemble() (RawInstruction, error) {
|
||||
return RawInstruction{
|
||||
Op: opClsALU | opALUSrcConstant | uint16(a.Op),
|
||||
K: a.Val,
|
||||
}, nil
|
||||
}
|
||||
|
||||
// String returns the the instruction in assembler notation.
|
||||
func (a ALUOpConstant) String() string {
|
||||
switch a.Op {
|
||||
case ALUOpAdd:
|
||||
return fmt.Sprintf("add #%d", a.Val)
|
||||
case ALUOpSub:
|
||||
return fmt.Sprintf("sub #%d", a.Val)
|
||||
case ALUOpMul:
|
||||
return fmt.Sprintf("mul #%d", a.Val)
|
||||
case ALUOpDiv:
|
||||
return fmt.Sprintf("div #%d", a.Val)
|
||||
case ALUOpMod:
|
||||
return fmt.Sprintf("mod #%d", a.Val)
|
||||
case ALUOpAnd:
|
||||
return fmt.Sprintf("and #%d", a.Val)
|
||||
case ALUOpOr:
|
||||
return fmt.Sprintf("or #%d", a.Val)
|
||||
case ALUOpXor:
|
||||
return fmt.Sprintf("xor #%d", a.Val)
|
||||
case ALUOpShiftLeft:
|
||||
return fmt.Sprintf("lsh #%d", a.Val)
|
||||
case ALUOpShiftRight:
|
||||
return fmt.Sprintf("rsh #%d", a.Val)
|
||||
default:
|
||||
return fmt.Sprintf("unknown instruction: %#v", a)
|
||||
}
|
||||
}
|
||||
|
||||
// ALUOpX executes A = A <Op> X
|
||||
type ALUOpX struct {
|
||||
Op ALUOp
|
||||
}
|
||||
|
||||
// Assemble implements the Instruction Assemble method.
|
||||
func (a ALUOpX) Assemble() (RawInstruction, error) {
|
||||
return RawInstruction{
|
||||
Op: opClsALU | opALUSrcX | uint16(a.Op),
|
||||
}, nil
|
||||
}
|
||||
|
||||
// String returns the the instruction in assembler notation.
|
||||
func (a ALUOpX) String() string {
|
||||
switch a.Op {
|
||||
case ALUOpAdd:
|
||||
return "add x"
|
||||
case ALUOpSub:
|
||||
return "sub x"
|
||||
case ALUOpMul:
|
||||
return "mul x"
|
||||
case ALUOpDiv:
|
||||
return "div x"
|
||||
case ALUOpMod:
|
||||
return "mod x"
|
||||
case ALUOpAnd:
|
||||
return "and x"
|
||||
case ALUOpOr:
|
||||
return "or x"
|
||||
case ALUOpXor:
|
||||
return "xor x"
|
||||
case ALUOpShiftLeft:
|
||||
return "lsh x"
|
||||
case ALUOpShiftRight:
|
||||
return "rsh x"
|
||||
default:
|
||||
return fmt.Sprintf("unknown instruction: %#v", a)
|
||||
}
|
||||
}
|
||||
|
||||
// NegateA executes A = -A.
|
||||
type NegateA struct{}
|
||||
|
||||
// Assemble implements the Instruction Assemble method.
|
||||
func (a NegateA) Assemble() (RawInstruction, error) {
|
||||
return RawInstruction{
|
||||
Op: opClsALU | uint16(aluOpNeg),
|
||||
}, nil
|
||||
}
|
||||
|
||||
// String returns the the instruction in assembler notation.
|
||||
func (a NegateA) String() string {
|
||||
return fmt.Sprintf("neg")
|
||||
}
|
||||
|
||||
// Jump skips the following Skip instructions in the program.
|
||||
type Jump struct {
|
||||
Skip uint32
|
||||
}
|
||||
|
||||
// Assemble implements the Instruction Assemble method.
|
||||
func (a Jump) Assemble() (RawInstruction, error) {
|
||||
return RawInstruction{
|
||||
Op: opClsJump | opJumpAlways,
|
||||
K: a.Skip,
|
||||
}, nil
|
||||
}
|
||||
|
||||
// String returns the the instruction in assembler notation.
|
||||
func (a Jump) String() string {
|
||||
return fmt.Sprintf("ja %d", a.Skip)
|
||||
}
|
||||
|
||||
// JumpIf skips the following Skip instructions in the program if A
|
||||
// <Cond> Val is true.
|
||||
type JumpIf struct {
|
||||
Cond JumpTest
|
||||
Val uint32
|
||||
SkipTrue uint8
|
||||
SkipFalse uint8
|
||||
}
|
||||
|
||||
// Assemble implements the Instruction Assemble method.
|
||||
func (a JumpIf) Assemble() (RawInstruction, error) {
|
||||
var (
|
||||
cond uint16
|
||||
flip bool
|
||||
)
|
||||
switch a.Cond {
|
||||
case JumpEqual:
|
||||
cond = opJumpEqual
|
||||
case JumpNotEqual:
|
||||
cond, flip = opJumpEqual, true
|
||||
case JumpGreaterThan:
|
||||
cond = opJumpGT
|
||||
case JumpLessThan:
|
||||
cond, flip = opJumpGE, true
|
||||
case JumpGreaterOrEqual:
|
||||
cond = opJumpGE
|
||||
case JumpLessOrEqual:
|
||||
cond, flip = opJumpGT, true
|
||||
case JumpBitsSet:
|
||||
cond = opJumpSet
|
||||
case JumpBitsNotSet:
|
||||
cond, flip = opJumpSet, true
|
||||
default:
|
||||
return RawInstruction{}, fmt.Errorf("unknown JumpTest %v", a.Cond)
|
||||
}
|
||||
jt, jf := a.SkipTrue, a.SkipFalse
|
||||
if flip {
|
||||
jt, jf = jf, jt
|
||||
}
|
||||
return RawInstruction{
|
||||
Op: opClsJump | cond,
|
||||
Jt: jt,
|
||||
Jf: jf,
|
||||
K: a.Val,
|
||||
}, nil
|
||||
}
|
||||
|
||||
// String returns the the instruction in assembler notation.
|
||||
func (a JumpIf) String() string {
|
||||
switch a.Cond {
|
||||
// K == A
|
||||
case JumpEqual:
|
||||
return conditionalJump(a, "jeq", "jneq")
|
||||
// K != A
|
||||
case JumpNotEqual:
|
||||
return fmt.Sprintf("jneq #%d,%d", a.Val, a.SkipTrue)
|
||||
// K > A
|
||||
case JumpGreaterThan:
|
||||
return conditionalJump(a, "jgt", "jle")
|
||||
// K < A
|
||||
case JumpLessThan:
|
||||
return fmt.Sprintf("jlt #%d,%d", a.Val, a.SkipTrue)
|
||||
// K >= A
|
||||
case JumpGreaterOrEqual:
|
||||
return conditionalJump(a, "jge", "jlt")
|
||||
// K <= A
|
||||
case JumpLessOrEqual:
|
||||
return fmt.Sprintf("jle #%d,%d", a.Val, a.SkipTrue)
|
||||
// K & A != 0
|
||||
case JumpBitsSet:
|
||||
if a.SkipFalse > 0 {
|
||||
return fmt.Sprintf("jset #%d,%d,%d", a.Val, a.SkipTrue, a.SkipFalse)
|
||||
}
|
||||
return fmt.Sprintf("jset #%d,%d", a.Val, a.SkipTrue)
|
||||
// K & A == 0, there is no assembler instruction for JumpBitNotSet, use JumpBitSet and invert skips
|
||||
case JumpBitsNotSet:
|
||||
return JumpIf{Cond: JumpBitsSet, SkipTrue: a.SkipFalse, SkipFalse: a.SkipTrue, Val: a.Val}.String()
|
||||
default:
|
||||
return fmt.Sprintf("unknown instruction: %#v", a)
|
||||
}
|
||||
}
|
||||
|
||||
func conditionalJump(inst JumpIf, positiveJump, negativeJump string) string {
|
||||
if inst.SkipTrue > 0 {
|
||||
if inst.SkipFalse > 0 {
|
||||
return fmt.Sprintf("%s #%d,%d,%d", positiveJump, inst.Val, inst.SkipTrue, inst.SkipFalse)
|
||||
}
|
||||
return fmt.Sprintf("%s #%d,%d", positiveJump, inst.Val, inst.SkipTrue)
|
||||
}
|
||||
return fmt.Sprintf("%s #%d,%d", negativeJump, inst.Val, inst.SkipFalse)
|
||||
}
|
||||
|
||||
// RetA exits the BPF program, returning the value of register A.
|
||||
type RetA struct{}
|
||||
|
||||
// Assemble implements the Instruction Assemble method.
|
||||
func (a RetA) Assemble() (RawInstruction, error) {
|
||||
return RawInstruction{
|
||||
Op: opClsReturn | opRetSrcA,
|
||||
}, nil
|
||||
}
|
||||
|
||||
// String returns the the instruction in assembler notation.
|
||||
func (a RetA) String() string {
|
||||
return fmt.Sprintf("ret a")
|
||||
}
|
||||
|
||||
// RetConstant exits the BPF program, returning a constant value.
|
||||
type RetConstant struct {
|
||||
Val uint32
|
||||
}
|
||||
|
||||
// Assemble implements the Instruction Assemble method.
|
||||
func (a RetConstant) Assemble() (RawInstruction, error) {
|
||||
return RawInstruction{
|
||||
Op: opClsReturn | opRetSrcConstant,
|
||||
K: a.Val,
|
||||
}, nil
|
||||
}
|
||||
|
||||
// String returns the the instruction in assembler notation.
|
||||
func (a RetConstant) String() string {
|
||||
return fmt.Sprintf("ret #%d", a.Val)
|
||||
}
|
||||
|
||||
// TXA copies the value of register X to register A.
|
||||
type TXA struct{}
|
||||
|
||||
// Assemble implements the Instruction Assemble method.
|
||||
func (a TXA) Assemble() (RawInstruction, error) {
|
||||
return RawInstruction{
|
||||
Op: opClsMisc | opMiscTXA,
|
||||
}, nil
|
||||
}
|
||||
|
||||
// String returns the the instruction in assembler notation.
|
||||
func (a TXA) String() string {
|
||||
return fmt.Sprintf("txa")
|
||||
}
|
||||
|
||||
// TAX copies the value of register A to register X.
|
||||
type TAX struct{}
|
||||
|
||||
// Assemble implements the Instruction Assemble method.
|
||||
func (a TAX) Assemble() (RawInstruction, error) {
|
||||
return RawInstruction{
|
||||
Op: opClsMisc | opMiscTAX,
|
||||
}, nil
|
||||
}
|
||||
|
||||
// String returns the the instruction in assembler notation.
|
||||
func (a TAX) String() string {
|
||||
return fmt.Sprintf("tax")
|
||||
}
|
||||
|
||||
func assembleLoad(dst Register, loadSize int, mode uint16, k uint32) (RawInstruction, error) {
|
||||
var (
|
||||
cls uint16
|
||||
sz uint16
|
||||
)
|
||||
switch dst {
|
||||
case RegA:
|
||||
cls = opClsLoadA
|
||||
case RegX:
|
||||
cls = opClsLoadX
|
||||
default:
|
||||
return RawInstruction{}, fmt.Errorf("invalid target register %v", dst)
|
||||
}
|
||||
switch loadSize {
|
||||
case 1:
|
||||
sz = opLoadWidth1
|
||||
case 2:
|
||||
sz = opLoadWidth2
|
||||
case 4:
|
||||
sz = opLoadWidth4
|
||||
default:
|
||||
return RawInstruction{}, fmt.Errorf("invalid load byte length %d", sz)
|
||||
}
|
||||
return RawInstruction{
|
||||
Op: cls | sz | mode,
|
||||
K: k,
|
||||
}, nil
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue