mirror of
https://github.com/DNSCrypt/dnscrypt-proxy.git
synced 2025-04-03 21:27:37 +03:00
190 lines
7.9 KiB
Go
190 lines
7.9 KiB
Go
package p751toolbox
|
|
|
|
// Represents a 3-isogeny phi, holding the data necessary to evaluate phi.
|
|
type ThreeIsogeny struct {
|
|
x ExtensionFieldElement
|
|
z ExtensionFieldElement
|
|
}
|
|
|
|
// Given a three-torsion point x3 = x(P_3) on the curve E_(A:C), construct the
|
|
// three-isogeny phi : E_(A:C) -> E_(A:C)/<P_3> = E_(A':C').
|
|
//
|
|
// Returns a tuple (codomain, isogeny) = (E_(A':C'), phi).
|
|
func ComputeThreeIsogeny(x3 *ProjectivePoint) (ProjectiveCurveParameters, ThreeIsogeny) {
|
|
var isogeny ThreeIsogeny
|
|
isogeny.x = x3.X
|
|
isogeny.z = x3.Z
|
|
// We want to compute
|
|
// (A':C') = (Z^4 + 18X^2Z^2 - 27X^4 : 4XZ^3)
|
|
// To do this, use the identity 18X^2Z^2 - 27X^4 = 9X^2(2Z^2 - 3X^2)
|
|
var codomain ProjectiveCurveParameters
|
|
var v0, v1, v2, v3 ExtensionFieldElement
|
|
v1.Square(&x3.X) // = X^2
|
|
v0.Add(&v1, &v1).Add(&v1, &v0) // = 3X^2
|
|
v1.Add(&v0, &v0).Add(&v1, &v0) // = 9X^2
|
|
v2.Square(&x3.Z) // = Z^2
|
|
v3.Square(&v2) // = Z^4
|
|
v2.Add(&v2, &v2) // = 2Z^2
|
|
v0.Sub(&v2, &v0) // = 2Z^2 - 3X^2
|
|
v1.Mul(&v1, &v0) // = 9X^2(2Z^2 - 3X^2)
|
|
v0.Mul(&x3.X, &x3.Z) // = XZ
|
|
v0.Add(&v0, &v0) // = 2XZ
|
|
codomain.A.Add(&v3, &v1) // = Z^4 + 9X^2(2Z^2 - 3X^2)
|
|
codomain.C.Mul(&v0, &v2) // = 4XZ^3
|
|
|
|
return codomain, isogeny
|
|
}
|
|
|
|
// Given a 3-isogeny phi and a point xP = x(P), compute x(Q), the x-coordinate
|
|
// of the image Q = phi(P) of P under phi : E_(A:C) -> E_(A':C').
|
|
//
|
|
// The output xQ = x(Q) is then a point on the curve E_(A':C'); the curve
|
|
// parameters are returned by the Compute3Isogeny function used to construct
|
|
// phi.
|
|
func (phi *ThreeIsogeny) Eval(xP *ProjectivePoint) ProjectivePoint {
|
|
var xQ ProjectivePoint
|
|
var t0, t1, t2 ExtensionFieldElement
|
|
t0.Mul(&phi.x, &xP.X) // = X3*XP
|
|
t1.Mul(&phi.z, &xP.Z) // = Z3*XP
|
|
t2.Sub(&t0, &t1) // = X3*XP - Z3*ZP
|
|
t0.Mul(&phi.z, &xP.X) // = Z3*XP
|
|
t1.Mul(&phi.x, &xP.Z) // = X3*ZP
|
|
t0.Sub(&t0, &t1) // = Z3*XP - X3*ZP
|
|
t2.Square(&t2) // = (X3*XP - Z3*ZP)^2
|
|
t0.Square(&t0) // = (Z3*XP - X3*ZP)^2
|
|
xQ.X.Mul(&t2, &xP.X) // = XP*(X3*XP - Z3*ZP)^2
|
|
xQ.Z.Mul(&t0, &xP.Z) // = ZP*(Z3*XP - X3*ZP)^2
|
|
|
|
return xQ
|
|
}
|
|
|
|
// Represents a 4-isogeny phi, holding the data necessary to evaluate phi.
|
|
//
|
|
// See ComputeFourIsogeny for more details.
|
|
type FourIsogeny struct {
|
|
Xsq_plus_Zsq ExtensionFieldElement
|
|
Xsq_minus_Zsq ExtensionFieldElement
|
|
XZ2 ExtensionFieldElement
|
|
Xpow4 ExtensionFieldElement
|
|
Zpow4 ExtensionFieldElement
|
|
}
|
|
|
|
// Given a four-torsion point x4 = x(P_4) on the curve E_(A:C), compute the
|
|
// coefficients of the codomain E_(A':C') of the four-isogeny phi : E_(A:C) ->
|
|
// E_(A:C)/<P_4>.
|
|
//
|
|
// Returns a tuple (codomain, isogeny) = (E_(A':C') : phi).
|
|
//
|
|
// There are two sets of formulas in Costello-Longa-Naehrig for computing
|
|
// four-isogenies. One set is for the case where (1,...) lies in the kernel of
|
|
// the isogeny (this is the FirstFourIsogeny), and the other (this set) is for
|
|
// the case that (1,...) is *not* in the kernel.
|
|
func ComputeFourIsogeny(x4 *ProjectivePoint) (ProjectiveCurveParameters, FourIsogeny) {
|
|
var codomain ProjectiveCurveParameters
|
|
var isogeny FourIsogeny
|
|
var v0, v1 ExtensionFieldElement
|
|
v0.Square(&x4.X) // = X4^2
|
|
v1.Square(&x4.Z) // = Z4^2
|
|
isogeny.Xsq_plus_Zsq.Add(&v0, &v1) // = X4^2 + Z4^2
|
|
isogeny.Xsq_minus_Zsq.Sub(&v0, &v1) // = X4^2 - Z4^2
|
|
isogeny.XZ2.Add(&x4.X, &x4.Z) // = X4 + Z4
|
|
isogeny.XZ2.Square(&isogeny.XZ2) // = X4^2 + Z4^2 + 2X4Z4
|
|
isogeny.XZ2.Sub(&isogeny.XZ2, &isogeny.Xsq_plus_Zsq) // = 2X4Z4
|
|
isogeny.Xpow4.Square(&v0) // = X4^4
|
|
isogeny.Zpow4.Square(&v1) // = Z4^4
|
|
v0.Add(&isogeny.Xpow4, &isogeny.Xpow4) // = 2X4^4
|
|
v0.Sub(&v0, &isogeny.Zpow4) // = 2X4^4 - Z4^4
|
|
codomain.A.Add(&v0, &v0) // = 2(2X4^4 - Z4^4)
|
|
codomain.C = isogeny.Zpow4 // = Z4^4
|
|
|
|
return codomain, isogeny
|
|
}
|
|
|
|
// Given a 4-isogeny phi and a point xP = x(P), compute x(Q), the x-coordinate
|
|
// of the image Q = phi(P) of P under phi : E_(A:C) -> E_(A':C').
|
|
//
|
|
// The output xQ = x(Q) is then a point on the curve E_(A':C'); the curve
|
|
// parameters are returned by the ComputeFourIsogeny function used to construct
|
|
// phi.
|
|
func (phi *FourIsogeny) Eval(xP *ProjectivePoint) ProjectivePoint {
|
|
var xQ ProjectivePoint
|
|
var t0, t1, t2 ExtensionFieldElement
|
|
// We want to compute formula (7) of Costello-Longa-Naehrig, namely
|
|
//
|
|
// Xprime = (2*X_4*Z*Z_4 - (X_4^2 + Z_4^2)*X)*(X*X_4 - Z*Z_4)^2*X
|
|
// Zprime = (2*X*X_4*Z_4 - (X_4^2 + Z_4^2)*Z)*(X_4*Z - X*Z_4)^2*Z
|
|
//
|
|
// To do this we adapt the method in the MSR implementation, which computes
|
|
//
|
|
// X_Q = Xprime*( 16*(X_4 + Z_4)*(X_4 - Z_4)*X_4^2*Z_4^4 )
|
|
// Z_Q = Zprime*( 16*(X_4 + Z_4)*(X_4 - Z_4)*X_4^2*Z_4^4 )
|
|
//
|
|
t0.Mul(&xP.X, &phi.XZ2) // = 2*X*X_4*Z_4
|
|
t1.Mul(&xP.Z, &phi.Xsq_plus_Zsq) // = (X_4^2 + Z_4^2)*Z
|
|
t0.Sub(&t0, &t1) // = -X_4^2*Z + 2*X*X_4*Z_4 - Z*Z_4^2
|
|
t1.Mul(&xP.Z, &phi.Xsq_minus_Zsq) // = (X_4^2 - Z_4^2)*Z
|
|
t2.Sub(&t0, &t1).Square(&t2) // = 4*(X_4*Z - X*Z_4)^2*X_4^2
|
|
t0.Mul(&t0, &t1).Add(&t0, &t0).Add(&t0, &t0) // = 4*(2*X*X_4*Z_4 - (X_4^2 + Z_4^2)*Z)*(X_4^2 - Z_4^2)*Z
|
|
t1.Add(&t0, &t2) // = 4*(X*X_4 - Z*Z_4)^2*Z_4^2
|
|
t0.Mul(&t0, &t2) // = Zprime * 16*(X_4 + Z_4)*(X_4 - Z_4)*X_4^2
|
|
xQ.Z.Mul(&t0, &phi.Zpow4) // = Zprime * 16*(X_4 + Z_4)*(X_4 - Z_4)*X_4^2*Z_4^4
|
|
t2.Mul(&t2, &phi.Zpow4) // = 4*(X_4*Z - X*Z_4)^2*X_4^2*Z_4^4
|
|
t0.Mul(&t1, &phi.Xpow4) // = 4*(X*X_4 - Z*Z_4)^2*X_4^4*Z_4^2
|
|
t0.Sub(&t2, &t0) // = -4*(X*X_4^2 - 2*X_4*Z*Z_4 + X*Z_4^2)*X*(X_4^2 - Z_4^2)*X_4^2*Z_4^2
|
|
xQ.X.Mul(&t1, &t0) // = Xprime * 16*(X_4 + Z_4)*(X_4 - Z_4)*X_4^2*Z_4^4
|
|
|
|
return xQ
|
|
}
|
|
|
|
// Represents a 4-isogeny phi. See ComputeFourIsogeny for details.
|
|
type FirstFourIsogeny struct {
|
|
A ExtensionFieldElement
|
|
C ExtensionFieldElement
|
|
}
|
|
|
|
// Compute the "first" four-isogeny from the given curve. See also
|
|
// ComputeFourIsogeny and Costello-Longa-Naehrig for more details.
|
|
func ComputeFirstFourIsogeny(domain *ProjectiveCurveParameters) (ProjectiveCurveParameters, FirstFourIsogeny) {
|
|
var codomain ProjectiveCurveParameters
|
|
var isogeny FirstFourIsogeny
|
|
var t0, t1 ExtensionFieldElement
|
|
|
|
t0.Add(&domain.C, &domain.C) // = 2*C
|
|
codomain.C.Sub(&domain.A, &t0) // = A - 2*C
|
|
t1.Add(&t0, &t0) // = 4*C
|
|
t1.Add(&t1, &t0) // = 6*C
|
|
t0.Add(&t1, &domain.A) // = A + 6*C
|
|
codomain.A.Add(&t0, &t0) // = 2*(A + 6*C)
|
|
|
|
isogeny.A = domain.A
|
|
isogeny.C = domain.C
|
|
|
|
return codomain, isogeny
|
|
}
|
|
|
|
// Given a 4-isogeny phi and a point xP = x(P), compute x(Q), the x-coordinate
|
|
// of the image Q = phi(P) of P under phi : E_(A:C) -> E_(A':C').
|
|
//
|
|
// The output xQ = x(Q) is then a point on the curve E_(A':C'); the curve
|
|
// parameters are returned by the ComputeFirstFourIsogeny function used to construct
|
|
// phi.
|
|
func (phi *FirstFourIsogeny) Eval(xP *ProjectivePoint) ProjectivePoint {
|
|
var xQ ProjectivePoint
|
|
var t0, t1, t2, t3 ExtensionFieldElement
|
|
|
|
t0.Add(&xP.X, &xP.Z).Square(&t0) // = (X+Z)^2
|
|
t2.Mul(&xP.X, &xP.Z) // = X*Z
|
|
t1.Add(&t2, &t2) // = 2*X*Z
|
|
t1.Sub(&t0, &t1) // = X^2 + Z^2
|
|
xQ.X.Mul(&phi.A, &t2) // = A*X*Z
|
|
t3.Mul(&phi.C, &t1) // = C*(X^2 + Z^2)
|
|
xQ.X.Add(&xQ.X, &t3) // = A*X*Z + C*(X^2 + Z^2)
|
|
xQ.X.Mul(&xQ.X, &t0) // = (X+Z)^2 * (A*X*Z + C*(X^2 + Z^2))
|
|
t0.Sub(&xP.X, &xP.Z).Square(&t0) // = (X-Z)^2
|
|
t0.Mul(&t0, &t2) // = X*Z*(X-Z)^2
|
|
t1.Add(&phi.C, &phi.C) // = 2*C
|
|
t1.Sub(&t1, &phi.A) // = 2*C - A
|
|
xQ.Z.Mul(&t1, &t0) // = (2*C - A)*X*Z*(X-Z)^2
|
|
|
|
return xQ
|
|
}
|