stdx: Add floor/ceil char boundary functions to RopeSliceExt

These functions mimic `str::floor_char_boundary` and
`str::floor_char_boundary` (currently unstable under
`round_char_boundary`). They're useful for correcting a byte index
which may not lie on a character boundary. For example you might limit
a search within a slice to some fixed number of bytes. The fixed number
might not lie on a boundary though so it needs to be corrected to
either the earlier (floor) or later (ceil) boundary.
This commit is contained in:
Michael Davis 2025-01-25 13:36:20 -05:00
parent aac0ce5fd1
commit 23b424a46d
No known key found for this signature in database

View file

@ -34,6 +34,42 @@ pub trait RopeSliceExt<'a>: Sized {
/// }
/// ```
fn byte_to_next_char(self, byte_idx: usize) -> usize;
/// Finds the closest byte index not exceeding `byte_idx` which lies on a character boundary.
///
/// If `byte_idx` already lies on a character boundary then it is returned as-is. When
/// `byte_idx` lies between two character boundaries, this function returns the byte index of
/// the lesser / earlier / left-hand-side boundary.
///
/// # Example
///
/// ```
/// # use ropey::RopeSlice;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = RopeSlice::from("⌚"); // three bytes: e2 8c 9a
/// assert_eq!(text.floor_char_boundary(0), 0);
/// assert_eq!(text.floor_char_boundary(1), 0);
/// assert_eq!(text.floor_char_boundary(2), 0);
/// assert_eq!(text.floor_char_boundary(3), 3);
/// ```
fn floor_char_boundary(self, byte_idx: usize) -> usize;
/// Finds the closest byte index not below `byte_idx` which lies on a character boundary.
///
/// If `byte_idx` already lies on a character boundary then it is returned as-is. When
/// `byte_idx` lies between two character boundaries, this function returns the byte index of
/// the greater / later / right-hand-side boundary.
///
/// # Example
///
/// ```
/// # use ropey::RopeSlice;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = RopeSlice::from("⌚"); // three bytes: e2 8c 9a
/// assert_eq!(text.ceil_char_boundary(0), 0);
/// assert_eq!(text.ceil_char_boundary(1), 3);
/// assert_eq!(text.ceil_char_boundary(2), 3);
/// assert_eq!(text.ceil_char_boundary(3), 3);
/// ```
fn ceil_char_boundary(self, byte_idx: usize) -> usize;
}
impl<'a> RopeSliceExt<'a> for RopeSlice<'a> {
@ -103,6 +139,35 @@ impl<'a> RopeSliceExt<'a> for RopeSlice<'a> {
is_utf8_char_boundary(chunk.as_bytes().get(byte_idx).copied().unwrap_or(0));
chunk_char_off + byte_to_char_idx(chunk, byte_idx) + !is_char_boundary as usize
}
// These two are adapted from std's `round_char_boundary` functions:
fn floor_char_boundary(self, byte_idx: usize) -> usize {
if byte_idx >= self.len_bytes() {
self.len_bytes()
} else {
let offset = self
.bytes_at(byte_idx + 1)
.reversed()
.take(4)
.position(is_utf8_char_boundary)
// A char can only be four bytes long so we are guaranteed to find a boundary.
.unwrap();
byte_idx - offset
}
}
fn ceil_char_boundary(self, byte_idx: usize) -> usize {
if byte_idx > self.len_bytes() {
self.len_bytes()
} else {
let upper_bound = self.len_bytes().min(byte_idx + 4);
self.bytes_at(byte_idx)
.position(is_utf8_char_boundary)
.map_or(upper_bound, |pos| pos + byte_idx)
}
}
}
// copied from std
@ -147,4 +212,14 @@ mod tests {
fn ends_with() {
assert!(RopeSlice::from("asdf").ends_with("f"));
}
#[test]
fn floor_ceil_char_boundary() {
let ascii = RopeSlice::from("ascii");
// When the given index lies on a character boundary, the index should not change.
for byte_idx in 0..=ascii.len_bytes() {
assert_eq!(ascii.floor_char_boundary(byte_idx), byte_idx);
assert_eq!(ascii.ceil_char_boundary(byte_idx), byte_idx);
}
}
}