stdx: Add floor/ceil/is grapheme boundary functions to RopeSliceExt

These functions are the equivalent of 23b424a46 for grapheme clusters.
In order to add the `is_grapheme_boundary` function we also need to
query whether a byte index lies on a character boundary, so this change
also adds `is_char_boundary`.
This commit is contained in:
Michael Davis 2025-01-26 16:52:29 -05:00
parent 0364521dca
commit 39b72329b4
No known key found for this signature in database
6 changed files with 213 additions and 4 deletions

View file

@ -20,6 +20,7 @@ regex-cursor = "0.1.4"
bitflags.workspace = true
once_cell = "1.19"
regex-automata = "0.4.9"
unicode-segmentation.workspace = true
[target.'cfg(windows)'.dependencies]
windows-sys = { version = "0.59", features = ["Win32_Foundation", "Win32_Security", "Win32_Security_Authorization", "Win32_Storage_FileSystem", "Win32_System_Threading"] }

View file

@ -4,6 +4,7 @@ pub use regex_cursor::engines::meta::{Builder as RegexBuilder, Regex};
pub use regex_cursor::regex_automata::util::syntax::Config;
use regex_cursor::{Input as RegexInput, RopeyCursor};
use ropey::RopeSlice;
use unicode_segmentation::{GraphemeCursor, GraphemeIncomplete};
pub trait RopeSliceExt<'a>: Sized {
fn ends_with(self, text: &str) -> bool;
@ -52,6 +53,75 @@ pub trait RopeSliceExt<'a>: Sized {
/// assert_eq!(text.ceil_char_boundary(3), 3);
/// ```
fn ceil_char_boundary(self, byte_idx: usize) -> usize;
/// Checks whether the given `byte_idx` lies on a character boundary.
///
/// # Example
///
/// ```
/// # use ropey::RopeSlice;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = RopeSlice::from("⌚"); // three bytes: e2 8c 9a
/// assert!(text.is_char_boundary(0));
/// assert!(!text.is_char_boundary(1));
/// assert!(!text.is_char_boundary(2));
/// assert!(text.is_char_boundary(3));
/// ```
#[allow(clippy::wrong_self_convention)]
fn is_char_boundary(self, byte_idx: usize) -> bool;
/// Finds the closest byte index not exceeding `byte_idx` which lies on a grapheme cluster
/// boundary.
///
/// If `byte_idx` already lies on a grapheme cluster boundary then it is returned as-is. When
/// `byte_idx` lies between two grapheme cluster boundaries, this function returns the byte
/// index of the lesser / earlier / left-hand-side boundary.
///
/// `byte_idx` does not need to be aligned to a character boundary.
///
/// # Example
///
/// ```
/// # use ropey::RopeSlice;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = RopeSlice::from("\r\n"); // U+000D U+000A, hex: 0d 0a
/// assert_eq!(text.floor_grapheme_boundary(0), 0);
/// assert_eq!(text.floor_grapheme_boundary(1), 0);
/// assert_eq!(text.floor_grapheme_boundary(2), 2);
/// ```
fn floor_grapheme_boundary(self, byte_idx: usize) -> usize;
/// Finds the closest byte index not exceeding `byte_idx` which lies on a grapheme cluster
/// boundary.
///
/// If `byte_idx` already lies on a grapheme cluster boundary then it is returned as-is. When
/// `byte_idx` lies between two grapheme cluster boundaries, this function returns the byte
/// index of the greater / later / right-hand-side boundary.
///
/// `byte_idx` does not need to be aligned to a character boundary.
///
/// # Example
///
/// ```
/// # use ropey::RopeSlice;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = RopeSlice::from("\r\n"); // U+000D U+000A, hex: 0d 0a
/// assert_eq!(text.ceil_grapheme_boundary(0), 0);
/// assert_eq!(text.ceil_grapheme_boundary(1), 2);
/// assert_eq!(text.ceil_grapheme_boundary(2), 2);
/// ```
fn ceil_grapheme_boundary(self, byte_idx: usize) -> usize;
/// Checks whether the `byte_idx` lies on a grapheme cluster boundary.
///
/// # Example
///
/// ```
/// # use ropey::RopeSlice;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = RopeSlice::from("\r\n"); // U+000D U+000A, hex: 0d 0a
/// assert!(text.is_grapheme_boundary(0));
/// assert!(!text.is_grapheme_boundary(1));
/// assert!(text.is_grapheme_boundary(2));
/// ```
#[allow(clippy::wrong_self_convention)]
fn is_grapheme_boundary(self, byte_idx: usize) -> bool;
}
impl<'a> RopeSliceExt<'a> for RopeSlice<'a> {
@ -112,7 +182,7 @@ impl<'a> RopeSliceExt<'a> for RopeSlice<'a> {
.map(|pos| self.len_chars() - pos - 1)
}
// These two are adapted from std's `round_char_boundary` functions:
// These three are adapted from std:
fn floor_char_boundary(self, byte_idx: usize) -> usize {
if byte_idx >= self.len_bytes() {
@ -140,6 +210,101 @@ impl<'a> RopeSliceExt<'a> for RopeSlice<'a> {
.map_or(upper_bound, |pos| pos + byte_idx)
}
}
fn is_char_boundary(self, byte_idx: usize) -> bool {
if byte_idx == 0 {
return true;
}
if byte_idx >= self.len_bytes() {
byte_idx == self.len_bytes()
} else {
is_utf8_char_boundary(self.bytes_at(byte_idx).next().unwrap())
}
}
fn floor_grapheme_boundary(self, mut byte_idx: usize) -> usize {
if byte_idx >= self.len_bytes() {
return self.len_bytes();
}
byte_idx = self.ceil_char_boundary(byte_idx + 1);
let (mut chunk, mut chunk_byte_idx, _, _) = self.chunk_at_byte(byte_idx);
let mut cursor = GraphemeCursor::new(byte_idx, self.len_bytes(), true);
loop {
match cursor.prev_boundary(chunk, chunk_byte_idx) {
Ok(None) => return 0,
Ok(Some(boundary)) => return boundary,
Err(GraphemeIncomplete::PrevChunk) => {
let (ch, ch_byte_idx, _, _) = self.chunk_at_byte(chunk_byte_idx - 1);
chunk = ch;
chunk_byte_idx = ch_byte_idx;
}
Err(GraphemeIncomplete::PreContext(n)) => {
let ctx_chunk = self.chunk_at_byte(n - 1).0;
cursor.provide_context(ctx_chunk, n - ctx_chunk.len());
}
_ => unreachable!(),
}
}
}
fn ceil_grapheme_boundary(self, mut byte_idx: usize) -> usize {
if byte_idx >= self.len_bytes() {
return self.len_bytes();
}
if byte_idx == 0 {
return 0;
}
byte_idx = self.floor_char_boundary(byte_idx - 1);
let (mut chunk, mut chunk_byte_idx, _, _) = self.chunk_at_byte(byte_idx);
let mut cursor = GraphemeCursor::new(byte_idx, self.len_bytes(), true);
loop {
match cursor.next_boundary(chunk, chunk_byte_idx) {
Ok(None) => return self.len_bytes(),
Ok(Some(boundary)) => return boundary,
Err(GraphemeIncomplete::NextChunk) => {
chunk_byte_idx += chunk.len();
chunk = self.chunk_at_byte(chunk_byte_idx).0;
}
Err(GraphemeIncomplete::PreContext(n)) => {
let ctx_chunk = self.chunk_at_byte(n - 1).0;
cursor.provide_context(ctx_chunk, n - ctx_chunk.len());
}
_ => unreachable!(),
}
}
}
fn is_grapheme_boundary(self, byte_idx: usize) -> bool {
// The byte must lie on a character boundary to lie on a grapheme cluster boundary.
if !self.is_char_boundary(byte_idx) {
return false;
}
let (chunk, chunk_byte_idx, _, _) = self.chunk_at_byte(byte_idx);
let mut cursor = GraphemeCursor::new(byte_idx, self.len_bytes(), true);
loop {
match cursor.is_boundary(chunk, chunk_byte_idx) {
Ok(n) => return n,
Err(GraphemeIncomplete::PreContext(n)) => {
let (ctx_chunk, ctx_byte_start, _, _) = self.chunk_at_byte(n - 1);
cursor.provide_context(ctx_chunk, ctx_byte_start);
}
Err(_) => unreachable!(),
}
}
}
}
// copied from std
@ -166,12 +331,13 @@ mod tests {
}
#[test]
fn floor_ceil_char_boundary() {
fn char_boundaries() {
let ascii = RopeSlice::from("ascii");
// When the given index lies on a character boundary, the index should not change.
for byte_idx in 0..=ascii.len_bytes() {
assert_eq!(ascii.floor_char_boundary(byte_idx), byte_idx);
assert_eq!(ascii.ceil_char_boundary(byte_idx), byte_idx);
assert!(ascii.is_char_boundary(byte_idx));
}
// This is a polyfill of a method of this trait which was replaced by ceil_char_boundary.
@ -198,4 +364,44 @@ mod tests {
}
}
}
#[test]
fn grapheme_boundaries() {
let ascii = RopeSlice::from("ascii");
// When the given index lies on a grapheme boundary, the index should not change.
for byte_idx in 0..=ascii.len_bytes() {
assert_eq!(ascii.floor_char_boundary(byte_idx), byte_idx);
assert_eq!(ascii.ceil_char_boundary(byte_idx), byte_idx);
assert!(ascii.is_grapheme_boundary(byte_idx));
}
// 🏴‍☠️: U+1F3F4 U+200D U+2620 U+FE0F
// 13 bytes, hex: f0 9f 8f b4 + e2 80 8d + e2 98 a0 + ef b8 8f
let g = RopeSlice::from("🏴‍☠️\r\n");
let emoji_len = "🏴‍☠️".len();
let end = g.len_bytes();
for byte_idx in 0..emoji_len {
assert_eq!(g.floor_grapheme_boundary(byte_idx), 0);
}
for byte_idx in emoji_len..end {
assert_eq!(g.floor_grapheme_boundary(byte_idx), emoji_len);
}
assert_eq!(g.floor_grapheme_boundary(end), end);
assert_eq!(g.ceil_grapheme_boundary(0), 0);
for byte_idx in 1..=emoji_len {
assert_eq!(g.ceil_grapheme_boundary(byte_idx), emoji_len);
}
for byte_idx in emoji_len + 1..=end {
assert_eq!(g.ceil_grapheme_boundary(byte_idx), end);
}
assert!(g.is_grapheme_boundary(0));
assert!(g.is_grapheme_boundary(emoji_len));
assert!(g.is_grapheme_boundary(end));
for byte_idx in (1..emoji_len).chain(emoji_len + 1..end) {
assert!(!g.is_grapheme_boundary(byte_idx));
}
}
}