mirror of
https://github.com/ntex-rs/ntex.git
synced 2025-04-03 21:07:39 +03:00
4197 lines
116 KiB
Rust
4197 lines
116 KiB
Rust
use std::borrow::{Borrow, BorrowMut};
|
|
use std::iter::{FromIterator, Iterator};
|
|
use std::ops::{Deref, DerefMut, RangeBounds};
|
|
use std::sync::atomic::Ordering::{Acquire, Relaxed, Release};
|
|
use std::sync::atomic::{self, AtomicUsize};
|
|
use std::{cmp, fmt, hash, mem, ptr, ptr::NonNull, slice, usize};
|
|
|
|
use crate::pool::{PoolId, PoolRef};
|
|
use crate::{buf::IntoIter, buf::UninitSlice, debug, Buf, BufMut};
|
|
|
|
/// A reference counted contiguous slice of memory.
|
|
///
|
|
/// `Bytes` is an efficient container for storing and operating on contiguous
|
|
/// slices of memory. It is intended for use primarily in networking code, but
|
|
/// could have applications elsewhere as well.
|
|
///
|
|
/// `Bytes` values facilitate zero-copy network programming by allowing multiple
|
|
/// `Bytes` objects to point to the same underlying memory. This is managed by
|
|
/// using a reference count to track when the memory is no longer needed and can
|
|
/// be freed.
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let mut mem = Bytes::from(&b"Hello world"[..]);
|
|
/// let a = mem.slice(0..5);
|
|
///
|
|
/// assert_eq!(&a[..], b"Hello");
|
|
///
|
|
/// let b = mem.split_to(6);
|
|
///
|
|
/// assert_eq!(&mem[..], b"world");
|
|
/// assert_eq!(&b[..], b"Hello ");
|
|
/// ```
|
|
///
|
|
/// # Memory layout
|
|
///
|
|
/// The `Bytes` struct itself is fairly small, limited to a pointer to the
|
|
/// memory and 4 `usize` fields used to track information about which segment of
|
|
/// the underlying memory the `Bytes` handle has access to.
|
|
///
|
|
/// The memory layout looks like this:
|
|
///
|
|
/// ```text
|
|
/// +-------+
|
|
/// | Bytes |
|
|
/// +-------+
|
|
/// / \_____
|
|
/// | \
|
|
/// v v
|
|
/// +-----+------------------------------------+
|
|
/// | Arc | | Data | |
|
|
/// +-----+------------------------------------+
|
|
/// ```
|
|
///
|
|
/// `Bytes` keeps both a pointer to the shared `Arc` containing the full memory
|
|
/// slice and a pointer to the start of the region visible by the handle.
|
|
/// `Bytes` also tracks the length of its view into the memory.
|
|
///
|
|
/// # Sharing
|
|
///
|
|
/// The memory itself is reference counted, and multiple `Bytes` objects may
|
|
/// point to the same region. Each `Bytes` handle point to different sections within
|
|
/// the memory region, and `Bytes` handle may or may not have overlapping views
|
|
/// into the memory.
|
|
///
|
|
///
|
|
/// ```text
|
|
///
|
|
/// Arc ptrs +---------+
|
|
/// ________________________ / | Bytes 2 |
|
|
/// / +---------+
|
|
/// / +-----------+ | |
|
|
/// |_________/ | Bytes 1 | | |
|
|
/// | +-----------+ | |
|
|
/// | | | ___/ data | tail
|
|
/// | data | tail |/ |
|
|
/// v v v v
|
|
/// +-----+---------------------------------+-----+
|
|
/// | Arc | | | | |
|
|
/// +-----+---------------------------------+-----+
|
|
/// ```
|
|
///
|
|
/// # Mutating
|
|
///
|
|
/// While `Bytes` handles may potentially represent overlapping views of the
|
|
/// underlying memory slice and may not be mutated, `BytesMut` handles are
|
|
/// guaranteed to be the only handle able to view that slice of memory. As such,
|
|
/// `BytesMut` handles are able to mutate the underlying memory. Note that
|
|
/// holding a unique view to a region of memory does not mean that there are no
|
|
/// other `Bytes` and `BytesMut` handles with disjoint views of the underlying
|
|
/// memory.
|
|
///
|
|
/// # Inline bytes
|
|
///
|
|
/// As an optimization, when the slice referenced by a `Bytes` handle is small
|
|
/// enough [^1]. In this case, a clone is no longer "shallow" and the data will
|
|
/// be copied. Converting from a `Vec` will never use inlining. `BytesMut` does
|
|
/// not support data inlining and always allocates, but during converion to `Bytes`
|
|
/// data from `BytesMut` could be inlined.
|
|
///
|
|
/// [^1]: Small enough: 31 bytes on 64 bit systems, 15 on 32 bit systems.
|
|
///
|
|
pub struct Bytes {
|
|
inner: Inner,
|
|
}
|
|
|
|
/// A unique reference to a contiguous slice of memory.
|
|
///
|
|
/// `BytesMut` represents a unique view into a potentially shared memory region.
|
|
/// Given the uniqueness guarantee, owners of `BytesMut` handles are able to
|
|
/// mutate the memory. It is similar to a `Vec<u8>` but with less copies and
|
|
/// allocations.
|
|
///
|
|
/// For more detail, see [Bytes](struct.Bytes.html).
|
|
///
|
|
/// # Growth
|
|
///
|
|
/// One key difference from `Vec<u8>` is that most operations **do not
|
|
/// implicitly grow the buffer**. This means that calling `my_bytes.put("hello
|
|
/// world");` could panic if `my_bytes` does not have enough capacity. Before
|
|
/// writing to the buffer, ensure that there is enough remaining capacity by
|
|
/// calling `my_bytes.remaining_mut()`. In general, avoiding calls to `reserve`
|
|
/// is preferable.
|
|
///
|
|
/// The only exception is `extend` which implicitly reserves required capacity.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{BytesMut, BufMut};
|
|
///
|
|
/// let mut buf = BytesMut::with_capacity(64);
|
|
///
|
|
/// buf.put_u8(b'h');
|
|
/// buf.put_u8(b'e');
|
|
/// buf.put("llo");
|
|
///
|
|
/// assert_eq!(&buf[..], b"hello");
|
|
///
|
|
/// // Freeze the buffer so that it can be shared
|
|
/// let a = buf.freeze();
|
|
///
|
|
/// // This does not allocate, instead `b` points to the same memory.
|
|
/// let b = a.clone();
|
|
///
|
|
/// assert_eq!(&a[..], b"hello");
|
|
/// assert_eq!(&b[..], b"hello");
|
|
/// ```
|
|
pub struct BytesMut {
|
|
inner: Inner,
|
|
}
|
|
|
|
/// A unique reference to a contiguous slice of memory.
|
|
///
|
|
/// `BytesVec` represents a unique view into a potentially shared memory region.
|
|
/// Given the uniqueness guarantee, owners of `BytesVec` handles are able to
|
|
/// mutate the memory. It is similar to a `Vec<u8>` but with less copies and
|
|
/// allocations. It also always allocates.
|
|
///
|
|
/// For more detail, see [Bytes](struct.Bytes.html).
|
|
///
|
|
/// # Growth
|
|
///
|
|
/// One key difference from `Vec<u8>` is that most operations **do not
|
|
/// implicitly grow the buffer**. This means that calling `my_bytes.put("hello
|
|
/// world");` could panic if `my_bytes` does not have enough capacity. Before
|
|
/// writing to the buffer, ensure that there is enough remaining capacity by
|
|
/// calling `my_bytes.remaining_mut()`. In general, avoiding calls to `reserve`
|
|
/// is preferable.
|
|
///
|
|
/// The only exception is `extend` which implicitly reserves required capacity.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{BytesVec, BufMut};
|
|
///
|
|
/// let mut buf = BytesVec::with_capacity(64);
|
|
///
|
|
/// buf.put_u8(b'h');
|
|
/// buf.put_u8(b'e');
|
|
/// buf.put("llo");
|
|
///
|
|
/// assert_eq!(&buf[..], b"hello");
|
|
///
|
|
/// // Freeze the buffer so that it can be shared
|
|
/// let a = buf.freeze();
|
|
///
|
|
/// // This does not allocate, instead `b` points to the same memory.
|
|
/// let b = a.clone();
|
|
///
|
|
/// assert_eq!(&a[..], b"hello");
|
|
/// assert_eq!(&b[..], b"hello");
|
|
/// ```
|
|
pub struct BytesVec {
|
|
inner: InnerVec,
|
|
}
|
|
|
|
// Both `Bytes` and `BytesMut` are backed by `Inner` and functions are delegated
|
|
// to `Inner` functions. The `Bytes` and `BytesMut` shims ensure that functions
|
|
// that mutate the underlying buffer are only performed when the data range
|
|
// being mutated is only available via a single `BytesMut` handle.
|
|
//
|
|
// # Data storage modes
|
|
//
|
|
// The goal of `bytes` is to be as efficient as possible across a wide range of
|
|
// potential usage patterns. As such, `bytes` needs to be able to handle buffers
|
|
// that are never shared, shared on a single thread, and shared across many
|
|
// threads. `bytes` also needs to handle both tiny buffers as well as very large
|
|
// buffers. For example, [Cassandra](http://cassandra.apache.org) values have
|
|
// been known to be in the hundreds of megabyte, and HTTP header values can be a
|
|
// few characters in size.
|
|
//
|
|
// To achieve high performance in these various situations, `Bytes` and
|
|
// `BytesMut` use different strategies for storing the buffer depending on the
|
|
// usage pattern.
|
|
//
|
|
// ## Delayed `Arc` allocation
|
|
//
|
|
// When a `Bytes` or `BytesMut` is first created, there is only one outstanding
|
|
// handle referencing the buffer. Since sharing is not yet required, an `Arc`* is
|
|
// not used and the buffer is backed by a `Vec<u8>` directly. Using an
|
|
// `Arc<Vec<u8>>` requires two allocations, so if the buffer ends up never being
|
|
// shared, that allocation is avoided.
|
|
//
|
|
// When sharing does become necessary (`clone`, `split_to`, `split_off`), that
|
|
// is when the buffer is promoted to being shareable. The `Vec<u8>` is moved
|
|
// into an `Arc` and both the original handle and the new handle use the same
|
|
// buffer via the `Arc`.
|
|
//
|
|
// * `Arc` is being used to signify an atomically reference counted cell. We
|
|
// don't use the `Arc` implementation provided by `std` and instead use our own.
|
|
// This ends up simplifying a number of the `unsafe` code snippets.
|
|
//
|
|
// ## Inlining small buffers
|
|
//
|
|
// The `Bytes` / `BytesMut` structs require 4 pointer sized fields. On 64 bit
|
|
// systems, this ends up being 32 bytes, which is actually a lot of storage for
|
|
// cases where `Bytes` is being used to represent small byte strings, such as
|
|
// HTTP header names and values.
|
|
//
|
|
// To avoid any allocation at all in these cases, `Bytes` will use the struct
|
|
// itself for storing the buffer, reserving 1 byte for meta data. This means
|
|
// that, on 64 bit systems, 31 byte buffers require no allocation at all.
|
|
//
|
|
// The byte used for metadata stores a 2 bits flag used to indicate that the
|
|
// buffer is stored inline as well as 6 bits for tracking the buffer length (the
|
|
// return value of `Bytes::len`).
|
|
//
|
|
// ## Static buffers
|
|
//
|
|
// `Bytes` can also represent a static buffer, which is created with
|
|
// `Bytes::from_static`. No copying or allocations are required for tracking
|
|
// static buffers. The pointer to the `&'static [u8]`, the length, and a flag
|
|
// tracking that the `Bytes` instance represents a static buffer is stored in
|
|
// the `Bytes` struct.
|
|
//
|
|
// # Struct layout
|
|
//
|
|
// Both `Bytes` and `BytesMut` are wrappers around `Inner`, which provides the
|
|
// data fields as well as all of the function implementations.
|
|
//
|
|
// The `Inner` struct is carefully laid out in order to support the
|
|
// functionality described above as well as being as small as possible. Size is
|
|
// important as growing the size of the `Bytes` struct from 32 bytes to 40 bytes
|
|
// added as much as 15% overhead in benchmarks using `Bytes` in an HTTP header
|
|
// map structure.
|
|
//
|
|
// The `Inner` struct contains the following fields:
|
|
//
|
|
// * `ptr: *mut u8`
|
|
// * `len: usize`
|
|
// * `cap: usize`
|
|
// * `arc: *mut Shared`
|
|
//
|
|
// ## `ptr: *mut u8`
|
|
//
|
|
// A pointer to start of the handle's buffer view. When backed by a `Vec<u8>`,
|
|
// this is always the `Vec`'s pointer. When backed by an `Arc<Vec<u8>>`, `ptr`
|
|
// may have been shifted to point somewhere inside the buffer.
|
|
//
|
|
// When in "inlined" mode, `ptr` is used as part of the inlined buffer.
|
|
//
|
|
// ## `len: usize`
|
|
//
|
|
// The length of the handle's buffer view. When backed by a `Vec<u8>`, this is
|
|
// always the `Vec`'s length. The slice represented by `ptr` and `len` should
|
|
// (ideally) always be initialized memory.
|
|
//
|
|
// When in "inlined" mode, `len` is used as part of the inlined buffer.
|
|
//
|
|
// ## `cap: usize`
|
|
//
|
|
// The capacity of the handle's buffer view. When backed by a `Vec<u8>`, this is
|
|
// always the `Vec`'s capacity. The slice represented by `ptr+len` and `cap-len`
|
|
// may or may not be initialized memory.
|
|
//
|
|
// When in "inlined" mode, `cap` is used as part of the inlined buffer.
|
|
//
|
|
// ## `arc: *mut Shared`
|
|
//
|
|
// When `Inner` is in allocated mode (backed by Vec<u8> or Arc<Vec<u8>>), this
|
|
// will be the pointer to the `Arc` structure tracking the ref count for the
|
|
// underlying buffer. When the pointer is null, then the `Arc` has not been
|
|
// allocated yet and `self` is the only outstanding handle for the underlying
|
|
// buffer.
|
|
//
|
|
// The lower two bits of `arc` are used to track the storage mode of `Inner`.
|
|
// `0b01` indicates inline storage, `0b10` indicates static storage, and `0b11`
|
|
// indicates vector storage, not yet promoted to Arc. Since pointers to
|
|
// allocated structures are aligned, the lower two bits of a pointer will always
|
|
// be 0. This allows disambiguating between a pointer and the two flags.
|
|
//
|
|
// When in "inlined" mode, the least significant byte of `arc` is also used to
|
|
// store the length of the buffer view (vs. the capacity, which is a constant).
|
|
//
|
|
// The rest of `arc`'s bytes are used as part of the inline buffer, which means
|
|
// that those bytes need to be located next to the `ptr`, `len`, and `cap`
|
|
// fields, which make up the rest of the inline buffer. This requires special
|
|
// casing the layout of `Inner` depending on if the target platform is big or
|
|
// little endian.
|
|
//
|
|
// On little endian platforms, the `arc` field must be the first field in the
|
|
// struct. On big endian platforms, the `arc` field must be the last field in
|
|
// the struct. Since a deterministic struct layout is required, `Inner` is
|
|
// annotated with `#[repr(C)]`.
|
|
//
|
|
// # Thread safety
|
|
//
|
|
// `Bytes::clone()` returns a new `Bytes` handle with no copying. This is done
|
|
// by bumping the buffer ref count and returning a new struct pointing to the
|
|
// same buffer. However, the `Arc` structure is lazily allocated. This means
|
|
// that if `Bytes` is stored itself in an `Arc` (`Arc<Bytes>`), the `clone`
|
|
// function can be called concurrently from multiple threads. This is why an
|
|
// `AtomicPtr` is used for the `arc` field vs. a `*const`.
|
|
//
|
|
// Care is taken to ensure that the need for synchronization is minimized. Most
|
|
// operations do not require any synchronization.
|
|
//
|
|
#[cfg(target_endian = "little")]
|
|
#[repr(C)]
|
|
struct Inner {
|
|
// WARNING: Do not access the fields directly unless you know what you are
|
|
// doing. Instead, use the fns. See implementation comment above.
|
|
arc: NonNull<Shared>,
|
|
ptr: *mut u8,
|
|
len: usize,
|
|
cap: usize,
|
|
}
|
|
|
|
#[cfg(target_endian = "big")]
|
|
#[repr(C)]
|
|
struct Inner {
|
|
// WARNING: Do not access the fields directly unless you know what you are
|
|
// doing. Instead, use the fns. See implementation comment above.
|
|
ptr: *mut u8,
|
|
len: usize,
|
|
cap: usize,
|
|
arc: NonNull<Shared>,
|
|
}
|
|
|
|
// Thread-safe reference-counted container for the shared storage. This mostly
|
|
// the same as `std::sync::Arc` but without the weak counter. The ref counting
|
|
// fns are based on the ones found in `std`.
|
|
//
|
|
// The main reason to use `Shared` instead of `std::sync::Arc` is that it ends
|
|
// up making the overall code simpler and easier to reason about. This is due to
|
|
// some of the logic around setting `Inner::arc` and other ways the `arc` field
|
|
// is used. Using `Arc` ended up requiring a number of funky transmutes and
|
|
// other shenanigans to make it work.
|
|
struct Shared {
|
|
vec: Vec<u8>,
|
|
ref_count: AtomicUsize,
|
|
pool: PoolRef,
|
|
}
|
|
|
|
struct SharedVec {
|
|
cap: usize,
|
|
len: u32,
|
|
offset: u32,
|
|
ref_count: AtomicUsize,
|
|
pool: PoolRef,
|
|
}
|
|
|
|
// Buffer storage strategy flags.
|
|
const KIND_ARC: usize = 0b00;
|
|
const KIND_INLINE: usize = 0b01;
|
|
const KIND_STATIC: usize = 0b10;
|
|
const KIND_VEC: usize = 0b11;
|
|
const KIND_MASK: usize = 0b11;
|
|
const KIND_UNMASK: usize = !KIND_MASK;
|
|
|
|
const MIN_NON_ZERO_CAP: usize = 64;
|
|
const SHARED_VEC_SIZE: usize = mem::size_of::<SharedVec>();
|
|
|
|
// Bit op constants for extracting the inline length value from the `arc` field.
|
|
const INLINE_LEN_MASK: usize = 0b1111_1100;
|
|
const INLINE_LEN_OFFSET: usize = 2;
|
|
|
|
// Byte offset from the start of `Inner` to where the inline buffer data
|
|
// starts. On little endian platforms, the first byte of the struct is the
|
|
// storage flag, so the data is shifted by a byte. On big endian systems, the
|
|
// data starts at the beginning of the struct.
|
|
#[cfg(target_endian = "little")]
|
|
const INLINE_DATA_OFFSET: isize = 2;
|
|
#[cfg(target_endian = "big")]
|
|
const INLINE_DATA_OFFSET: isize = 0;
|
|
|
|
// Inline buffer capacity. This is the size of `Inner` minus 1 byte for the
|
|
// metadata.
|
|
#[cfg(target_pointer_width = "64")]
|
|
const INLINE_CAP: usize = 4 * 8 - 2;
|
|
#[cfg(target_pointer_width = "32")]
|
|
const INLINE_CAP: usize = 4 * 4 - 2;
|
|
|
|
/*
|
|
*
|
|
* ===== Bytes =====
|
|
*
|
|
*/
|
|
|
|
impl Bytes {
|
|
/// Creates a new empty `Bytes`.
|
|
///
|
|
/// This will not allocate and the returned `Bytes` handle will be empty.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let b = Bytes::new();
|
|
/// assert_eq!(&b[..], b"");
|
|
/// ```
|
|
#[inline]
|
|
pub const fn new() -> Bytes {
|
|
Bytes {
|
|
inner: Inner::empty_inline(),
|
|
}
|
|
}
|
|
|
|
/// Creates a new `Bytes` from a static slice.
|
|
///
|
|
/// The returned `Bytes` will point directly to the static slice. There is
|
|
/// no allocating or copying.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let b = Bytes::from_static(b"hello");
|
|
/// assert_eq!(&b[..], b"hello");
|
|
/// ```
|
|
#[inline]
|
|
pub const fn from_static(bytes: &'static [u8]) -> Bytes {
|
|
Bytes {
|
|
inner: Inner::from_static(bytes),
|
|
}
|
|
}
|
|
|
|
/// Returns the number of bytes contained in this `Bytes`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let b = Bytes::from(&b"hello"[..]);
|
|
/// assert_eq!(b.len(), 5);
|
|
/// ```
|
|
#[inline]
|
|
pub fn len(&self) -> usize {
|
|
self.inner.len()
|
|
}
|
|
|
|
/// Returns true if the `Bytes` has a length of 0.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let b = Bytes::new();
|
|
/// assert!(b.is_empty());
|
|
/// ```
|
|
#[inline]
|
|
pub fn is_empty(&self) -> bool {
|
|
self.inner.is_empty()
|
|
}
|
|
|
|
/// Return true if the `Bytes` uses inline allocation
|
|
///
|
|
/// # Examples
|
|
/// ```
|
|
/// use ntex_bytes::{Bytes, BytesMut};
|
|
///
|
|
/// assert!(Bytes::from(BytesMut::from(&[0, 0, 0, 0][..])).is_inline());
|
|
/// assert!(Bytes::from(Vec::with_capacity(4)).is_inline());
|
|
/// assert!(!Bytes::from(&[0; 1024][..]).is_inline());
|
|
/// ```
|
|
pub fn is_inline(&self) -> bool {
|
|
self.inner.is_inline()
|
|
}
|
|
|
|
/// Creates `Bytes` instance from slice, by copying it.
|
|
pub fn copy_from_slice(data: &[u8]) -> Self {
|
|
Self::copy_from_slice_in(data, PoolId::DEFAULT)
|
|
}
|
|
|
|
/// Creates `Bytes` instance from slice, by copying it.
|
|
pub fn copy_from_slice_in<T>(data: &[u8], pool: T) -> Self
|
|
where
|
|
PoolRef: From<T>,
|
|
{
|
|
if data.len() <= INLINE_CAP {
|
|
Bytes {
|
|
inner: Inner::from_slice_inline(data),
|
|
}
|
|
} else {
|
|
Bytes {
|
|
inner: Inner::from_slice(data.len(), data, pool.into()),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns a slice of self for the provided range.
|
|
///
|
|
/// This will increment the reference count for the underlying memory and
|
|
/// return a new `Bytes` handle set to the slice.
|
|
///
|
|
/// This operation is `O(1)`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let a = Bytes::from(&b"hello world"[..]);
|
|
/// let b = a.slice(2..5);
|
|
///
|
|
/// assert_eq!(&b[..], b"llo");
|
|
/// ```
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Requires that `begin <= end` and `end <= self.len()`, otherwise slicing
|
|
/// will panic.
|
|
pub fn slice(&self, range: impl RangeBounds<usize>) -> Bytes {
|
|
use std::ops::Bound;
|
|
|
|
let len = self.len();
|
|
|
|
let begin = match range.start_bound() {
|
|
Bound::Included(&n) => n,
|
|
Bound::Excluded(&n) => n + 1,
|
|
Bound::Unbounded => 0,
|
|
};
|
|
|
|
let end = match range.end_bound() {
|
|
Bound::Included(&n) => n + 1,
|
|
Bound::Excluded(&n) => n,
|
|
Bound::Unbounded => len,
|
|
};
|
|
|
|
assert!(begin <= end);
|
|
assert!(end <= len);
|
|
|
|
if end - begin <= INLINE_CAP {
|
|
Bytes {
|
|
inner: Inner::from_slice_inline(&self[begin..end]),
|
|
}
|
|
} else {
|
|
let mut ret = self.clone();
|
|
|
|
unsafe {
|
|
ret.inner.set_end(end);
|
|
ret.inner.set_start(begin);
|
|
}
|
|
ret
|
|
}
|
|
}
|
|
|
|
/// Returns a slice of self that is equivalent to the given `subset`.
|
|
///
|
|
/// When processing a `Bytes` buffer with other tools, one often gets a
|
|
/// `&[u8]` which is in fact a slice of the `Bytes`, i.e. a subset of it.
|
|
/// This function turns that `&[u8]` into another `Bytes`, as if one had
|
|
/// called `self.slice()` with the offsets that correspond to `subset`.
|
|
///
|
|
/// This operation is `O(1)`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let bytes = Bytes::from(&b"012345678"[..]);
|
|
/// let as_slice = bytes.as_ref();
|
|
/// let subset = &as_slice[2..6];
|
|
/// let subslice = bytes.slice_ref(&subset);
|
|
/// assert_eq!(&subslice[..], b"2345");
|
|
/// ```
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Requires that the given `sub` slice is in fact contained within the
|
|
/// `Bytes` buffer; otherwise this function will panic.
|
|
pub fn slice_ref(&self, subset: &[u8]) -> Bytes {
|
|
let bytes_p = self.as_ptr() as usize;
|
|
let bytes_len = self.len();
|
|
|
|
let sub_p = subset.as_ptr() as usize;
|
|
let sub_len = subset.len();
|
|
|
|
assert!(sub_p >= bytes_p);
|
|
assert!(sub_p + sub_len <= bytes_p + bytes_len);
|
|
|
|
let sub_offset = sub_p - bytes_p;
|
|
|
|
self.slice(sub_offset..(sub_offset + sub_len))
|
|
}
|
|
|
|
/// Splits the bytes into two at the given index.
|
|
///
|
|
/// Afterwards `self` contains elements `[0, at)`, and the returned `Bytes`
|
|
/// contains elements `[at, len)`.
|
|
///
|
|
/// This is an `O(1)` operation that just increases the reference count and
|
|
/// sets a few indices.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let mut a = Bytes::from(&b"hello world"[..]);
|
|
/// let b = a.split_off(5);
|
|
///
|
|
/// assert_eq!(&a[..], b"hello");
|
|
/// assert_eq!(&b[..], b" world");
|
|
/// ```
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `at > len`.
|
|
pub fn split_off(&mut self, at: usize) -> Bytes {
|
|
assert!(at <= self.len());
|
|
|
|
if at == self.len() {
|
|
return Bytes::new();
|
|
}
|
|
|
|
if at == 0 {
|
|
mem::replace(self, Bytes::new())
|
|
} else {
|
|
Bytes {
|
|
inner: self.inner.split_off(at, true),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Splits the bytes into two at the given index.
|
|
///
|
|
/// Afterwards `self` contains elements `[at, len)`, and the returned
|
|
/// `Bytes` contains elements `[0, at)`.
|
|
///
|
|
/// This is an `O(1)` operation that just increases the reference count and
|
|
/// sets a few indices.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let mut a = Bytes::from(&b"hello world"[..]);
|
|
/// let b = a.split_to(5);
|
|
///
|
|
/// assert_eq!(&a[..], b" world");
|
|
/// assert_eq!(&b[..], b"hello");
|
|
/// ```
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `at > len`.
|
|
pub fn split_to(&mut self, at: usize) -> Bytes {
|
|
assert!(at <= self.len());
|
|
|
|
if at == self.len() {
|
|
return mem::replace(self, Bytes::new());
|
|
}
|
|
|
|
if at == 0 {
|
|
Bytes::new()
|
|
} else {
|
|
Bytes {
|
|
inner: self.inner.split_to(at, true),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Shortens the buffer, keeping the first `len` bytes and dropping the
|
|
/// rest.
|
|
///
|
|
/// If `len` is greater than the buffer's current length, this has no
|
|
/// effect.
|
|
///
|
|
/// The [`split_off`] method can emulate `truncate`, but this causes the
|
|
/// excess bytes to be returned instead of dropped.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let mut buf = Bytes::from(&b"hello world"[..]);
|
|
/// buf.truncate(5);
|
|
/// assert_eq!(buf, b"hello"[..]);
|
|
/// ```
|
|
///
|
|
/// [`split_off`]: #method.split_off
|
|
#[inline]
|
|
pub fn truncate(&mut self, len: usize) {
|
|
self.inner.truncate(len, true);
|
|
}
|
|
|
|
/// Shortens the buffer to `len` bytes and dropping the rest.
|
|
///
|
|
/// This is useful if underlying buffer is larger than cuurrent bytes object.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let mut buf = Bytes::from(&b"hello world"[..]);
|
|
/// buf.trimdown();
|
|
/// assert_eq!(buf, b"hello world"[..]);
|
|
/// ```
|
|
#[inline]
|
|
pub fn trimdown(&mut self) {
|
|
let kind = self.inner.kind();
|
|
|
|
// trim down only if buffer is not inline or static and
|
|
// buffer's unused space is greater than 64 bytes
|
|
if !(kind == KIND_INLINE || kind == KIND_STATIC) {
|
|
if self.inner.len() <= INLINE_CAP {
|
|
*self = Bytes {
|
|
inner: Inner::from_slice_inline(self),
|
|
};
|
|
} else if self.inner.capacity() - self.inner.len() >= 64 {
|
|
*self = Bytes {
|
|
inner: Inner::from_slice(self.len(), self, self.inner.pool()),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Clears the buffer, removing all data.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let mut buf = Bytes::from(&b"hello world"[..]);
|
|
/// buf.clear();
|
|
/// assert!(buf.is_empty());
|
|
/// ```
|
|
#[inline]
|
|
pub fn clear(&mut self) {
|
|
self.inner = Inner::empty_inline();
|
|
}
|
|
|
|
/// Attempts to convert into a `BytesMut` handle.
|
|
///
|
|
/// This will only succeed if there are no other outstanding references to
|
|
/// the underlying chunk of memory. `Bytes` handles that contain inlined
|
|
/// bytes will always be convertible to `BytesMut`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let a = Bytes::copy_from_slice(&b"Mary had a little lamb, little lamb, little lamb..."[..]);
|
|
///
|
|
/// // Create a shallow clone
|
|
/// let b = a.clone();
|
|
///
|
|
/// // This will fail because `b` shares a reference with `a`
|
|
/// let a = a.try_mut().unwrap_err();
|
|
///
|
|
/// drop(b);
|
|
///
|
|
/// // This will succeed
|
|
/// let mut a = a.try_mut().unwrap();
|
|
///
|
|
/// a[0] = b'b';
|
|
///
|
|
/// assert_eq!(&a[..4], b"bary");
|
|
/// ```
|
|
pub fn try_mut(self) -> Result<BytesMut, Bytes> {
|
|
if self.inner.is_mut_safe() {
|
|
Ok(BytesMut { inner: self.inner })
|
|
} else {
|
|
Err(self)
|
|
}
|
|
}
|
|
|
|
/// Returns an iterator over the bytes contained by the buffer.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{Buf, Bytes};
|
|
///
|
|
/// let buf = Bytes::from(&b"abc"[..]);
|
|
/// let mut iter = buf.iter();
|
|
///
|
|
/// assert_eq!(iter.next().map(|b| *b), Some(b'a'));
|
|
/// assert_eq!(iter.next().map(|b| *b), Some(b'b'));
|
|
/// assert_eq!(iter.next().map(|b| *b), Some(b'c'));
|
|
/// assert_eq!(iter.next(), None);
|
|
/// ```
|
|
pub fn iter(&'_ self) -> std::slice::Iter<'_, u8> {
|
|
self.chunk().iter()
|
|
}
|
|
}
|
|
|
|
impl Buf for Bytes {
|
|
#[inline]
|
|
fn remaining(&self) -> usize {
|
|
self.len()
|
|
}
|
|
|
|
#[inline]
|
|
fn chunk(&self) -> &[u8] {
|
|
self.inner.as_ref()
|
|
}
|
|
|
|
#[inline]
|
|
fn advance(&mut self, cnt: usize) {
|
|
assert!(
|
|
cnt <= self.inner.as_ref().len(),
|
|
"cannot advance past `remaining`"
|
|
);
|
|
unsafe {
|
|
self.inner.set_start(cnt);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl bytes::buf::Buf for Bytes {
|
|
#[inline]
|
|
fn remaining(&self) -> usize {
|
|
self.len()
|
|
}
|
|
|
|
#[inline]
|
|
fn chunk(&self) -> &[u8] {
|
|
self.inner.as_ref()
|
|
}
|
|
|
|
#[inline]
|
|
fn advance(&mut self, cnt: usize) {
|
|
assert!(
|
|
cnt <= self.inner.as_ref().len(),
|
|
"cannot advance past `remaining`"
|
|
);
|
|
unsafe {
|
|
self.inner.set_start(cnt);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Clone for Bytes {
|
|
fn clone(&self) -> Bytes {
|
|
Bytes {
|
|
inner: unsafe { self.inner.shallow_clone() },
|
|
}
|
|
}
|
|
}
|
|
|
|
impl AsRef<[u8]> for Bytes {
|
|
#[inline]
|
|
fn as_ref(&self) -> &[u8] {
|
|
self.inner.as_ref()
|
|
}
|
|
}
|
|
|
|
impl Deref for Bytes {
|
|
type Target = [u8];
|
|
|
|
#[inline]
|
|
fn deref(&self) -> &[u8] {
|
|
self.inner.as_ref()
|
|
}
|
|
}
|
|
|
|
impl From<BytesMut> for Bytes {
|
|
fn from(src: BytesMut) -> Bytes {
|
|
src.freeze()
|
|
}
|
|
}
|
|
|
|
impl From<Vec<u8>> for Bytes {
|
|
/// Convert a `Vec` into a `Bytes`
|
|
///
|
|
/// This constructor may be used to avoid the inlining optimization used by
|
|
/// `with_capacity`. A `Bytes` constructed this way will always store its
|
|
/// data on the heap.
|
|
fn from(src: Vec<u8>) -> Bytes {
|
|
if src.is_empty() {
|
|
Bytes::new()
|
|
} else if src.len() <= INLINE_CAP {
|
|
Bytes {
|
|
inner: Inner::from_slice_inline(&src),
|
|
}
|
|
} else {
|
|
BytesMut::from(src).freeze()
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<String> for Bytes {
|
|
fn from(src: String) -> Bytes {
|
|
if src.is_empty() {
|
|
Bytes::new()
|
|
} else if src.bytes().len() <= INLINE_CAP {
|
|
Bytes {
|
|
inner: Inner::from_slice_inline(src.as_bytes()),
|
|
}
|
|
} else {
|
|
BytesMut::from(src).freeze()
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<&'static [u8]> for Bytes {
|
|
fn from(src: &'static [u8]) -> Bytes {
|
|
Bytes::from_static(src)
|
|
}
|
|
}
|
|
|
|
impl From<&'static str> for Bytes {
|
|
fn from(src: &'static str) -> Bytes {
|
|
Bytes::from_static(src.as_bytes())
|
|
}
|
|
}
|
|
|
|
impl FromIterator<u8> for BytesMut {
|
|
fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
|
|
let iter = into_iter.into_iter();
|
|
let (min, maybe_max) = iter.size_hint();
|
|
|
|
let mut out = BytesMut::with_capacity(maybe_max.unwrap_or(min));
|
|
for i in iter {
|
|
out.reserve(1);
|
|
out.put_u8(i);
|
|
}
|
|
|
|
out
|
|
}
|
|
}
|
|
|
|
impl FromIterator<u8> for BytesVec {
|
|
fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
|
|
let iter = into_iter.into_iter();
|
|
let (min, maybe_max) = iter.size_hint();
|
|
|
|
let mut out = BytesVec::with_capacity(maybe_max.unwrap_or(min));
|
|
for i in iter {
|
|
out.reserve(1);
|
|
out.put_u8(i);
|
|
}
|
|
|
|
out
|
|
}
|
|
}
|
|
|
|
impl FromIterator<u8> for Bytes {
|
|
fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
|
|
BytesMut::from_iter(into_iter).freeze()
|
|
}
|
|
}
|
|
|
|
impl<'a> FromIterator<&'a u8> for BytesMut {
|
|
fn from_iter<T: IntoIterator<Item = &'a u8>>(into_iter: T) -> Self {
|
|
into_iter.into_iter().copied().collect::<BytesMut>()
|
|
}
|
|
}
|
|
|
|
impl<'a> FromIterator<&'a u8> for BytesVec {
|
|
fn from_iter<T: IntoIterator<Item = &'a u8>>(into_iter: T) -> Self {
|
|
into_iter.into_iter().copied().collect::<BytesVec>()
|
|
}
|
|
}
|
|
|
|
impl<'a> FromIterator<&'a u8> for Bytes {
|
|
fn from_iter<T: IntoIterator<Item = &'a u8>>(into_iter: T) -> Self {
|
|
BytesMut::from_iter(into_iter).freeze()
|
|
}
|
|
}
|
|
|
|
impl PartialEq for Bytes {
|
|
fn eq(&self, other: &Bytes) -> bool {
|
|
self.inner.as_ref() == other.inner.as_ref()
|
|
}
|
|
}
|
|
|
|
impl PartialOrd for Bytes {
|
|
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
|
|
self.inner.as_ref().partial_cmp(other.inner.as_ref())
|
|
}
|
|
}
|
|
|
|
impl Ord for Bytes {
|
|
fn cmp(&self, other: &Bytes) -> cmp::Ordering {
|
|
self.inner.as_ref().cmp(other.inner.as_ref())
|
|
}
|
|
}
|
|
|
|
impl Eq for Bytes {}
|
|
|
|
impl Default for Bytes {
|
|
#[inline]
|
|
fn default() -> Bytes {
|
|
Bytes::new()
|
|
}
|
|
}
|
|
|
|
impl fmt::Debug for Bytes {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
fmt::Debug::fmt(&debug::BsDebug(self.inner.as_ref()), fmt)
|
|
}
|
|
}
|
|
|
|
impl hash::Hash for Bytes {
|
|
fn hash<H>(&self, state: &mut H)
|
|
where
|
|
H: hash::Hasher,
|
|
{
|
|
let s: &[u8] = self.as_ref();
|
|
s.hash(state);
|
|
}
|
|
}
|
|
|
|
impl Borrow<[u8]> for Bytes {
|
|
fn borrow(&self) -> &[u8] {
|
|
self.as_ref()
|
|
}
|
|
}
|
|
|
|
impl IntoIterator for Bytes {
|
|
type Item = u8;
|
|
type IntoIter = IntoIter<Bytes>;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
IntoIter::new(self)
|
|
}
|
|
}
|
|
|
|
impl<'a> IntoIterator for &'a Bytes {
|
|
type Item = &'a u8;
|
|
type IntoIter = std::slice::Iter<'a, u8>;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
self.as_ref().iter()
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ===== BytesMut =====
|
|
*
|
|
*/
|
|
|
|
impl BytesMut {
|
|
/// Creates a new `BytesMut` with the specified capacity.
|
|
///
|
|
/// The returned `BytesMut` will be able to hold at least `capacity` bytes
|
|
/// without reallocating. If `capacity` is under `4 * size_of::<usize>() - 1`,
|
|
/// then `BytesMut` will not allocate.
|
|
///
|
|
/// It is important to note that this function does not specify the length
|
|
/// of the returned `BytesMut`, but only the capacity.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `capacity` greater than 60bit for 64bit systems
|
|
/// and 28bit for 32bit systems
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{BytesMut, BufMut};
|
|
///
|
|
/// let mut bytes = BytesMut::with_capacity(64);
|
|
///
|
|
/// // `bytes` contains no data, even though there is capacity
|
|
/// assert_eq!(bytes.len(), 0);
|
|
///
|
|
/// bytes.put(&b"hello world"[..]);
|
|
///
|
|
/// assert_eq!(&bytes[..], b"hello world");
|
|
/// ```
|
|
#[inline]
|
|
pub fn with_capacity(capacity: usize) -> BytesMut {
|
|
Self::with_capacity_in(capacity, PoolId::DEFAULT.pool_ref())
|
|
}
|
|
|
|
/// Creates a new `BytesMut` with the specified capacity and in specified memory pool.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{BytesMut, BufMut, PoolId};
|
|
///
|
|
/// let mut bytes = BytesMut::with_capacity_in(64, PoolId::P1);
|
|
///
|
|
/// // `bytes` contains no data, even though there is capacity
|
|
/// assert_eq!(bytes.len(), 0);
|
|
///
|
|
/// bytes.put(&b"hello world"[..]);
|
|
///
|
|
/// assert_eq!(&bytes[..], b"hello world");
|
|
/// assert!(PoolId::P1.pool_ref().allocated() > 0);
|
|
/// ```
|
|
#[inline]
|
|
pub fn with_capacity_in<T>(capacity: usize, pool: T) -> BytesMut
|
|
where
|
|
PoolRef: From<T>,
|
|
{
|
|
BytesMut {
|
|
inner: Inner::with_capacity(capacity, pool.into()),
|
|
}
|
|
}
|
|
|
|
/// Creates a new `BytesMut` from slice, by copying it.
|
|
pub fn copy_from_slice<T: AsRef<[u8]>>(src: T) -> Self {
|
|
Self::copy_from_slice_in(src, PoolId::DEFAULT)
|
|
}
|
|
|
|
/// Creates a new `BytesMut` from slice, by copying it.
|
|
pub fn copy_from_slice_in<T, U>(src: T, pool: U) -> Self
|
|
where
|
|
T: AsRef<[u8]>,
|
|
PoolRef: From<U>,
|
|
{
|
|
let s = src.as_ref();
|
|
BytesMut {
|
|
inner: Inner::from_slice(s.len(), s, pool.into()),
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
/// Convert a `Vec` into a `BytesMut`
|
|
pub fn from_vec<T>(src: Vec<u8>, pool: T) -> BytesMut
|
|
where
|
|
PoolRef: From<T>,
|
|
{
|
|
BytesMut {
|
|
inner: Inner::from_vec(src, pool.into()),
|
|
}
|
|
}
|
|
|
|
/// Creates a new `BytesMut` with default capacity.
|
|
///
|
|
/// Resulting object has length 0 and unspecified capacity.
|
|
/// This function does not allocate.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{BytesMut, BufMut};
|
|
///
|
|
/// let mut bytes = BytesMut::new();
|
|
///
|
|
/// assert_eq!(0, bytes.len());
|
|
///
|
|
/// bytes.reserve(2);
|
|
/// bytes.put_slice(b"xy");
|
|
///
|
|
/// assert_eq!(&b"xy"[..], &bytes[..]);
|
|
/// ```
|
|
#[inline]
|
|
pub fn new() -> BytesMut {
|
|
BytesMut::with_capacity(MIN_NON_ZERO_CAP)
|
|
}
|
|
|
|
/// Returns the number of bytes contained in this `BytesMut`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let b = BytesMut::from(&b"hello"[..]);
|
|
/// assert_eq!(b.len(), 5);
|
|
/// ```
|
|
#[inline]
|
|
pub fn len(&self) -> usize {
|
|
self.inner.len()
|
|
}
|
|
|
|
/// Returns true if the `BytesMut` has a length of 0.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let b = BytesMut::with_capacity(64);
|
|
/// assert!(b.is_empty());
|
|
/// ```
|
|
#[inline]
|
|
pub fn is_empty(&self) -> bool {
|
|
self.inner.is_empty()
|
|
}
|
|
|
|
/// Returns the number of bytes the `BytesMut` can hold without reallocating.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let b = BytesMut::with_capacity(64);
|
|
/// assert_eq!(b.capacity(), 96);
|
|
/// ```
|
|
#[inline]
|
|
pub fn capacity(&self) -> usize {
|
|
self.inner.capacity()
|
|
}
|
|
|
|
/// Converts `self` into an immutable `Bytes`.
|
|
///
|
|
/// The conversion is zero cost and is used to indicate that the slice
|
|
/// referenced by the handle will no longer be mutated. Once the conversion
|
|
/// is done, the handle can be cloned and shared across threads.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{BytesMut, BufMut};
|
|
/// use std::thread;
|
|
///
|
|
/// let mut b = BytesMut::with_capacity(64);
|
|
/// b.put("hello world");
|
|
/// let b1 = b.freeze();
|
|
/// let b2 = b1.clone();
|
|
///
|
|
/// let th = thread::spawn(move || {
|
|
/// assert_eq!(&b1[..], b"hello world");
|
|
/// });
|
|
///
|
|
/// assert_eq!(&b2[..], b"hello world");
|
|
/// th.join().unwrap();
|
|
/// ```
|
|
#[inline]
|
|
pub fn freeze(self) -> Bytes {
|
|
if self.inner.len() <= INLINE_CAP {
|
|
Bytes {
|
|
inner: self.inner.to_inline(),
|
|
}
|
|
} else {
|
|
Bytes { inner: self.inner }
|
|
}
|
|
}
|
|
|
|
/// Splits the bytes into two at the given index.
|
|
///
|
|
/// Afterwards `self` contains elements `[0, at)`, and the returned
|
|
/// `BytesMut` contains elements `[at, capacity)`.
|
|
///
|
|
/// This is an `O(1)` operation that just increases the reference count
|
|
/// and sets a few indices.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let mut a = BytesMut::from(&b"hello world"[..]);
|
|
/// let mut b = a.split_off(5);
|
|
///
|
|
/// a[0] = b'j';
|
|
/// b[0] = b'!';
|
|
///
|
|
/// assert_eq!(&a[..], b"jello");
|
|
/// assert_eq!(&b[..], b"!world");
|
|
/// ```
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `at > capacity`.
|
|
pub fn split_off(&mut self, at: usize) -> BytesMut {
|
|
BytesMut {
|
|
inner: self.inner.split_off(at, false),
|
|
}
|
|
}
|
|
|
|
/// Removes the bytes from the current view, returning them in a new
|
|
/// `BytesMut` handle.
|
|
///
|
|
/// Afterwards, `self` will be empty, but will retain any additional
|
|
/// capacity that it had before the operation. This is identical to
|
|
/// `self.split_to(self.len())`.
|
|
///
|
|
/// This is an `O(1)` operation that just increases the reference count and
|
|
/// sets a few indices.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{BytesMut, BufMut};
|
|
///
|
|
/// let mut buf = BytesMut::with_capacity(1024);
|
|
/// buf.put(&b"hello world"[..]);
|
|
///
|
|
/// let other = buf.split();
|
|
///
|
|
/// assert!(buf.is_empty());
|
|
/// assert_eq!(1045, buf.capacity());
|
|
///
|
|
/// assert_eq!(other, b"hello world"[..]);
|
|
/// ```
|
|
pub fn split(&mut self) -> BytesMut {
|
|
let len = self.len();
|
|
self.split_to(len)
|
|
}
|
|
|
|
/// Splits the buffer into two at the given index.
|
|
///
|
|
/// Afterwards `self` contains elements `[at, len)`, and the returned `BytesMut`
|
|
/// contains elements `[0, at)`.
|
|
///
|
|
/// This is an `O(1)` operation that just increases the reference count and
|
|
/// sets a few indices.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let mut a = BytesMut::from(&b"hello world"[..]);
|
|
/// let mut b = a.split_to(5);
|
|
///
|
|
/// a[0] = b'!';
|
|
/// b[0] = b'j';
|
|
///
|
|
/// assert_eq!(&a[..], b"!world");
|
|
/// assert_eq!(&b[..], b"jello");
|
|
/// ```
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `at > len`.
|
|
pub fn split_to(&mut self, at: usize) -> BytesMut {
|
|
assert!(at <= self.len());
|
|
|
|
BytesMut {
|
|
inner: self.inner.split_to(at, false),
|
|
}
|
|
}
|
|
|
|
/// Shortens the buffer, keeping the first `len` bytes and dropping the
|
|
/// rest.
|
|
///
|
|
/// If `len` is greater than the buffer's current length, this has no
|
|
/// effect.
|
|
///
|
|
/// The [`split_off`] method can emulate `truncate`, but this causes the
|
|
/// excess bytes to be returned instead of dropped.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let mut buf = BytesMut::from(&b"hello world"[..]);
|
|
/// buf.truncate(5);
|
|
/// assert_eq!(buf, b"hello"[..]);
|
|
/// ```
|
|
///
|
|
/// [`split_off`]: #method.split_off
|
|
pub fn truncate(&mut self, len: usize) {
|
|
self.inner.truncate(len, false);
|
|
}
|
|
|
|
/// Clears the buffer, removing all data.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let mut buf = BytesMut::from(&b"hello world"[..]);
|
|
/// buf.clear();
|
|
/// assert!(buf.is_empty());
|
|
/// ```
|
|
pub fn clear(&mut self) {
|
|
self.truncate(0);
|
|
}
|
|
|
|
/// Resizes the buffer so that `len` is equal to `new_len`.
|
|
///
|
|
/// If `new_len` is greater than `len`, the buffer is extended by the
|
|
/// difference with each additional byte set to `value`. If `new_len` is
|
|
/// less than `len`, the buffer is simply truncated.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `new_len` greater than 60bit for 64bit systems
|
|
/// and 28bit for 32bit systems
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let mut buf = BytesMut::new();
|
|
///
|
|
/// buf.resize(3, 0x1);
|
|
/// assert_eq!(&buf[..], &[0x1, 0x1, 0x1]);
|
|
///
|
|
/// buf.resize(2, 0x2);
|
|
/// assert_eq!(&buf[..], &[0x1, 0x1]);
|
|
///
|
|
/// buf.resize(4, 0x3);
|
|
/// assert_eq!(&buf[..], &[0x1, 0x1, 0x3, 0x3]);
|
|
/// ```
|
|
#[inline]
|
|
pub fn resize(&mut self, new_len: usize, value: u8) {
|
|
self.inner.resize(new_len, value);
|
|
}
|
|
|
|
/// Sets the length of the buffer.
|
|
///
|
|
/// This will explicitly set the size of the buffer without actually
|
|
/// modifying the data, so it is up to the caller to ensure that the data
|
|
/// has been initialized.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let mut b = BytesMut::from(&b"hello world"[..]);
|
|
///
|
|
/// unsafe {
|
|
/// b.set_len(5);
|
|
/// }
|
|
///
|
|
/// assert_eq!(&b[..], b"hello");
|
|
///
|
|
/// unsafe {
|
|
/// b.set_len(11);
|
|
/// }
|
|
///
|
|
/// assert_eq!(&b[..], b"hello world");
|
|
/// ```
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// This method will panic if `len` is out of bounds for the underlying
|
|
/// slice or if it comes after the `end` of the configured window.
|
|
#[inline]
|
|
#[allow(clippy::missing_safety_doc)]
|
|
pub unsafe fn set_len(&mut self, len: usize) {
|
|
self.inner.set_len(len)
|
|
}
|
|
|
|
/// Reserves capacity for at least `additional` more bytes to be inserted
|
|
/// into the given `BytesMut`.
|
|
///
|
|
/// More than `additional` bytes may be reserved in order to avoid frequent
|
|
/// reallocations. A call to `reserve` may result in an allocation.
|
|
///
|
|
/// Before allocating new buffer space, the function will attempt to reclaim
|
|
/// space in the existing buffer. If the current handle references a small
|
|
/// view in the original buffer and all other handles have been dropped,
|
|
/// and the requested capacity is less than or equal to the existing
|
|
/// buffer's capacity, then the current view will be copied to the front of
|
|
/// the buffer and the handle will take ownership of the full buffer.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if new capacity is greater than 60bit for 64bit systems
|
|
/// and 28bit for 32bit systems
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// In the following example, a new buffer is allocated.
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let mut buf = BytesMut::from(&b"hello"[..]);
|
|
/// buf.reserve(64);
|
|
/// assert!(buf.capacity() >= 69);
|
|
/// ```
|
|
///
|
|
/// In the following example, the existing buffer is reclaimed.
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{BytesMut, BufMut};
|
|
///
|
|
/// let mut buf = BytesMut::with_capacity(128);
|
|
/// buf.put(&[0; 64][..]);
|
|
///
|
|
/// let ptr = buf.as_ptr();
|
|
/// let other = buf.split();
|
|
///
|
|
/// assert!(buf.is_empty());
|
|
/// assert_eq!(buf.capacity(), 96);
|
|
///
|
|
/// drop(other);
|
|
/// buf.reserve(128);
|
|
///
|
|
/// assert_eq!(buf.capacity(), 160);
|
|
/// assert_eq!(buf.as_ptr(), ptr);
|
|
/// ```
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if the new capacity overflows `usize`.
|
|
#[inline]
|
|
pub fn reserve(&mut self, additional: usize) {
|
|
let len = self.len();
|
|
let rem = self.capacity() - len;
|
|
|
|
if additional <= rem {
|
|
// The handle can already store at least `additional` more bytes, so
|
|
// there is no further work needed to be done.
|
|
return;
|
|
}
|
|
|
|
self.inner.reserve_inner(additional);
|
|
}
|
|
|
|
/// Appends given bytes to this object.
|
|
///
|
|
/// If this `BytesMut` object has not enough capacity, it is resized first.
|
|
/// So unlike `put_slice` operation, `extend_from_slice` does not panic.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let mut buf = BytesMut::with_capacity(0);
|
|
/// buf.extend_from_slice(b"aaabbb");
|
|
/// buf.extend_from_slice(b"cccddd");
|
|
///
|
|
/// assert_eq!(b"aaabbbcccddd", &buf[..]);
|
|
/// ```
|
|
#[inline]
|
|
pub fn extend_from_slice(&mut self, extend: &[u8]) {
|
|
self.put_slice(extend);
|
|
}
|
|
|
|
/// Returns an iterator over the bytes contained by the buffer.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{Buf, BytesMut};
|
|
///
|
|
/// let buf = BytesMut::from(&b"abc"[..]);
|
|
/// let mut iter = buf.iter();
|
|
///
|
|
/// assert_eq!(iter.next().map(|b| *b), Some(b'a'));
|
|
/// assert_eq!(iter.next().map(|b| *b), Some(b'b'));
|
|
/// assert_eq!(iter.next().map(|b| *b), Some(b'c'));
|
|
/// assert_eq!(iter.next(), None);
|
|
/// ```
|
|
#[inline]
|
|
pub fn iter(&'_ self) -> std::slice::Iter<'_, u8> {
|
|
self.chunk().iter()
|
|
}
|
|
|
|
pub(crate) fn move_to_pool(&mut self, pool: PoolRef) {
|
|
self.inner.move_to_pool(pool);
|
|
}
|
|
}
|
|
|
|
impl Buf for BytesMut {
|
|
#[inline]
|
|
fn remaining(&self) -> usize {
|
|
self.len()
|
|
}
|
|
|
|
#[inline]
|
|
fn chunk(&self) -> &[u8] {
|
|
self.inner.as_ref()
|
|
}
|
|
|
|
#[inline]
|
|
fn advance(&mut self, cnt: usize) {
|
|
assert!(
|
|
cnt <= self.inner.as_ref().len(),
|
|
"cannot advance past `remaining`"
|
|
);
|
|
unsafe {
|
|
self.inner.set_start(cnt);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl BufMut for BytesMut {
|
|
#[inline]
|
|
fn remaining_mut(&self) -> usize {
|
|
self.capacity() - self.len()
|
|
}
|
|
|
|
#[inline]
|
|
unsafe fn advance_mut(&mut self, cnt: usize) {
|
|
let new_len = self.len() + cnt;
|
|
|
|
// This call will panic if `cnt` is too big
|
|
self.inner.set_len(new_len);
|
|
}
|
|
|
|
#[inline]
|
|
fn chunk_mut(&mut self) -> &mut UninitSlice {
|
|
let len = self.len();
|
|
|
|
unsafe {
|
|
// This will never panic as `len` can never become invalid
|
|
let ptr = &mut self.inner.as_raw()[len..];
|
|
|
|
UninitSlice::from_raw_parts_mut(ptr.as_mut_ptr(), self.capacity() - len)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn put_slice(&mut self, src: &[u8]) {
|
|
let len = src.len();
|
|
self.reserve(len);
|
|
|
|
unsafe {
|
|
ptr::copy_nonoverlapping(
|
|
src.as_ptr(),
|
|
self.chunk_mut().as_mut_ptr() as *mut u8,
|
|
len,
|
|
);
|
|
self.advance_mut(len);
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn put_u8(&mut self, n: u8) {
|
|
self.reserve(1);
|
|
self.inner.put_u8(n);
|
|
}
|
|
|
|
#[inline]
|
|
fn put_i8(&mut self, n: i8) {
|
|
self.reserve(1);
|
|
self.put_u8(n as u8);
|
|
}
|
|
}
|
|
|
|
impl AsRef<[u8]> for BytesMut {
|
|
#[inline]
|
|
fn as_ref(&self) -> &[u8] {
|
|
self.inner.as_ref()
|
|
}
|
|
}
|
|
|
|
impl Deref for BytesMut {
|
|
type Target = [u8];
|
|
|
|
#[inline]
|
|
fn deref(&self) -> &[u8] {
|
|
self.as_ref()
|
|
}
|
|
}
|
|
|
|
impl AsMut<[u8]> for BytesMut {
|
|
#[inline]
|
|
fn as_mut(&mut self) -> &mut [u8] {
|
|
self.inner.as_mut()
|
|
}
|
|
}
|
|
|
|
impl DerefMut for BytesMut {
|
|
#[inline]
|
|
fn deref_mut(&mut self) -> &mut [u8] {
|
|
self.inner.as_mut()
|
|
}
|
|
}
|
|
|
|
impl From<Vec<u8>> for BytesMut {
|
|
#[inline]
|
|
/// Convert a `Vec` into a `BytesMut`
|
|
///
|
|
/// This constructor may be used to avoid the inlining optimization used by
|
|
/// `with_capacity`. A `BytesMut` constructed this way will always store
|
|
/// its data on the heap.
|
|
fn from(src: Vec<u8>) -> BytesMut {
|
|
BytesMut::from_vec(src, PoolId::DEFAULT.pool_ref())
|
|
}
|
|
}
|
|
|
|
impl From<String> for BytesMut {
|
|
#[inline]
|
|
fn from(src: String) -> BytesMut {
|
|
BytesMut::from_vec(src.into_bytes(), PoolId::DEFAULT.pool_ref())
|
|
}
|
|
}
|
|
|
|
impl<'a> From<&'a [u8]> for BytesMut {
|
|
fn from(src: &'a [u8]) -> BytesMut {
|
|
let len = src.len();
|
|
|
|
if len == 0 {
|
|
BytesMut::new()
|
|
} else {
|
|
BytesMut::copy_from_slice_in(src, PoolId::DEFAULT.pool_ref())
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> From<&'a str> for BytesMut {
|
|
#[inline]
|
|
fn from(src: &'a str) -> BytesMut {
|
|
BytesMut::from(src.as_bytes())
|
|
}
|
|
}
|
|
|
|
impl From<Bytes> for BytesMut {
|
|
#[inline]
|
|
fn from(src: Bytes) -> BytesMut {
|
|
src.try_mut()
|
|
.unwrap_or_else(|src| BytesMut::copy_from_slice_in(&src[..], src.inner.pool()))
|
|
}
|
|
}
|
|
|
|
impl PartialEq for BytesMut {
|
|
#[inline]
|
|
fn eq(&self, other: &BytesMut) -> bool {
|
|
self.inner.as_ref() == other.inner.as_ref()
|
|
}
|
|
}
|
|
|
|
impl PartialOrd for BytesMut {
|
|
#[inline]
|
|
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
|
|
self.inner.as_ref().partial_cmp(other.inner.as_ref())
|
|
}
|
|
}
|
|
|
|
impl Ord for BytesMut {
|
|
#[inline]
|
|
fn cmp(&self, other: &BytesMut) -> cmp::Ordering {
|
|
self.inner.as_ref().cmp(other.inner.as_ref())
|
|
}
|
|
}
|
|
|
|
impl Eq for BytesMut {}
|
|
|
|
impl Default for BytesMut {
|
|
#[inline]
|
|
fn default() -> BytesMut {
|
|
BytesMut::new()
|
|
}
|
|
}
|
|
|
|
impl fmt::Debug for BytesMut {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
fmt::Debug::fmt(&debug::BsDebug(self.inner.as_ref()), fmt)
|
|
}
|
|
}
|
|
|
|
impl hash::Hash for BytesMut {
|
|
#[inline]
|
|
fn hash<H>(&self, state: &mut H)
|
|
where
|
|
H: hash::Hasher,
|
|
{
|
|
let s: &[u8] = self.as_ref();
|
|
s.hash(state);
|
|
}
|
|
}
|
|
|
|
impl Borrow<[u8]> for BytesMut {
|
|
#[inline]
|
|
fn borrow(&self) -> &[u8] {
|
|
self.as_ref()
|
|
}
|
|
}
|
|
|
|
impl BorrowMut<[u8]> for BytesMut {
|
|
#[inline]
|
|
fn borrow_mut(&mut self) -> &mut [u8] {
|
|
self.as_mut()
|
|
}
|
|
}
|
|
|
|
impl fmt::Write for BytesMut {
|
|
#[inline]
|
|
fn write_str(&mut self, s: &str) -> fmt::Result {
|
|
if self.remaining_mut() >= s.len() {
|
|
self.put_slice(s.as_bytes());
|
|
Ok(())
|
|
} else {
|
|
Err(fmt::Error)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn write_fmt(&mut self, args: fmt::Arguments<'_>) -> fmt::Result {
|
|
fmt::write(self, args)
|
|
}
|
|
}
|
|
|
|
impl Clone for BytesMut {
|
|
#[inline]
|
|
fn clone(&self) -> BytesMut {
|
|
BytesMut {
|
|
inner: unsafe { self.inner.shallow_clone() },
|
|
}
|
|
}
|
|
}
|
|
|
|
impl IntoIterator for BytesMut {
|
|
type Item = u8;
|
|
type IntoIter = IntoIter<BytesMut>;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
IntoIter::new(self)
|
|
}
|
|
}
|
|
|
|
impl<'a> IntoIterator for &'a BytesMut {
|
|
type Item = &'a u8;
|
|
type IntoIter = std::slice::Iter<'a, u8>;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
self.as_ref().iter()
|
|
}
|
|
}
|
|
|
|
impl Extend<u8> for BytesMut {
|
|
fn extend<T>(&mut self, iter: T)
|
|
where
|
|
T: IntoIterator<Item = u8>,
|
|
{
|
|
let iter = iter.into_iter();
|
|
|
|
let (lower, _) = iter.size_hint();
|
|
self.reserve(lower);
|
|
|
|
for b in iter {
|
|
self.put_u8(b);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> Extend<&'a u8> for BytesMut {
|
|
fn extend<T>(&mut self, iter: T)
|
|
where
|
|
T: IntoIterator<Item = &'a u8>,
|
|
{
|
|
self.extend(iter.into_iter().copied())
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ===== BytesVec =====
|
|
*
|
|
*/
|
|
|
|
impl BytesVec {
|
|
/// Creates a new `BytesVec` with the specified capacity.
|
|
///
|
|
/// The returned `BytesVec` will be able to hold at least `capacity` bytes
|
|
/// without reallocating.
|
|
///
|
|
/// It is important to note that this function does not specify the length
|
|
/// of the returned `BytesVec`, but only the capacity.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `capacity` greater than 60bit for 64bit systems
|
|
/// and 28bit for 32bit systems
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{BytesVec, BufMut};
|
|
///
|
|
/// let mut bytes = BytesVec::with_capacity(64);
|
|
///
|
|
/// // `bytes` contains no data, even though there is capacity
|
|
/// assert_eq!(bytes.len(), 0);
|
|
///
|
|
/// bytes.put(&b"hello world"[..]);
|
|
///
|
|
/// assert_eq!(&bytes[..], b"hello world");
|
|
/// ```
|
|
#[inline]
|
|
pub fn with_capacity(capacity: usize) -> BytesVec {
|
|
Self::with_capacity_in(capacity, PoolId::DEFAULT.pool_ref())
|
|
}
|
|
|
|
/// Creates a new `BytesVec` with the specified capacity and in specified memory pool.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{BytesVec, BufMut, PoolId};
|
|
///
|
|
/// let mut bytes = BytesVec::with_capacity_in(64, PoolId::P1);
|
|
///
|
|
/// // `bytes` contains no data, even though there is capacity
|
|
/// assert_eq!(bytes.len(), 0);
|
|
///
|
|
/// bytes.put(&b"hello world"[..]);
|
|
///
|
|
/// assert_eq!(&bytes[..], b"hello world");
|
|
/// assert!(PoolId::P1.pool_ref().allocated() > 0);
|
|
/// ```
|
|
#[inline]
|
|
pub fn with_capacity_in<T>(capacity: usize, pool: T) -> BytesVec
|
|
where
|
|
PoolRef: From<T>,
|
|
{
|
|
BytesVec {
|
|
inner: InnerVec::with_capacity(capacity, pool.into()),
|
|
}
|
|
}
|
|
|
|
/// Creates a new `BytesVec` from slice, by copying it.
|
|
pub fn copy_from_slice<T: AsRef<[u8]>>(src: T) -> Self {
|
|
Self::copy_from_slice_in(src, PoolId::DEFAULT)
|
|
}
|
|
|
|
/// Creates a new `BytesVec` from slice, by copying it.
|
|
pub fn copy_from_slice_in<T, U>(src: T, pool: U) -> Self
|
|
where
|
|
T: AsRef<[u8]>,
|
|
PoolRef: From<U>,
|
|
{
|
|
let s = src.as_ref();
|
|
BytesVec {
|
|
inner: InnerVec::from_slice(s.len(), s, pool.into()),
|
|
}
|
|
}
|
|
|
|
/// Creates a new `BytesVec` with default capacity.
|
|
///
|
|
/// Resulting object has length 0 and unspecified capacity.
|
|
/// This function does not allocate.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{BytesVec, BufMut};
|
|
///
|
|
/// let mut bytes = BytesVec::new();
|
|
///
|
|
/// assert_eq!(0, bytes.len());
|
|
///
|
|
/// bytes.reserve(2);
|
|
/// bytes.put_slice(b"xy");
|
|
///
|
|
/// assert_eq!(&b"xy"[..], &bytes[..]);
|
|
/// ```
|
|
#[inline]
|
|
pub fn new() -> BytesVec {
|
|
BytesVec::with_capacity(MIN_NON_ZERO_CAP)
|
|
}
|
|
|
|
/// Returns the number of bytes contained in this `BytesVec`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesVec;
|
|
///
|
|
/// let b = BytesVec::copy_from_slice(&b"hello"[..]);
|
|
/// assert_eq!(b.len(), 5);
|
|
/// ```
|
|
#[inline]
|
|
pub fn len(&self) -> usize {
|
|
self.inner.len()
|
|
}
|
|
|
|
/// Returns true if the `BytesVec` has a length of 0.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesVec;
|
|
///
|
|
/// let b = BytesVec::with_capacity(64);
|
|
/// assert!(b.is_empty());
|
|
/// ```
|
|
#[inline]
|
|
pub fn is_empty(&self) -> bool {
|
|
self.inner.len() == 0
|
|
}
|
|
|
|
/// Returns the number of bytes the `BytesVec` can hold without reallocating.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesVec;
|
|
///
|
|
/// let b = BytesVec::with_capacity(64);
|
|
/// assert_eq!(b.capacity(), 96);
|
|
/// ```
|
|
#[inline]
|
|
pub fn capacity(&self) -> usize {
|
|
self.inner.capacity()
|
|
}
|
|
|
|
/// Converts `self` into an immutable `Bytes`.
|
|
///
|
|
/// The conversion is zero cost and is used to indicate that the slice
|
|
/// referenced by the handle will no longer be mutated. Once the conversion
|
|
/// is done, the handle can be cloned and shared across threads.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{BytesVec, BufMut};
|
|
/// use std::thread;
|
|
///
|
|
/// let mut b = BytesVec::with_capacity(64);
|
|
/// b.put("hello world");
|
|
/// let b1 = b.freeze();
|
|
/// let b2 = b1.clone();
|
|
///
|
|
/// let th = thread::spawn(move || {
|
|
/// assert_eq!(&b1[..], b"hello world");
|
|
/// });
|
|
///
|
|
/// assert_eq!(&b2[..], b"hello world");
|
|
/// th.join().unwrap();
|
|
/// ```
|
|
#[inline]
|
|
pub fn freeze(self) -> Bytes {
|
|
Bytes {
|
|
inner: self.inner.into_inner(),
|
|
}
|
|
}
|
|
|
|
/// Removes the bytes from the current view, returning them in a new
|
|
/// `Bytes` instance.
|
|
///
|
|
/// Afterwards, `self` will be empty, but will retain any additional
|
|
/// capacity that it had before the operation. This is identical to
|
|
/// `self.split_to(self.len())`.
|
|
///
|
|
/// This is an `O(1)` operation that just increases the reference count and
|
|
/// sets a few indices.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{BytesVec, BufMut};
|
|
///
|
|
/// let mut buf = BytesVec::with_capacity(1024);
|
|
/// buf.put(&b"hello world"[..]);
|
|
///
|
|
/// let other = buf.split();
|
|
///
|
|
/// assert!(buf.is_empty());
|
|
/// assert_eq!(1045, buf.capacity());
|
|
///
|
|
/// assert_eq!(other, b"hello world"[..]);
|
|
/// ```
|
|
pub fn split(&mut self) -> BytesMut {
|
|
self.split_to(self.len())
|
|
}
|
|
|
|
/// Splits the buffer into two at the given index.
|
|
///
|
|
/// Afterwards `self` contains elements `[at, len)`, and the returned `Bytes`
|
|
/// contains elements `[0, at)`.
|
|
///
|
|
/// This is an `O(1)` operation that just increases the reference count and
|
|
/// sets a few indices.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesVec;
|
|
///
|
|
/// let mut a = BytesVec::copy_from_slice(&b"hello world"[..]);
|
|
/// let mut b = a.split_to(5);
|
|
///
|
|
/// a[0] = b'!';
|
|
///
|
|
/// assert_eq!(&a[..], b"!world");
|
|
/// assert_eq!(&b[..], b"hello");
|
|
/// ```
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `at > len`.
|
|
pub fn split_to(&mut self, at: usize) -> BytesMut {
|
|
assert!(at <= self.len());
|
|
|
|
BytesMut {
|
|
inner: self.inner.split_to(at, false),
|
|
}
|
|
}
|
|
|
|
/// Shortens the buffer, keeping the first `len` bytes and dropping the
|
|
/// rest.
|
|
///
|
|
/// If `len` is greater than the buffer's current length, this has no
|
|
/// effect.
|
|
///
|
|
/// The [`split_off`] method can emulate `truncate`, but this causes the
|
|
/// excess bytes to be returned instead of dropped.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesVec;
|
|
///
|
|
/// let mut buf = BytesVec::copy_from_slice(&b"hello world"[..]);
|
|
/// buf.truncate(5);
|
|
/// assert_eq!(buf, b"hello"[..]);
|
|
/// ```
|
|
///
|
|
/// [`split_off`]: #method.split_off
|
|
pub fn truncate(&mut self, len: usize) {
|
|
self.inner.truncate(len);
|
|
}
|
|
|
|
/// Clears the buffer, removing all data.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesVec;
|
|
///
|
|
/// let mut buf = BytesVec::copy_from_slice(&b"hello world"[..]);
|
|
/// buf.clear();
|
|
/// assert!(buf.is_empty());
|
|
/// ```
|
|
pub fn clear(&mut self) {
|
|
self.truncate(0);
|
|
}
|
|
|
|
/// Resizes the buffer so that `len` is equal to `new_len`.
|
|
///
|
|
/// If `new_len` is greater than `len`, the buffer is extended by the
|
|
/// difference with each additional byte set to `value`. If `new_len` is
|
|
/// less than `len`, the buffer is simply truncated.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `new_len` greater than 60bit for 64bit systems
|
|
/// and 28bit for 32bit systems
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesVec;
|
|
///
|
|
/// let mut buf = BytesVec::new();
|
|
///
|
|
/// buf.resize(3, 0x1);
|
|
/// assert_eq!(&buf[..], &[0x1, 0x1, 0x1]);
|
|
///
|
|
/// buf.resize(2, 0x2);
|
|
/// assert_eq!(&buf[..], &[0x1, 0x1]);
|
|
///
|
|
/// buf.resize(4, 0x3);
|
|
/// assert_eq!(&buf[..], &[0x1, 0x1, 0x3, 0x3]);
|
|
/// ```
|
|
#[inline]
|
|
pub fn resize(&mut self, new_len: usize, value: u8) {
|
|
self.inner.resize(new_len, value);
|
|
}
|
|
|
|
/// Sets the length of the buffer.
|
|
///
|
|
/// This will explicitly set the size of the buffer without actually
|
|
/// modifying the data, so it is up to the caller to ensure that the data
|
|
/// has been initialized.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesVec;
|
|
///
|
|
/// let mut b = BytesVec::copy_from_slice(&b"hello world"[..]);
|
|
///
|
|
/// unsafe {
|
|
/// b.set_len(5);
|
|
/// }
|
|
///
|
|
/// assert_eq!(&b[..], b"hello");
|
|
///
|
|
/// unsafe {
|
|
/// b.set_len(11);
|
|
/// }
|
|
///
|
|
/// assert_eq!(&b[..], b"hello world");
|
|
/// ```
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// This method will panic if `len` is out of bounds for the underlying
|
|
/// slice or if it comes after the `end` of the configured window.
|
|
#[inline]
|
|
#[allow(clippy::missing_safety_doc)]
|
|
pub unsafe fn set_len(&mut self, len: usize) {
|
|
self.inner.set_len(len)
|
|
}
|
|
|
|
/// Reserves capacity for at least `additional` more bytes to be inserted
|
|
/// into the given `BytesVec`.
|
|
///
|
|
/// More than `additional` bytes may be reserved in order to avoid frequent
|
|
/// reallocations. A call to `reserve` may result in an allocation.
|
|
///
|
|
/// Before allocating new buffer space, the function will attempt to reclaim
|
|
/// space in the existing buffer. If the current handle references a small
|
|
/// view in the original buffer and all other handles have been dropped,
|
|
/// and the requested capacity is less than or equal to the existing
|
|
/// buffer's capacity, then the current view will be copied to the front of
|
|
/// the buffer and the handle will take ownership of the full buffer.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if new capacity is greater than 60bit for 64bit systems
|
|
/// and 28bit for 32bit systems
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// In the following example, a new buffer is allocated.
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesVec;
|
|
///
|
|
/// let mut buf = BytesVec::copy_from_slice(&b"hello"[..]);
|
|
/// buf.reserve(64);
|
|
/// assert!(buf.capacity() >= 69);
|
|
/// ```
|
|
///
|
|
/// In the following example, the existing buffer is reclaimed.
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{BytesVec, BufMut};
|
|
///
|
|
/// let mut buf = BytesVec::with_capacity(128);
|
|
/// buf.put(&[0; 64][..]);
|
|
///
|
|
/// let ptr = buf.as_ptr();
|
|
/// let other = buf.split();
|
|
///
|
|
/// assert!(buf.is_empty());
|
|
/// assert_eq!(buf.capacity(), 96);
|
|
///
|
|
/// drop(other);
|
|
/// buf.reserve(128);
|
|
///
|
|
/// assert_eq!(buf.capacity(), 160);
|
|
/// assert_eq!(buf.as_ptr(), ptr);
|
|
/// ```
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if the new capacity overflows `usize`.
|
|
#[inline]
|
|
pub fn reserve(&mut self, additional: usize) {
|
|
let len = self.len();
|
|
let rem = self.capacity() - len;
|
|
|
|
if additional <= rem {
|
|
// The handle can already store at least `additional` more bytes, so
|
|
// there is no further work needed to be done.
|
|
return;
|
|
}
|
|
|
|
self.inner.reserve_inner(additional);
|
|
}
|
|
|
|
/// Appends given bytes to this object.
|
|
///
|
|
/// If this `BytesVec` object has not enough capacity, it is resized first.
|
|
/// So unlike `put_slice` operation, `extend_from_slice` does not panic.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesVec;
|
|
///
|
|
/// let mut buf = BytesVec::with_capacity(0);
|
|
/// buf.extend_from_slice(b"aaabbb");
|
|
/// buf.extend_from_slice(b"cccddd");
|
|
///
|
|
/// assert_eq!(b"aaabbbcccddd", &buf[..]);
|
|
/// ```
|
|
#[inline]
|
|
pub fn extend_from_slice(&mut self, extend: &[u8]) {
|
|
self.put_slice(extend);
|
|
}
|
|
|
|
/// Run provided function with `BytesMut` instance that contains current data.
|
|
#[inline]
|
|
pub fn with_bytes_mut<F, R>(&mut self, f: F) -> R
|
|
where
|
|
F: FnOnce(&mut BytesMut) -> R,
|
|
{
|
|
self.inner.with_bytes_mut(f)
|
|
}
|
|
|
|
/// Returns an iterator over the bytes contained by the buffer.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{Buf, BytesVec};
|
|
///
|
|
/// let buf = BytesVec::copy_from_slice(&b"abc"[..]);
|
|
/// let mut iter = buf.iter();
|
|
///
|
|
/// assert_eq!(iter.next().map(|b| *b), Some(b'a'));
|
|
/// assert_eq!(iter.next().map(|b| *b), Some(b'b'));
|
|
/// assert_eq!(iter.next().map(|b| *b), Some(b'c'));
|
|
/// assert_eq!(iter.next(), None);
|
|
/// ```
|
|
#[inline]
|
|
pub fn iter(&'_ self) -> std::slice::Iter<'_, u8> {
|
|
self.chunk().iter()
|
|
}
|
|
|
|
pub(crate) fn move_to_pool(&mut self, pool: PoolRef) {
|
|
self.inner.move_to_pool(pool);
|
|
}
|
|
}
|
|
|
|
impl Buf for BytesVec {
|
|
#[inline]
|
|
fn remaining(&self) -> usize {
|
|
self.len()
|
|
}
|
|
|
|
#[inline]
|
|
fn chunk(&self) -> &[u8] {
|
|
self.inner.as_ref()
|
|
}
|
|
|
|
#[inline]
|
|
fn advance(&mut self, cnt: usize) {
|
|
assert!(
|
|
cnt <= self.inner.as_ref().len(),
|
|
"cannot advance past `remaining`"
|
|
);
|
|
unsafe {
|
|
self.inner.set_start(cnt as u32);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl BufMut for BytesVec {
|
|
#[inline]
|
|
fn remaining_mut(&self) -> usize {
|
|
self.capacity() - self.len()
|
|
}
|
|
|
|
#[inline]
|
|
unsafe fn advance_mut(&mut self, cnt: usize) {
|
|
let new_len = self.len() + cnt;
|
|
|
|
// This call will panic if `cnt` is too big
|
|
self.inner.set_len(new_len);
|
|
}
|
|
|
|
#[inline]
|
|
fn chunk_mut(&mut self) -> &mut UninitSlice {
|
|
let len = self.len();
|
|
|
|
unsafe {
|
|
// This will never panic as `len` can never become invalid
|
|
let ptr = &mut self.inner.as_raw()[len..];
|
|
|
|
UninitSlice::from_raw_parts_mut(ptr.as_mut_ptr(), self.capacity() - len)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn put_slice(&mut self, src: &[u8]) {
|
|
let len = src.len();
|
|
self.reserve(len);
|
|
|
|
unsafe {
|
|
ptr::copy_nonoverlapping(
|
|
src.as_ptr(),
|
|
self.chunk_mut().as_mut_ptr() as *mut u8,
|
|
len,
|
|
);
|
|
self.advance_mut(len);
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn put_u8(&mut self, n: u8) {
|
|
self.reserve(1);
|
|
self.inner.put_u8(n);
|
|
}
|
|
|
|
#[inline]
|
|
fn put_i8(&mut self, n: i8) {
|
|
self.reserve(1);
|
|
self.put_u8(n as u8);
|
|
}
|
|
}
|
|
|
|
impl AsRef<[u8]> for BytesVec {
|
|
#[inline]
|
|
fn as_ref(&self) -> &[u8] {
|
|
self.inner.as_ref()
|
|
}
|
|
}
|
|
|
|
impl AsMut<[u8]> for BytesVec {
|
|
#[inline]
|
|
fn as_mut(&mut self) -> &mut [u8] {
|
|
self.inner.as_mut()
|
|
}
|
|
}
|
|
|
|
impl Deref for BytesVec {
|
|
type Target = [u8];
|
|
|
|
#[inline]
|
|
fn deref(&self) -> &[u8] {
|
|
self.as_ref()
|
|
}
|
|
}
|
|
|
|
impl DerefMut for BytesVec {
|
|
#[inline]
|
|
fn deref_mut(&mut self) -> &mut [u8] {
|
|
self.inner.as_mut()
|
|
}
|
|
}
|
|
|
|
impl Eq for BytesVec {}
|
|
|
|
impl PartialEq for BytesVec {
|
|
#[inline]
|
|
fn eq(&self, other: &BytesVec) -> bool {
|
|
self.inner.as_ref() == other.inner.as_ref()
|
|
}
|
|
}
|
|
|
|
impl Ord for BytesVec {
|
|
#[inline]
|
|
fn cmp(&self, other: &BytesVec) -> cmp::Ordering {
|
|
self.inner.as_ref().cmp(other.inner.as_ref())
|
|
}
|
|
}
|
|
|
|
impl PartialOrd for BytesVec {
|
|
#[inline]
|
|
fn partial_cmp(&self, other: &BytesVec) -> Option<cmp::Ordering> {
|
|
self.inner.as_ref().partial_cmp(other.inner.as_ref())
|
|
}
|
|
}
|
|
|
|
impl Default for BytesVec {
|
|
#[inline]
|
|
fn default() -> BytesVec {
|
|
BytesVec::new()
|
|
}
|
|
}
|
|
|
|
impl fmt::Debug for BytesVec {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
fmt::Debug::fmt(&debug::BsDebug(self.inner.as_ref()), fmt)
|
|
}
|
|
}
|
|
|
|
impl hash::Hash for BytesVec {
|
|
#[inline]
|
|
fn hash<H>(&self, state: &mut H)
|
|
where
|
|
H: hash::Hasher,
|
|
{
|
|
let s: &[u8] = self.as_ref();
|
|
s.hash(state);
|
|
}
|
|
}
|
|
|
|
impl Borrow<[u8]> for BytesVec {
|
|
#[inline]
|
|
fn borrow(&self) -> &[u8] {
|
|
self.as_ref()
|
|
}
|
|
}
|
|
|
|
impl BorrowMut<[u8]> for BytesVec {
|
|
#[inline]
|
|
fn borrow_mut(&mut self) -> &mut [u8] {
|
|
self.as_mut()
|
|
}
|
|
}
|
|
|
|
impl fmt::Write for BytesVec {
|
|
#[inline]
|
|
fn write_str(&mut self, s: &str) -> fmt::Result {
|
|
if self.remaining_mut() >= s.len() {
|
|
self.put_slice(s.as_bytes());
|
|
Ok(())
|
|
} else {
|
|
Err(fmt::Error)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn write_fmt(&mut self, args: fmt::Arguments<'_>) -> fmt::Result {
|
|
fmt::write(self, args)
|
|
}
|
|
}
|
|
|
|
impl IntoIterator for BytesVec {
|
|
type Item = u8;
|
|
type IntoIter = IntoIter<BytesVec>;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
IntoIter::new(self)
|
|
}
|
|
}
|
|
|
|
impl<'a> IntoIterator for &'a BytesVec {
|
|
type Item = &'a u8;
|
|
type IntoIter = std::slice::Iter<'a, u8>;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
self.as_ref().iter()
|
|
}
|
|
}
|
|
|
|
impl Extend<u8> for BytesVec {
|
|
fn extend<T>(&mut self, iter: T)
|
|
where
|
|
T: IntoIterator<Item = u8>,
|
|
{
|
|
let iter = iter.into_iter();
|
|
|
|
let (lower, _) = iter.size_hint();
|
|
self.reserve(lower);
|
|
|
|
for b in iter {
|
|
self.put_u8(b);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> Extend<&'a u8> for BytesVec {
|
|
fn extend<T>(&mut self, iter: T)
|
|
where
|
|
T: IntoIterator<Item = &'a u8>,
|
|
{
|
|
self.extend(iter.into_iter().copied())
|
|
}
|
|
}
|
|
|
|
struct InnerVec(NonNull<SharedVec>);
|
|
|
|
impl InnerVec {
|
|
#[inline]
|
|
fn with_capacity(capacity: usize, pool: PoolRef) -> InnerVec {
|
|
Self::from_slice(capacity, &[], pool)
|
|
}
|
|
|
|
#[inline]
|
|
fn from_slice(cap: usize, src: &[u8], pool: PoolRef) -> InnerVec {
|
|
// TODO: vec must be aligned to SharedVec instead of u8
|
|
let mut vec = Vec::<SharedVec>::with_capacity((cap / SHARED_VEC_SIZE) + 2);
|
|
#[allow(clippy::uninit_vec)]
|
|
unsafe {
|
|
// Store data in vec
|
|
let len = src.len() as u32;
|
|
let cap = vec.capacity() * SHARED_VEC_SIZE;
|
|
let shared_ptr = vec.as_mut_ptr();
|
|
mem::forget(vec);
|
|
pool.acquire(cap);
|
|
|
|
let ptr = shared_ptr.add(1) as *mut u8;
|
|
if !src.is_empty() {
|
|
ptr::copy_nonoverlapping(src.as_ptr(), ptr, src.len());
|
|
}
|
|
ptr::write(
|
|
shared_ptr,
|
|
SharedVec {
|
|
len,
|
|
cap,
|
|
pool,
|
|
ref_count: AtomicUsize::new(1),
|
|
offset: SHARED_VEC_SIZE as u32,
|
|
},
|
|
);
|
|
|
|
InnerVec(NonNull::new_unchecked(shared_ptr))
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn move_to_pool(&mut self, pool: PoolRef) {
|
|
unsafe {
|
|
let inner = self.as_inner();
|
|
if pool != inner.pool {
|
|
pool.acquire(inner.cap);
|
|
let pool = mem::replace(&mut inner.pool, pool);
|
|
pool.release(inner.cap);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return a slice for the handle's view into the shared buffer
|
|
#[inline]
|
|
fn as_ref(&self) -> &[u8] {
|
|
unsafe { slice::from_raw_parts(self.as_ptr(), self.len()) }
|
|
}
|
|
|
|
/// Return a mutable slice for the handle's view into the shared buffer
|
|
#[inline]
|
|
fn as_mut(&mut self) -> &mut [u8] {
|
|
unsafe { slice::from_raw_parts_mut(self.as_ptr(), self.len()) }
|
|
}
|
|
|
|
/// Return a mutable slice for the handle's view into the shared buffer
|
|
/// including potentially uninitialized bytes.
|
|
#[inline]
|
|
unsafe fn as_raw(&mut self) -> &mut [u8] {
|
|
slice::from_raw_parts_mut(self.as_ptr(), self.capacity())
|
|
}
|
|
|
|
/// Return a raw pointer to data
|
|
#[inline]
|
|
unsafe fn as_ptr(&self) -> *mut u8 {
|
|
(self.0.as_ptr() as *mut u8).add((*self.0.as_ptr()).offset as usize)
|
|
}
|
|
|
|
#[inline]
|
|
unsafe fn as_inner(&mut self) -> &mut SharedVec {
|
|
self.0.as_mut()
|
|
}
|
|
|
|
/// Insert a byte into the next slot and advance the len by 1.
|
|
#[inline]
|
|
fn put_u8(&mut self, n: u8) {
|
|
unsafe {
|
|
let inner = self.as_inner();
|
|
let len = inner.len as usize;
|
|
assert!(len < (inner.cap - inner.offset as usize));
|
|
inner.len += 1;
|
|
*self.as_ptr().add(len) = n;
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn len(&self) -> usize {
|
|
unsafe { (*self.0.as_ptr()).len as usize }
|
|
}
|
|
|
|
/// slice.
|
|
#[inline]
|
|
unsafe fn set_len(&mut self, len: usize) {
|
|
let inner = self.as_inner();
|
|
assert!(len <= (inner.cap - inner.offset as usize) && len < u32::MAX as usize);
|
|
inner.len = len as u32;
|
|
}
|
|
|
|
#[inline]
|
|
fn capacity(&self) -> usize {
|
|
unsafe { (*self.0.as_ptr()).cap - (*self.0.as_ptr()).offset as usize }
|
|
}
|
|
|
|
fn into_inner(mut self) -> Inner {
|
|
unsafe {
|
|
let ptr = self.as_ptr();
|
|
|
|
if self.len() <= INLINE_CAP {
|
|
Inner::from_ptr_inline(ptr, self.len())
|
|
} else {
|
|
let inner = self.as_inner();
|
|
|
|
let inner = Inner {
|
|
ptr,
|
|
len: inner.len as usize,
|
|
cap: inner.cap - inner.offset as usize,
|
|
arc: NonNull::new_unchecked(
|
|
(self.0.as_ptr() as usize ^ KIND_VEC) as *mut Shared,
|
|
),
|
|
};
|
|
mem::forget(self);
|
|
inner
|
|
}
|
|
}
|
|
}
|
|
|
|
fn with_bytes_mut<F, R>(&mut self, f: F) -> R
|
|
where
|
|
F: FnOnce(&mut BytesMut) -> R,
|
|
{
|
|
unsafe {
|
|
// create Inner for BytesMut
|
|
let ptr = self.as_ptr();
|
|
let inner = self.as_inner();
|
|
let inner = Inner {
|
|
ptr,
|
|
len: inner.len as usize,
|
|
cap: inner.cap - inner.offset as usize,
|
|
arc: NonNull::new_unchecked(
|
|
(self.0.as_ptr() as usize ^ KIND_VEC) as *mut Shared,
|
|
),
|
|
};
|
|
|
|
// run function
|
|
let mut buf = BytesMut { inner };
|
|
let result = f(&mut buf);
|
|
|
|
// convert BytesMut back to InnerVec
|
|
let kind = buf.inner.kind();
|
|
let new_inner =
|
|
// only KIND_VEC could be converted to self, otherwise we have to copy data
|
|
if kind == KIND_INLINE || kind == KIND_STATIC || kind == KIND_ARC {
|
|
InnerVec::from_slice(
|
|
buf.inner.capacity(),
|
|
buf.inner.as_ref(),
|
|
buf.inner.pool(),
|
|
)
|
|
} else if kind == KIND_VEC {
|
|
let ptr = buf.inner.shared_vec();
|
|
let offset = buf.inner.ptr as usize - ptr as usize;
|
|
|
|
// we cannot use shared vec if BytesMut points to inside of vec
|
|
if buf.inner.cap < (*ptr).cap - offset {
|
|
InnerVec::from_slice(
|
|
buf.inner.capacity(),
|
|
buf.inner.as_ref(),
|
|
buf.inner.pool(),
|
|
)
|
|
} else {
|
|
// BytesMut owns rest of the vec, so re-use
|
|
(*ptr).len = buf.len() as u32;
|
|
(*ptr).offset = offset as u32;
|
|
let inner = InnerVec(NonNull::new_unchecked(ptr));
|
|
mem::forget(buf); // reuse bytes
|
|
inner
|
|
}
|
|
} else {
|
|
panic!()
|
|
};
|
|
|
|
// drop old inner, we cannot drop because BytesMut used it
|
|
let old = mem::replace(self, new_inner);
|
|
mem::forget(old);
|
|
|
|
result
|
|
}
|
|
}
|
|
|
|
fn split_to(&mut self, at: usize, create_inline: bool) -> Inner {
|
|
unsafe {
|
|
let ptr = self.as_ptr();
|
|
|
|
let other = if create_inline && at <= INLINE_CAP {
|
|
Inner::from_ptr_inline(ptr, at)
|
|
} else {
|
|
let inner = self.as_inner();
|
|
let old_size = inner.ref_count.fetch_add(1, Relaxed);
|
|
if old_size == usize::MAX {
|
|
abort();
|
|
}
|
|
|
|
Inner {
|
|
ptr,
|
|
len: at,
|
|
cap: at,
|
|
arc: NonNull::new_unchecked(
|
|
(self.0.as_ptr() as usize ^ KIND_VEC) as *mut Shared,
|
|
),
|
|
}
|
|
};
|
|
self.set_start(at as u32);
|
|
|
|
other
|
|
}
|
|
}
|
|
|
|
fn truncate(&mut self, len: usize) {
|
|
unsafe {
|
|
if len <= self.len() {
|
|
self.set_len(len);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resize(&mut self, new_len: usize, value: u8) {
|
|
let len = self.len();
|
|
if new_len > len {
|
|
let additional = new_len - len;
|
|
self.reserve(additional);
|
|
unsafe {
|
|
let dst = self.as_raw()[len..].as_mut_ptr();
|
|
ptr::write_bytes(dst, value, additional);
|
|
self.set_len(new_len);
|
|
}
|
|
} else {
|
|
self.truncate(new_len);
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn reserve(&mut self, additional: usize) {
|
|
let len = self.len();
|
|
let rem = self.capacity() - len;
|
|
|
|
if additional <= rem {
|
|
// The handle can already store at least `additional` more bytes, so
|
|
// there is no further work needed to be done.
|
|
return;
|
|
}
|
|
|
|
self.reserve_inner(additional)
|
|
}
|
|
|
|
#[inline]
|
|
// In separate function to allow the short-circuits in `reserve` to
|
|
// be inline-able. Significant helps performance.
|
|
fn reserve_inner(&mut self, additional: usize) {
|
|
let len = self.len();
|
|
|
|
// Reserving involves abandoning the currently shared buffer and
|
|
// allocating a new vector with the requested capacity.
|
|
let new_cap = len + additional;
|
|
|
|
unsafe {
|
|
let inner = self.as_inner();
|
|
let vec_cap = inner.cap - SHARED_VEC_SIZE;
|
|
|
|
// try to reclaim the buffer. This is possible if the current
|
|
// handle is the only outstanding handle pointing to the buffer.
|
|
if inner.is_unique() && vec_cap >= new_cap {
|
|
let offset = inner.offset;
|
|
inner.offset = SHARED_VEC_SIZE as u32;
|
|
|
|
// The capacity is sufficient, reclaim the buffer
|
|
let src = (self.0.as_ptr() as *mut u8).add(offset as usize);
|
|
let dst = (self.0.as_ptr() as *mut u8).add(SHARED_VEC_SIZE);
|
|
ptr::copy(src, dst, len);
|
|
} else {
|
|
// Create a new vector storage
|
|
let pool = inner.pool;
|
|
*self = InnerVec::from_slice(new_cap, self.as_ref(), pool);
|
|
}
|
|
}
|
|
}
|
|
|
|
unsafe fn set_start(&mut self, start: u32) {
|
|
// Setting the start to 0 is a no-op, so return early if this is the
|
|
// case.
|
|
if start == 0 {
|
|
return;
|
|
}
|
|
|
|
let inner = self.as_inner();
|
|
assert!(start <= inner.cap as u32);
|
|
|
|
// Updating the start of the view is setting `offset` to point to the
|
|
// new start and updating the `len` field to reflect the new length
|
|
// of the view.
|
|
inner.offset += start;
|
|
|
|
if inner.len >= start {
|
|
inner.len -= start;
|
|
} else {
|
|
inner.len = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Drop for InnerVec {
|
|
fn drop(&mut self) {
|
|
release_shared_vec(self.0.as_ptr());
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ===== Inner =====
|
|
*
|
|
*/
|
|
|
|
impl Inner {
|
|
#[inline]
|
|
const fn from_static(bytes: &'static [u8]) -> Inner {
|
|
let ptr = bytes.as_ptr() as *mut u8;
|
|
|
|
Inner {
|
|
// `arc` won't ever store a pointer. Instead, use it to
|
|
// track the fact that the `Bytes` handle is backed by a
|
|
// static buffer.
|
|
arc: unsafe { NonNull::new_unchecked(KIND_STATIC as *mut Shared) },
|
|
ptr,
|
|
len: bytes.len(),
|
|
cap: bytes.len(),
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
const fn empty_inline() -> Inner {
|
|
Inner {
|
|
arc: unsafe { NonNull::new_unchecked(KIND_INLINE as *mut Shared) },
|
|
ptr: 0 as *mut u8,
|
|
len: 0,
|
|
cap: 0,
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn from_vec(mut vec: Vec<u8>, pool: PoolRef) -> Inner {
|
|
let len = vec.len();
|
|
let cap = vec.capacity();
|
|
let ptr = vec.as_mut_ptr();
|
|
pool.acquire(cap);
|
|
|
|
// Store data in arc
|
|
let shared = Box::into_raw(Box::new(Shared {
|
|
vec,
|
|
pool,
|
|
ref_count: AtomicUsize::new(1),
|
|
}));
|
|
|
|
// The pointer should be aligned, so this assert should always succeed.
|
|
debug_assert!(0 == (shared as usize & KIND_MASK));
|
|
|
|
// Create new arc, so atomic operations can be avoided.
|
|
Inner {
|
|
ptr,
|
|
len,
|
|
cap,
|
|
arc: unsafe { NonNull::new_unchecked(shared) },
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn with_capacity(capacity: usize, pool: PoolRef) -> Inner {
|
|
Inner::from_slice(capacity, &[], pool)
|
|
}
|
|
|
|
#[inline]
|
|
fn from_slice(cap: usize, src: &[u8], pool: PoolRef) -> Inner {
|
|
// TODO: vec must be aligned to SharedVec instead of u8
|
|
let mut vec = Vec::<SharedVec>::with_capacity((cap / SHARED_VEC_SIZE) + 2);
|
|
#[allow(clippy::uninit_vec)]
|
|
unsafe {
|
|
// Store data in vec
|
|
let len = src.len();
|
|
let full_cap = vec.capacity() * SHARED_VEC_SIZE;
|
|
let cap = full_cap - SHARED_VEC_SIZE;
|
|
let shared_ptr = vec.as_mut_ptr();
|
|
mem::forget(vec);
|
|
pool.acquire(full_cap);
|
|
|
|
let ptr = shared_ptr.add(1) as *mut u8;
|
|
ptr::copy_nonoverlapping(src.as_ptr(), ptr, src.len());
|
|
ptr::write(
|
|
shared_ptr,
|
|
SharedVec {
|
|
pool,
|
|
cap: full_cap,
|
|
ref_count: AtomicUsize::new(1),
|
|
len: 0,
|
|
offset: 0,
|
|
},
|
|
);
|
|
|
|
// Create new arc, so atomic operations can be avoided.
|
|
Inner {
|
|
len,
|
|
cap,
|
|
ptr,
|
|
arc: NonNull::new_unchecked(
|
|
(shared_ptr as usize ^ KIND_VEC) as *mut Shared,
|
|
),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn from_slice_inline(src: &[u8]) -> Inner {
|
|
unsafe { Inner::from_ptr_inline(src.as_ptr(), src.len()) }
|
|
}
|
|
|
|
#[inline]
|
|
unsafe fn from_ptr_inline(src: *const u8, len: usize) -> Inner {
|
|
// Using uninitialized memory is ~30% faster
|
|
#[allow(invalid_value, clippy::uninit_assumed_init)]
|
|
let mut inner: Inner = mem::MaybeUninit::uninit().assume_init();
|
|
inner.arc = NonNull::new_unchecked(KIND_INLINE as *mut Shared);
|
|
|
|
let dst = inner.inline_ptr();
|
|
ptr::copy(src, dst, len);
|
|
inner.set_inline_len(len);
|
|
inner
|
|
}
|
|
|
|
#[inline]
|
|
fn pool(&self) -> PoolRef {
|
|
let kind = self.kind();
|
|
|
|
if kind == KIND_VEC {
|
|
unsafe { (*self.shared_vec()).pool }
|
|
} else if kind == KIND_ARC {
|
|
unsafe { (*self.arc.as_ptr()).pool }
|
|
} else {
|
|
PoolId::DEFAULT.pool_ref()
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn move_to_pool(&mut self, pool: PoolRef) {
|
|
let kind = self.kind();
|
|
|
|
if kind == KIND_VEC {
|
|
let vec = self.shared_vec();
|
|
unsafe {
|
|
let cap = (*vec).cap;
|
|
pool.acquire(cap);
|
|
let pool = mem::replace(&mut (*vec).pool, pool);
|
|
pool.release(cap);
|
|
}
|
|
} else if kind == KIND_ARC {
|
|
let arc = self.arc.as_ptr();
|
|
unsafe {
|
|
let cap = (*arc).vec.capacity();
|
|
pool.acquire(cap);
|
|
let pool = mem::replace(&mut (*arc).pool, pool);
|
|
pool.release(cap);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return a slice for the handle's view into the shared buffer
|
|
#[inline]
|
|
fn as_ref(&self) -> &[u8] {
|
|
unsafe {
|
|
if self.is_inline() {
|
|
slice::from_raw_parts(self.inline_ptr(), self.inline_len())
|
|
} else {
|
|
slice::from_raw_parts(self.ptr, self.len)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return a mutable slice for the handle's view into the shared buffer
|
|
#[inline]
|
|
fn as_mut(&mut self) -> &mut [u8] {
|
|
debug_assert!(!self.is_static());
|
|
|
|
unsafe {
|
|
if self.is_inline() {
|
|
slice::from_raw_parts_mut(self.inline_ptr(), self.inline_len())
|
|
} else {
|
|
slice::from_raw_parts_mut(self.ptr, self.len)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return a mutable slice for the handle's view into the shared buffer
|
|
/// including potentially uninitialized bytes.
|
|
#[inline]
|
|
unsafe fn as_raw(&mut self) -> &mut [u8] {
|
|
debug_assert!(!self.is_static());
|
|
|
|
if self.is_inline() {
|
|
slice::from_raw_parts_mut(self.inline_ptr(), INLINE_CAP)
|
|
} else {
|
|
slice::from_raw_parts_mut(self.ptr, self.cap)
|
|
}
|
|
}
|
|
|
|
/// Return a raw pointer to data
|
|
#[inline]
|
|
unsafe fn as_ptr(&mut self) -> *mut u8 {
|
|
if self.is_inline() {
|
|
self.inline_ptr()
|
|
} else {
|
|
self.ptr
|
|
}
|
|
}
|
|
|
|
/// Insert a byte into the next slot and advance the len by 1.
|
|
#[inline]
|
|
fn put_u8(&mut self, n: u8) {
|
|
if self.is_inline() {
|
|
let len = self.inline_len();
|
|
assert!(len < INLINE_CAP);
|
|
unsafe {
|
|
*self.inline_ptr().add(len) = n;
|
|
}
|
|
self.set_inline_len(len + 1);
|
|
} else {
|
|
assert!(self.len < self.cap);
|
|
unsafe {
|
|
*self.ptr.add(self.len) = n;
|
|
}
|
|
self.len += 1;
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn len(&self) -> usize {
|
|
if self.is_inline() {
|
|
self.inline_len()
|
|
} else {
|
|
self.len
|
|
}
|
|
}
|
|
|
|
/// Pointer to the start of the inline buffer
|
|
#[inline]
|
|
unsafe fn inline_ptr(&self) -> *mut u8 {
|
|
(self as *const Inner as *mut Inner as *mut u8).offset(INLINE_DATA_OFFSET)
|
|
}
|
|
|
|
#[inline]
|
|
fn to_inline(&self) -> Inner {
|
|
unsafe {
|
|
// Using uninitialized memory is ~30% faster
|
|
#[allow(invalid_value, clippy::uninit_assumed_init)]
|
|
let mut inner: Inner = mem::MaybeUninit::uninit().assume_init();
|
|
inner.arc = NonNull::new_unchecked(KIND_INLINE as *mut Shared);
|
|
let len = self.len();
|
|
inner.as_raw()[..len].copy_from_slice(self.as_ref());
|
|
inner.set_inline_len(len);
|
|
inner
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn inline_len(&self) -> usize {
|
|
// This is undefind behavior due to a data race, but experimental
|
|
// evidence shows that it works in practice (discussion:
|
|
// https://internals.rust-lang.org/t/bit-wise-reasoning-for-atomic-accesses/8853).
|
|
(self.arc.as_ptr() as usize & INLINE_LEN_MASK) >> INLINE_LEN_OFFSET
|
|
}
|
|
|
|
/// Set the length of the inline buffer. This is done by writing to the
|
|
/// least significant byte of the `arc` field.
|
|
#[inline]
|
|
fn set_inline_len(&mut self, len: usize) {
|
|
debug_assert!(len <= INLINE_CAP);
|
|
self.arc = unsafe {
|
|
NonNull::new_unchecked(
|
|
((self.arc.as_ptr() as usize & !INLINE_LEN_MASK)
|
|
| (len << INLINE_LEN_OFFSET)) as _,
|
|
)
|
|
};
|
|
}
|
|
|
|
/// slice.
|
|
#[inline]
|
|
unsafe fn set_len(&mut self, len: usize) {
|
|
if self.is_inline() {
|
|
assert!(len <= INLINE_CAP);
|
|
self.set_inline_len(len);
|
|
} else {
|
|
assert!(len <= self.cap);
|
|
self.len = len;
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn is_empty(&self) -> bool {
|
|
self.len() == 0
|
|
}
|
|
|
|
#[inline]
|
|
fn capacity(&self) -> usize {
|
|
if self.is_inline() {
|
|
INLINE_CAP
|
|
} else {
|
|
self.cap
|
|
}
|
|
}
|
|
|
|
fn split_off(&mut self, at: usize, create_inline: bool) -> Inner {
|
|
let other = unsafe {
|
|
if create_inline && self.len() - at <= INLINE_CAP {
|
|
Inner::from_ptr_inline(self.as_ptr().add(at), self.len() - at)
|
|
} else {
|
|
let mut other = self.shallow_clone();
|
|
other.set_start(at);
|
|
other
|
|
}
|
|
};
|
|
unsafe {
|
|
if create_inline && at <= INLINE_CAP {
|
|
*self = Inner::from_ptr_inline(self.as_ptr(), at);
|
|
} else {
|
|
self.set_end(at);
|
|
}
|
|
}
|
|
|
|
other
|
|
}
|
|
|
|
fn split_to(&mut self, at: usize, create_inline: bool) -> Inner {
|
|
let other = unsafe {
|
|
if create_inline && at <= INLINE_CAP {
|
|
Inner::from_ptr_inline(self.as_ptr(), at)
|
|
} else {
|
|
let mut other = self.shallow_clone();
|
|
other.set_end(at);
|
|
other
|
|
}
|
|
};
|
|
unsafe {
|
|
if create_inline && self.len() - at <= INLINE_CAP {
|
|
*self = Inner::from_ptr_inline(self.as_ptr().add(at), self.len() - at);
|
|
} else {
|
|
self.set_start(at);
|
|
}
|
|
}
|
|
|
|
other
|
|
}
|
|
|
|
fn truncate(&mut self, len: usize, create_inline: bool) {
|
|
unsafe {
|
|
if len <= self.len() {
|
|
if create_inline && len < INLINE_CAP {
|
|
*self = Inner::from_ptr_inline(self.as_ptr(), len);
|
|
} else {
|
|
self.set_len(len);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resize(&mut self, new_len: usize, value: u8) {
|
|
let len = self.len();
|
|
if new_len > len {
|
|
let additional = new_len - len;
|
|
self.reserve(additional);
|
|
unsafe {
|
|
let dst = self.as_raw()[len..].as_mut_ptr();
|
|
ptr::write_bytes(dst, value, additional);
|
|
self.set_len(new_len);
|
|
}
|
|
} else {
|
|
self.truncate(new_len, false);
|
|
}
|
|
}
|
|
|
|
unsafe fn set_start(&mut self, start: usize) {
|
|
// Setting the start to 0 is a no-op, so return early if this is the
|
|
// case.
|
|
if start == 0 {
|
|
return;
|
|
}
|
|
|
|
let kind = self.kind();
|
|
|
|
// Always check `inline` first, because if the handle is using inline
|
|
// data storage, all of the `Inner` struct fields will be gibberish.
|
|
if kind == KIND_INLINE {
|
|
assert!(start <= INLINE_CAP);
|
|
|
|
let len = self.inline_len();
|
|
if len <= start {
|
|
self.set_inline_len(0);
|
|
} else {
|
|
// `set_start` is essentially shifting data off the front of the
|
|
// view. Inlined buffers only track the length of the slice.
|
|
// So, to update the start, the data at the new starting point
|
|
// is copied to the beginning of the buffer.
|
|
let new_len = len - start;
|
|
|
|
let dst = self.inline_ptr();
|
|
let src = (dst as *const u8).add(start);
|
|
|
|
ptr::copy(src, dst, new_len);
|
|
|
|
self.set_inline_len(new_len);
|
|
}
|
|
} else {
|
|
assert!(start <= self.cap);
|
|
|
|
// Updating the start of the view is setting `ptr` to point to the
|
|
// new start and updating the `len` field to reflect the new length
|
|
// of the view.
|
|
self.ptr = self.ptr.add(start);
|
|
|
|
if self.len >= start {
|
|
self.len -= start;
|
|
} else {
|
|
self.len = 0;
|
|
}
|
|
|
|
self.cap -= start;
|
|
}
|
|
}
|
|
|
|
unsafe fn set_end(&mut self, end: usize) {
|
|
// Always check `inline` first, because if the handle is using inline
|
|
// data storage, all of the `Inner` struct fields will be gibberish.
|
|
if self.is_inline() {
|
|
assert!(end <= INLINE_CAP);
|
|
let new_len = cmp::min(self.inline_len(), end);
|
|
self.set_inline_len(new_len);
|
|
} else {
|
|
assert!(end <= self.cap);
|
|
|
|
self.cap = end;
|
|
self.len = cmp::min(self.len, end);
|
|
}
|
|
}
|
|
|
|
/// Checks if it is safe to mutate the memory
|
|
fn is_mut_safe(&self) -> bool {
|
|
let kind = self.kind();
|
|
|
|
// Always check `inline` first, because if the handle is using inline
|
|
// data storage, all of the `Inner` struct fields will be gibberish.
|
|
if kind == KIND_INLINE {
|
|
// Inlined buffers can always be mutated as the data is never shared
|
|
// across handles.
|
|
true
|
|
} else if kind == KIND_STATIC {
|
|
false
|
|
} else if kind == KIND_VEC {
|
|
// Otherwise, the underlying buffer is potentially shared with other
|
|
// handles, so the ref_count needs to be checked.
|
|
unsafe { (*self.shared_vec()).is_unique() }
|
|
} else {
|
|
// Otherwise, the underlying buffer is potentially shared with other
|
|
// handles, so the ref_count needs to be checked.
|
|
unsafe { (*self.arc.as_ptr()).is_unique() }
|
|
}
|
|
}
|
|
|
|
/// Increments the ref count. This should only be done if it is known that
|
|
/// it can be done safely. As such, this fn is not public, instead other
|
|
/// fns will use this one while maintaining the guarantees.
|
|
/// Parameter `mut_self` should only be set to `true` if caller holds
|
|
/// `&mut self` reference.
|
|
///
|
|
/// "Safely" is defined as not exposing two `BytesMut` values that point to
|
|
/// the same byte window.
|
|
///
|
|
/// This function is thread safe.
|
|
unsafe fn shallow_clone(&self) -> Inner {
|
|
// Always check `inline` first, because if the handle is using inline
|
|
// data storage, all of the `Inner` struct fields will be gibberish.
|
|
//
|
|
// Additionally, if kind is STATIC, then Arc is *never* changed, making
|
|
// it safe and faster to check for it now before an atomic acquire.
|
|
|
|
if self.is_inline_or_static() {
|
|
// In this case, a shallow_clone still involves copying the data.
|
|
let mut inner: mem::MaybeUninit<Inner> = mem::MaybeUninit::uninit();
|
|
ptr::copy_nonoverlapping(self, inner.as_mut_ptr(), 1);
|
|
inner.assume_init()
|
|
} else {
|
|
self.shallow_clone_sync()
|
|
}
|
|
}
|
|
|
|
#[cold]
|
|
unsafe fn shallow_clone_sync(&self) -> Inner {
|
|
// The function requires `&self`, this means that `shallow_clone`
|
|
// could be called concurrently.
|
|
//
|
|
// The first step is to load the value of `arc`. This will determine
|
|
// how to proceed. The `Acquire` ordering synchronizes with the
|
|
// `compare_and_swap` that comes later in this function. The goal is
|
|
// to ensure that if `arc` is currently set to point to a `Shared`,
|
|
// that the current thread acquires the associated memory.
|
|
let arc: *mut Shared = self.arc.as_ptr();
|
|
let kind = arc as usize & KIND_MASK;
|
|
|
|
if kind == KIND_ARC {
|
|
let old_size = (*arc).ref_count.fetch_add(1, Relaxed);
|
|
if old_size == usize::MAX {
|
|
abort();
|
|
}
|
|
|
|
Inner {
|
|
arc: NonNull::new_unchecked(arc),
|
|
..*self
|
|
}
|
|
} else {
|
|
assert!(kind == KIND_VEC);
|
|
|
|
let vec_arc = (arc as usize & KIND_UNMASK) as *mut SharedVec;
|
|
let old_size = (*vec_arc).ref_count.fetch_add(1, Relaxed);
|
|
if old_size == usize::MAX {
|
|
abort();
|
|
}
|
|
|
|
Inner {
|
|
arc: NonNull::new_unchecked(arc),
|
|
..*self
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn reserve(&mut self, additional: usize) {
|
|
let len = self.len();
|
|
let rem = self.capacity() - len;
|
|
|
|
if additional <= rem {
|
|
// The handle can already store at least `additional` more bytes, so
|
|
// there is no further work needed to be done.
|
|
return;
|
|
}
|
|
|
|
self.reserve_inner(additional)
|
|
}
|
|
|
|
#[inline]
|
|
// In separate function to allow the short-circuits in `reserve` to
|
|
// be inline-able. Significant helps performance.
|
|
fn reserve_inner(&mut self, additional: usize) {
|
|
let len = self.len();
|
|
let kind = self.kind();
|
|
|
|
// Always check `inline` first, because if the handle is using inline
|
|
// data storage, all of the `Inner` struct fields will be gibberish.
|
|
if kind == KIND_INLINE {
|
|
let new_cap = len + additional;
|
|
|
|
// Promote to a vector
|
|
*self = Inner::from_slice(new_cap, self.as_ref(), PoolId::DEFAULT.pool_ref());
|
|
return;
|
|
}
|
|
|
|
// Reserving involves abandoning the currently shared buffer and
|
|
// allocating a new vector with the requested capacity.
|
|
let new_cap = len + additional;
|
|
|
|
if kind == KIND_VEC {
|
|
let vec = self.shared_vec();
|
|
|
|
unsafe {
|
|
let vec_cap = (*vec).cap - SHARED_VEC_SIZE;
|
|
|
|
// First, try to reclaim the buffer. This is possible if the current
|
|
// handle is the only outstanding handle pointing to the buffer.
|
|
if (*vec).is_unique() && vec_cap >= new_cap {
|
|
// The capacity is sufficient, reclaim the buffer
|
|
let ptr = (vec as *mut u8).add(SHARED_VEC_SIZE);
|
|
ptr::copy(self.ptr, ptr, len);
|
|
|
|
self.ptr = ptr;
|
|
self.cap = vec_cap;
|
|
} else {
|
|
// Create a new vector storage
|
|
*self = Inner::from_slice(new_cap, self.as_ref(), (*vec).pool);
|
|
}
|
|
}
|
|
} else {
|
|
debug_assert!(kind == KIND_ARC);
|
|
|
|
let arc = self.arc.as_ptr();
|
|
unsafe {
|
|
// First, try to reclaim the buffer. This is possible if the current
|
|
// handle is the only outstanding handle pointing to the buffer.
|
|
if (*arc).is_unique() {
|
|
// This is the only handle to the buffer. It can be reclaimed.
|
|
// However, before doing the work of copying data, check to make
|
|
// sure that the vector has enough capacity.
|
|
let v = &mut (*arc).vec;
|
|
|
|
if v.capacity() >= new_cap {
|
|
// The capacity is sufficient, reclaim the buffer
|
|
let ptr = v.as_mut_ptr();
|
|
|
|
ptr::copy(self.ptr, ptr, len);
|
|
|
|
self.ptr = ptr;
|
|
self.cap = v.capacity();
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Create a new vector storage
|
|
*self = Inner::from_slice(new_cap, self.as_ref(), (*arc).pool);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns true if the buffer is stored inline
|
|
#[inline]
|
|
fn is_inline(&self) -> bool {
|
|
self.kind() == KIND_INLINE
|
|
}
|
|
|
|
#[inline]
|
|
fn is_inline_or_static(&self) -> bool {
|
|
// The value returned by `kind` isn't itself safe, but the value could
|
|
// inform what operations to take, and unsafely do something without
|
|
// synchronization.
|
|
//
|
|
// KIND_INLINE and KIND_STATIC will *never* change, so branches on that
|
|
// information is safe.
|
|
let kind = self.kind();
|
|
kind == KIND_INLINE || kind == KIND_STATIC
|
|
}
|
|
|
|
/// Used for `debug_assert` statements
|
|
#[inline]
|
|
fn is_static(&self) -> bool {
|
|
matches!(self.kind(), KIND_STATIC)
|
|
}
|
|
|
|
#[inline]
|
|
fn shared_vec(&self) -> *mut SharedVec {
|
|
((self.arc.as_ptr() as usize) & KIND_UNMASK) as *mut SharedVec
|
|
}
|
|
|
|
#[inline]
|
|
fn kind(&self) -> usize {
|
|
// This function is going to probably raise some eyebrows. The function
|
|
// returns true if the buffer is stored inline. This is done by checking
|
|
// the least significant bit in the `arc` field.
|
|
//
|
|
// Now, you may notice that `arc` is an `AtomicPtr` and this is
|
|
// accessing it as a normal field without performing an atomic load...
|
|
//
|
|
// Again, the function only cares about the least significant bit, and
|
|
// this bit is set when `Inner` is created and never changed after that.
|
|
// All platforms have atomic "word" operations and won't randomly flip
|
|
// bits, so even without any explicit atomic operations, reading the
|
|
// flag will be correct.
|
|
//
|
|
// This is undefined behavior due to a data race, but experimental
|
|
// evidence shows that it works in practice (discussion:
|
|
// https://internals.rust-lang.org/t/bit-wise-reasoning-for-atomic-accesses/8853).
|
|
//
|
|
// This function is very critical performance wise as it is called for
|
|
// every operation. Performing an atomic load would mess with the
|
|
// compiler's ability to optimize. Simple benchmarks show up to a 10%
|
|
// slowdown using a `Relaxed` atomic load on x86.
|
|
|
|
#[cfg(target_endian = "little")]
|
|
#[inline]
|
|
fn imp(arc: *mut Shared) -> usize {
|
|
(arc as usize) & KIND_MASK
|
|
}
|
|
|
|
#[cfg(target_endian = "big")]
|
|
#[inline]
|
|
fn imp(arc: *mut Shared) -> usize {
|
|
unsafe {
|
|
let p: *const usize = arc as *const usize;
|
|
*p & KIND_MASK
|
|
}
|
|
}
|
|
|
|
imp(self.arc.as_ptr())
|
|
}
|
|
}
|
|
|
|
impl Drop for Inner {
|
|
fn drop(&mut self) {
|
|
let kind = self.kind();
|
|
|
|
if kind == KIND_VEC {
|
|
release_shared_vec(self.shared_vec());
|
|
} else if kind == KIND_ARC {
|
|
release_shared(self.arc.as_ptr());
|
|
}
|
|
}
|
|
}
|
|
|
|
fn release_shared(ptr: *mut Shared) {
|
|
// `Shared` storage... follow the drop steps from Arc.
|
|
unsafe {
|
|
if (*ptr).ref_count.fetch_sub(1, Release) != 1 {
|
|
return;
|
|
}
|
|
|
|
// This fence is needed to prevent reordering of use of the data and
|
|
// deletion of the data. Because it is marked `Release`, the decreasing
|
|
// of the reference count synchronizes with this `Acquire` fence. This
|
|
// means that use of the data happens before decreasing the reference
|
|
// count, which happens before this fence, which happens before the
|
|
// deletion of the data.
|
|
//
|
|
// As explained in the [Boost documentation][1],
|
|
//
|
|
// > It is important to enforce any possible access to the object in one
|
|
// > thread (through an existing reference) to *happen before* deleting
|
|
// > the object in a different thread. This is achieved by a "release"
|
|
// > operation after dropping a reference (any access to the object
|
|
// > through this reference must obviously happened before), and an
|
|
// > "acquire" operation before deleting the object.
|
|
//
|
|
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
|
|
atomic::fence(Acquire);
|
|
|
|
// Drop the data
|
|
let arc = Box::from_raw(ptr);
|
|
arc.pool.release(arc.vec.capacity());
|
|
}
|
|
}
|
|
|
|
fn release_shared_vec(ptr: *mut SharedVec) {
|
|
// `Shared` storage... follow the drop steps from Arc.
|
|
unsafe {
|
|
if (*ptr).ref_count.fetch_sub(1, Release) != 1 {
|
|
return;
|
|
}
|
|
|
|
// This fence is needed to prevent reordering of use of the data and
|
|
// deletion of the data. Because it is marked `Release`, the decreasing
|
|
// of the reference count synchronizes with this `Acquire` fence. This
|
|
// means that use of the data happens before decreasing the reference
|
|
// count, which happens before this fence, which happens before the
|
|
// deletion of the data.
|
|
//
|
|
// As explained in the [Boost documentation][1],
|
|
//
|
|
// > It is important to enforce any possible access to the object in one
|
|
// > thread (through an existing reference) to *happen before* deleting
|
|
// > the object in a different thread. This is achieved by a "release"
|
|
// > operation after dropping a reference (any access to the object
|
|
// > through this reference must obviously happened before), and an
|
|
// > "acquire" operation before deleting the object.
|
|
//
|
|
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
|
|
atomic::fence(Acquire);
|
|
|
|
// Drop the data
|
|
let cap = (*ptr).cap;
|
|
(*ptr).pool.release(cap);
|
|
ptr::drop_in_place(ptr);
|
|
Vec::<u8>::from_raw_parts(ptr as *mut u8, 0, cap);
|
|
}
|
|
}
|
|
|
|
impl Shared {
|
|
fn is_unique(&self) -> bool {
|
|
// The goal is to check if the current handle is the only handle
|
|
// that currently has access to the buffer. This is done by
|
|
// checking if the `ref_count` is currently 1.
|
|
//
|
|
// The `Acquire` ordering synchronizes with the `Release` as
|
|
// part of the `fetch_sub` in `release_shared`. The `fetch_sub`
|
|
// operation guarantees that any mutations done in other threads
|
|
// are ordered before the `ref_count` is decremented. As such,
|
|
// this `Acquire` will guarantee that those mutations are
|
|
// visible to the current thread.
|
|
self.ref_count.load(Acquire) == 1
|
|
}
|
|
}
|
|
|
|
impl SharedVec {
|
|
fn is_unique(&self) -> bool {
|
|
// This is same as Shared::is_unique() but for KIND_VEC
|
|
self.ref_count.load(Acquire) == 1
|
|
}
|
|
}
|
|
|
|
unsafe impl Send for Inner {}
|
|
unsafe impl Sync for Inner {}
|
|
|
|
/*
|
|
*
|
|
* ===== PartialEq / PartialOrd =====
|
|
*
|
|
*/
|
|
|
|
impl PartialEq<[u8]> for BytesMut {
|
|
fn eq(&self, other: &[u8]) -> bool {
|
|
&**self == other
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<[u8]> for BytesMut {
|
|
fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
|
|
(**self).partial_cmp(other)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesMut> for [u8] {
|
|
fn eq(&self, other: &BytesMut) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<BytesMut> for [u8] {
|
|
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<str> for BytesMut {
|
|
fn eq(&self, other: &str) -> bool {
|
|
&**self == other.as_bytes()
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<str> for BytesMut {
|
|
fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
|
|
(**self).partial_cmp(other.as_bytes())
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesMut> for str {
|
|
fn eq(&self, other: &BytesMut) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<BytesMut> for str {
|
|
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<Vec<u8>> for BytesMut {
|
|
fn eq(&self, other: &Vec<u8>) -> bool {
|
|
*self == other[..]
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<Vec<u8>> for BytesMut {
|
|
fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
|
|
(**self).partial_cmp(&other[..])
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesMut> for Vec<u8> {
|
|
fn eq(&self, other: &BytesMut) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<BytesMut> for Vec<u8> {
|
|
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<String> for BytesMut {
|
|
fn eq(&self, other: &String) -> bool {
|
|
*self == other[..]
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<String> for BytesMut {
|
|
fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
|
|
(**self).partial_cmp(other.as_bytes())
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesMut> for String {
|
|
fn eq(&self, other: &BytesMut) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<BytesMut> for String {
|
|
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl<'a, T: ?Sized> PartialEq<&'a T> for BytesMut
|
|
where
|
|
BytesMut: PartialEq<T>,
|
|
{
|
|
fn eq(&self, other: &&'a T) -> bool {
|
|
*self == **other
|
|
}
|
|
}
|
|
|
|
impl<'a, T: ?Sized> PartialOrd<&'a T> for BytesMut
|
|
where
|
|
BytesMut: PartialOrd<T>,
|
|
{
|
|
fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
|
|
self.partial_cmp(*other)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesMut> for &[u8] {
|
|
fn eq(&self, other: &BytesMut) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<BytesMut> for &[u8] {
|
|
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesMut> for &str {
|
|
fn eq(&self, other: &BytesMut) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<BytesMut> for &str {
|
|
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<[u8]> for Bytes {
|
|
fn eq(&self, other: &[u8]) -> bool {
|
|
self.inner.as_ref() == other
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<[u8]> for Bytes {
|
|
fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
|
|
self.inner.as_ref().partial_cmp(other)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<Bytes> for [u8] {
|
|
fn eq(&self, other: &Bytes) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<Bytes> for [u8] {
|
|
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<str> for Bytes {
|
|
fn eq(&self, other: &str) -> bool {
|
|
self.inner.as_ref() == other.as_bytes()
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<str> for Bytes {
|
|
fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
|
|
self.inner.as_ref().partial_cmp(other.as_bytes())
|
|
}
|
|
}
|
|
|
|
impl PartialEq<Bytes> for str {
|
|
fn eq(&self, other: &Bytes) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<Bytes> for str {
|
|
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<Vec<u8>> for Bytes {
|
|
fn eq(&self, other: &Vec<u8>) -> bool {
|
|
*self == other[..]
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<Vec<u8>> for Bytes {
|
|
fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
|
|
self.inner.as_ref().partial_cmp(&other[..])
|
|
}
|
|
}
|
|
|
|
impl PartialEq<Bytes> for Vec<u8> {
|
|
fn eq(&self, other: &Bytes) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<Bytes> for Vec<u8> {
|
|
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<String> for Bytes {
|
|
fn eq(&self, other: &String) -> bool {
|
|
*self == other[..]
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<String> for Bytes {
|
|
fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
|
|
self.inner.as_ref().partial_cmp(other.as_bytes())
|
|
}
|
|
}
|
|
|
|
impl PartialEq<Bytes> for String {
|
|
fn eq(&self, other: &Bytes) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<Bytes> for String {
|
|
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<Bytes> for &[u8] {
|
|
fn eq(&self, other: &Bytes) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<Bytes> for &[u8] {
|
|
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<Bytes> for &str {
|
|
fn eq(&self, other: &Bytes) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<Bytes> for &str {
|
|
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl<'a, T: ?Sized> PartialEq<&'a T> for Bytes
|
|
where
|
|
Bytes: PartialEq<T>,
|
|
{
|
|
fn eq(&self, other: &&'a T) -> bool {
|
|
*self == **other
|
|
}
|
|
}
|
|
|
|
impl<'a, T: ?Sized> PartialOrd<&'a T> for Bytes
|
|
where
|
|
Bytes: PartialOrd<T>,
|
|
{
|
|
fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
|
|
self.partial_cmp(&**other)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesMut> for Bytes {
|
|
fn eq(&self, other: &BytesMut) -> bool {
|
|
other[..] == self[..]
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesVec> for Bytes {
|
|
fn eq(&self, other: &BytesVec) -> bool {
|
|
other[..] == self[..]
|
|
}
|
|
}
|
|
|
|
impl PartialEq<Bytes> for BytesVec {
|
|
fn eq(&self, other: &Bytes) -> bool {
|
|
other[..] == self[..]
|
|
}
|
|
}
|
|
|
|
impl PartialEq<Bytes> for BytesMut {
|
|
fn eq(&self, other: &Bytes) -> bool {
|
|
other[..] == self[..]
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesMut> for BytesVec {
|
|
fn eq(&self, other: &BytesMut) -> bool {
|
|
other[..] == self[..]
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesVec> for BytesMut {
|
|
fn eq(&self, other: &BytesVec) -> bool {
|
|
other[..] == self[..]
|
|
}
|
|
}
|
|
|
|
impl PartialEq<[u8]> for BytesVec {
|
|
fn eq(&self, other: &[u8]) -> bool {
|
|
&**self == other
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<[u8]> for BytesVec {
|
|
fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
|
|
(**self).partial_cmp(other)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesVec> for [u8] {
|
|
fn eq(&self, other: &BytesVec) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<BytesVec> for [u8] {
|
|
fn partial_cmp(&self, other: &BytesVec) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<str> for BytesVec {
|
|
fn eq(&self, other: &str) -> bool {
|
|
&**self == other.as_bytes()
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<str> for BytesVec {
|
|
fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
|
|
(**self).partial_cmp(other.as_bytes())
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesVec> for str {
|
|
fn eq(&self, other: &BytesVec) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<BytesVec> for str {
|
|
fn partial_cmp(&self, other: &BytesVec) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<Vec<u8>> for BytesVec {
|
|
fn eq(&self, other: &Vec<u8>) -> bool {
|
|
*self == other[..]
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<Vec<u8>> for BytesVec {
|
|
fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
|
|
(**self).partial_cmp(&other[..])
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesVec> for Vec<u8> {
|
|
fn eq(&self, other: &BytesVec) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<BytesVec> for Vec<u8> {
|
|
fn partial_cmp(&self, other: &BytesVec) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<String> for BytesVec {
|
|
fn eq(&self, other: &String) -> bool {
|
|
*self == other[..]
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<String> for BytesVec {
|
|
fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
|
|
(**self).partial_cmp(other.as_bytes())
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesVec> for String {
|
|
fn eq(&self, other: &BytesVec) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<BytesVec> for String {
|
|
fn partial_cmp(&self, other: &BytesVec) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl<'a, T: ?Sized> PartialEq<&'a T> for BytesVec
|
|
where
|
|
BytesVec: PartialEq<T>,
|
|
{
|
|
fn eq(&self, other: &&'a T) -> bool {
|
|
*self == **other
|
|
}
|
|
}
|
|
|
|
impl<'a, T: ?Sized> PartialOrd<&'a T> for BytesVec
|
|
where
|
|
BytesVec: PartialOrd<T>,
|
|
{
|
|
fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
|
|
self.partial_cmp(*other)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesVec> for &[u8] {
|
|
fn eq(&self, other: &BytesVec) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<BytesVec> for &[u8] {
|
|
fn partial_cmp(&self, other: &BytesVec) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesVec> for &str {
|
|
fn eq(&self, other: &BytesVec) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<BytesVec> for &str {
|
|
fn partial_cmp(&self, other: &BytesVec) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
// While there is `std::process:abort`, it's only available in Rust 1.17, and
|
|
// our minimum supported version is currently 1.15. So, this acts as an abort
|
|
// by triggering a double panic, which always aborts in Rust.
|
|
struct Abort;
|
|
|
|
impl Drop for Abort {
|
|
fn drop(&mut self) {
|
|
panic!();
|
|
}
|
|
}
|
|
|
|
#[inline(never)]
|
|
#[cold]
|
|
fn abort() {
|
|
let _a = Abort;
|
|
panic!();
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use std::convert::TryFrom;
|
|
|
|
use super::*;
|
|
|
|
const LONG: &[u8] =
|
|
b"mary had a little lamb, little lamb, little lamb, little lamb, little lamb, little lamb \
|
|
mary had a little lamb, little lamb, little lamb, little lamb, little lamb, little lamb \
|
|
mary had a little lamb, little lamb, little lamb, little lamb, little lamb, little lamb";
|
|
|
|
#[test]
|
|
fn trimdown() {
|
|
let mut b = Bytes::from(LONG.to_vec());
|
|
assert_eq!(b.inner.capacity(), 263);
|
|
unsafe { b.inner.set_len(68) };
|
|
assert_eq!(b.len(), 68);
|
|
assert_eq!(b.inner.capacity(), 263);
|
|
b.trimdown();
|
|
assert_eq!(b.inner.capacity(), 96);
|
|
|
|
unsafe { b.inner.set_len(16) };
|
|
b.trimdown();
|
|
assert!(b.is_inline());
|
|
}
|
|
|
|
#[test]
|
|
fn bytes() {
|
|
let mut b = Bytes::from(LONG.to_vec());
|
|
b.clear();
|
|
assert!(b.is_inline());
|
|
assert!(b.is_empty());
|
|
assert!(b.len() == 0);
|
|
|
|
let b = Bytes::from(BytesMut::from(LONG));
|
|
assert_eq!(b, LONG);
|
|
|
|
let b = BytesMut::try_from(b).unwrap();
|
|
assert_eq!(b, LONG);
|
|
}
|
|
}
|