mirror of
https://github.com/ntex-rs/ntex.git
synced 2025-04-05 13:57:39 +03:00
3106 lines
89 KiB
Rust
3106 lines
89 KiB
Rust
use std::borrow::{Borrow, BorrowMut};
|
|
use std::iter::{FromIterator, Iterator};
|
|
use std::ops::{Deref, DerefMut, RangeBounds};
|
|
use std::sync::atomic::Ordering::{AcqRel, Acquire, Relaxed, Release};
|
|
use std::sync::atomic::{self, AtomicPtr, AtomicUsize};
|
|
use std::{cmp, fmt, hash, mem, ptr, slice, usize};
|
|
|
|
use crate::{buf::IntoIter, buf::UninitSlice, debug, Buf, BufMut};
|
|
|
|
/// A reference counted contiguous slice of memory.
|
|
///
|
|
/// `Bytes` is an efficient container for storing and operating on contiguous
|
|
/// slices of memory. It is intended for use primarily in networking code, but
|
|
/// could have applications elsewhere as well.
|
|
///
|
|
/// `Bytes` values facilitate zero-copy network programming by allowing multiple
|
|
/// `Bytes` objects to point to the same underlying memory. This is managed by
|
|
/// using a reference count to track when the memory is no longer needed and can
|
|
/// be freed.
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let mut mem = Bytes::from(&b"Hello world"[..]);
|
|
/// let a = mem.slice(0..5);
|
|
///
|
|
/// assert_eq!(&a[..], b"Hello");
|
|
///
|
|
/// let b = mem.split_to(6);
|
|
///
|
|
/// assert_eq!(&mem[..], b"world");
|
|
/// assert_eq!(&b[..], b"Hello ");
|
|
/// ```
|
|
///
|
|
/// # Memory layout
|
|
///
|
|
/// The `Bytes` struct itself is fairly small, limited to a pointer to the
|
|
/// memory and 4 `usize` fields used to track information about which segment of
|
|
/// the underlying memory the `Bytes` handle has access to.
|
|
///
|
|
/// The memory layout looks like this:
|
|
///
|
|
/// ```text
|
|
/// +-------+
|
|
/// | Bytes |
|
|
/// +-------+
|
|
/// / \_____
|
|
/// | \
|
|
/// v v
|
|
/// +-----+------------------------------------+
|
|
/// | Arc | | Data | |
|
|
/// +-----+------------------------------------+
|
|
/// ```
|
|
///
|
|
/// `Bytes` keeps both a pointer to the shared `Arc` containing the full memory
|
|
/// slice and a pointer to the start of the region visible by the handle.
|
|
/// `Bytes` also tracks the length of its view into the memory.
|
|
///
|
|
/// # Sharing
|
|
///
|
|
/// The memory itself is reference counted, and multiple `Bytes` objects may
|
|
/// point to the same region. Each `Bytes` handle point to different sections within
|
|
/// the memory region, and `Bytes` handle may or may not have overlapping views
|
|
/// into the memory.
|
|
///
|
|
///
|
|
/// ```text
|
|
///
|
|
/// Arc ptrs +---------+
|
|
/// ________________________ / | Bytes 2 |
|
|
/// / +---------+
|
|
/// / +-----------+ | |
|
|
/// |_________/ | Bytes 1 | | |
|
|
/// | +-----------+ | |
|
|
/// | | | ___/ data | tail
|
|
/// | data | tail |/ |
|
|
/// v v v v
|
|
/// +-----+---------------------------------+-----+
|
|
/// | Arc | | | | |
|
|
/// +-----+---------------------------------+-----+
|
|
/// ```
|
|
///
|
|
/// # Mutating
|
|
///
|
|
/// While `Bytes` handles may potentially represent overlapping views of the
|
|
/// underlying memory slice and may not be mutated, `BytesMut` handles are
|
|
/// guaranteed to be the only handle able to view that slice of memory. As such,
|
|
/// `BytesMut` handles are able to mutate the underlying memory. Note that
|
|
/// holding a unique view to a region of memory does not mean that there are no
|
|
/// other `Bytes` and `BytesMut` handles with disjoint views of the underlying
|
|
/// memory.
|
|
///
|
|
/// # Inline bytes
|
|
///
|
|
/// As an optimization, when the slice referenced by a `Bytes` or `BytesMut`
|
|
/// handle is small enough [^1], `with_capacity` will avoid the allocation
|
|
/// by inlining the slice directly in the handle. In this case, a clone is no
|
|
/// longer "shallow" and the data will be copied. Converting from a `Vec` will
|
|
/// never use inlining.
|
|
///
|
|
/// [^1]: Small enough: 31 bytes on 64 bit systems, 15 on 32 bit systems.
|
|
///
|
|
pub struct Bytes {
|
|
inner: Inner,
|
|
}
|
|
|
|
/// A unique reference to a contiguous slice of memory.
|
|
///
|
|
/// `BytesMut` represents a unique view into a potentially shared memory region.
|
|
/// Given the uniqueness guarantee, owners of `BytesMut` handles are able to
|
|
/// mutate the memory. It is similar to a `Vec<u8>` but with less copies and
|
|
/// allocations.
|
|
///
|
|
/// For more detail, see [Bytes](struct.Bytes.html).
|
|
///
|
|
/// # Growth
|
|
///
|
|
/// One key difference from `Vec<u8>` is that most operations **do not
|
|
/// implicitly grow the buffer**. This means that calling `my_bytes.put("hello
|
|
/// world");` could panic if `my_bytes` does not have enough capacity. Before
|
|
/// writing to the buffer, ensure that there is enough remaining capacity by
|
|
/// calling `my_bytes.remaining_mut()`. In general, avoiding calls to `reserve`
|
|
/// is preferable.
|
|
///
|
|
/// The only exception is `extend` which implicitly reserves required capacity.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{BytesMut, BufMut};
|
|
///
|
|
/// let mut buf = BytesMut::with_capacity(64);
|
|
///
|
|
/// buf.put_u8(b'h');
|
|
/// buf.put_u8(b'e');
|
|
/// buf.put("llo");
|
|
///
|
|
/// assert_eq!(&buf[..], b"hello");
|
|
///
|
|
/// // Freeze the buffer so that it can be shared
|
|
/// let a = buf.freeze();
|
|
///
|
|
/// // This does not allocate, instead `b` points to the same memory.
|
|
/// let b = a.clone();
|
|
///
|
|
/// assert_eq!(&a[..], b"hello");
|
|
/// assert_eq!(&b[..], b"hello");
|
|
/// ```
|
|
pub struct BytesMut {
|
|
inner: Inner,
|
|
}
|
|
|
|
// Both `Bytes` and `BytesMut` are backed by `Inner` and functions are delegated
|
|
// to `Inner` functions. The `Bytes` and `BytesMut` shims ensure that functions
|
|
// that mutate the underlying buffer are only performed when the data range
|
|
// being mutated is only available via a single `BytesMut` handle.
|
|
//
|
|
// # Data storage modes
|
|
//
|
|
// The goal of `bytes` is to be as efficient as possible across a wide range of
|
|
// potential usage patterns. As such, `bytes` needs to be able to handle buffers
|
|
// that are never shared, shared on a single thread, and shared across many
|
|
// threads. `bytes` also needs to handle both tiny buffers as well as very large
|
|
// buffers. For example, [Cassandra](http://cassandra.apache.org) values have
|
|
// been known to be in the hundreds of megabyte, and HTTP header values can be a
|
|
// few characters in size.
|
|
//
|
|
// To achieve high performance in these various situations, `Bytes` and
|
|
// `BytesMut` use different strategies for storing the buffer depending on the
|
|
// usage pattern.
|
|
//
|
|
// ## Delayed `Arc` allocation
|
|
//
|
|
// When a `Bytes` or `BytesMut` is first created, there is only one outstanding
|
|
// handle referencing the buffer. Since sharing is not yet required, an `Arc`* is
|
|
// not used and the buffer is backed by a `Vec<u8>` directly. Using an
|
|
// `Arc<Vec<u8>>` requires two allocations, so if the buffer ends up never being
|
|
// shared, that allocation is avoided.
|
|
//
|
|
// When sharing does become necessary (`clone`, `split_to`, `split_off`), that
|
|
// is when the buffer is promoted to being shareable. The `Vec<u8>` is moved
|
|
// into an `Arc` and both the original handle and the new handle use the same
|
|
// buffer via the `Arc`.
|
|
//
|
|
// * `Arc` is being used to signify an atomically reference counted cell. We
|
|
// don't use the `Arc` implementation provided by `std` and instead use our own.
|
|
// This ends up simplifying a number of the `unsafe` code snippets.
|
|
//
|
|
// ## Inlining small buffers
|
|
//
|
|
// The `Bytes` / `BytesMut` structs require 4 pointer sized fields. On 64 bit
|
|
// systems, this ends up being 32 bytes, which is actually a lot of storage for
|
|
// cases where `Bytes` is being used to represent small byte strings, such as
|
|
// HTTP header names and values.
|
|
//
|
|
// To avoid any allocation at all in these cases, `Bytes` will use the struct
|
|
// itself for storing the buffer, reserving 1 byte for meta data. This means
|
|
// that, on 64 bit systems, 31 byte buffers require no allocation at all.
|
|
//
|
|
// The byte used for metadata stores a 2 bits flag used to indicate that the
|
|
// buffer is stored inline as well as 6 bits for tracking the buffer length (the
|
|
// return value of `Bytes::len`).
|
|
//
|
|
// ## Static buffers
|
|
//
|
|
// `Bytes` can also represent a static buffer, which is created with
|
|
// `Bytes::from_static`. No copying or allocations are required for tracking
|
|
// static buffers. The pointer to the `&'static [u8]`, the length, and a flag
|
|
// tracking that the `Bytes` instance represents a static buffer is stored in
|
|
// the `Bytes` struct.
|
|
//
|
|
// # Struct layout
|
|
//
|
|
// Both `Bytes` and `BytesMut` are wrappers around `Inner`, which provides the
|
|
// data fields as well as all of the function implementations.
|
|
//
|
|
// The `Inner` struct is carefully laid out in order to support the
|
|
// functionality described above as well as being as small as possible. Size is
|
|
// important as growing the size of the `Bytes` struct from 32 bytes to 40 bytes
|
|
// added as much as 15% overhead in benchmarks using `Bytes` in an HTTP header
|
|
// map structure.
|
|
//
|
|
// The `Inner` struct contains the following fields:
|
|
//
|
|
// * `ptr: *mut u8`
|
|
// * `len: usize`
|
|
// * `cap: usize`
|
|
// * `arc: AtomicPtr<Shared>`
|
|
//
|
|
// ## `ptr: *mut u8`
|
|
//
|
|
// A pointer to start of the handle's buffer view. When backed by a `Vec<u8>`,
|
|
// this is always the `Vec`'s pointer. When backed by an `Arc<Vec<u8>>`, `ptr`
|
|
// may have been shifted to point somewhere inside the buffer.
|
|
//
|
|
// When in "inlined" mode, `ptr` is used as part of the inlined buffer.
|
|
//
|
|
// ## `len: usize`
|
|
//
|
|
// The length of the handle's buffer view. When backed by a `Vec<u8>`, this is
|
|
// always the `Vec`'s length. The slice represented by `ptr` and `len` should
|
|
// (ideally) always be initialized memory.
|
|
//
|
|
// When in "inlined" mode, `len` is used as part of the inlined buffer.
|
|
//
|
|
// ## `cap: usize`
|
|
//
|
|
// The capacity of the handle's buffer view. When backed by a `Vec<u8>`, this is
|
|
// always the `Vec`'s capacity. The slice represented by `ptr+len` and `cap-len`
|
|
// may or may not be initialized memory.
|
|
//
|
|
// When in "inlined" mode, `cap` is used as part of the inlined buffer.
|
|
//
|
|
// ## `arc: AtomicPtr<Shared>`
|
|
//
|
|
// When `Inner` is in allocated mode (backed by Vec<u8> or Arc<Vec<u8>>), this
|
|
// will be the pointer to the `Arc` structure tracking the ref count for the
|
|
// underlying buffer. When the pointer is null, then the `Arc` has not been
|
|
// allocated yet and `self` is the only outstanding handle for the underlying
|
|
// buffer.
|
|
//
|
|
// The lower two bits of `arc` are used to track the storage mode of `Inner`.
|
|
// `0b01` indicates inline storage, `0b10` indicates static storage, and `0b11`
|
|
// indicates vector storage, not yet promoted to Arc. Since pointers to
|
|
// allocated structures are aligned, the lower two bits of a pointer will always
|
|
// be 0. This allows disambiguating between a pointer and the two flags.
|
|
//
|
|
// When in "inlined" mode, the least significant byte of `arc` is also used to
|
|
// store the length of the buffer view (vs. the capacity, which is a constant).
|
|
//
|
|
// The rest of `arc`'s bytes are used as part of the inline buffer, which means
|
|
// that those bytes need to be located next to the `ptr`, `len`, and `cap`
|
|
// fields, which make up the rest of the inline buffer. This requires special
|
|
// casing the layout of `Inner` depending on if the target platform is big or
|
|
// little endian.
|
|
//
|
|
// On little endian platforms, the `arc` field must be the first field in the
|
|
// struct. On big endian platforms, the `arc` field must be the last field in
|
|
// the struct. Since a deterministic struct layout is required, `Inner` is
|
|
// annotated with `#[repr(C)]`.
|
|
//
|
|
// # Thread safety
|
|
//
|
|
// `Bytes::clone()` returns a new `Bytes` handle with no copying. This is done
|
|
// by bumping the buffer ref count and returning a new struct pointing to the
|
|
// same buffer. However, the `Arc` structure is lazily allocated. This means
|
|
// that if `Bytes` is stored itself in an `Arc` (`Arc<Bytes>`), the `clone`
|
|
// function can be called concurrently from multiple threads. This is why an
|
|
// `AtomicPtr` is used for the `arc` field vs. a `*const`.
|
|
//
|
|
// Care is taken to ensure that the need for synchronization is minimized. Most
|
|
// operations do not require any synchronization.
|
|
//
|
|
#[cfg(target_endian = "little")]
|
|
#[repr(C)]
|
|
struct Inner {
|
|
// WARNING: Do not access the fields directly unless you know what you are
|
|
// doing. Instead, use the fns. See implementation comment above.
|
|
arc: AtomicPtr<Shared>,
|
|
ptr: *mut u8,
|
|
len: usize,
|
|
cap: usize,
|
|
}
|
|
|
|
#[cfg(target_endian = "big")]
|
|
#[repr(C)]
|
|
struct Inner {
|
|
// WARNING: Do not access the fields directly unless you know what you are
|
|
// doing. Instead, use the fns. See implementation comment above.
|
|
ptr: *mut u8,
|
|
len: usize,
|
|
cap: usize,
|
|
arc: AtomicPtr<Shared>,
|
|
}
|
|
|
|
// Thread-safe reference-counted container for the shared storage. This mostly
|
|
// the same as `std::sync::Arc` but without the weak counter. The ref counting
|
|
// fns are based on the ones found in `std`.
|
|
//
|
|
// The main reason to use `Shared` instead of `std::sync::Arc` is that it ends
|
|
// up making the overall code simpler and easier to reason about. This is due to
|
|
// some of the logic around setting `Inner::arc` and other ways the `arc` field
|
|
// is used. Using `Arc` ended up requiring a number of funky transmutes and
|
|
// other shenanigans to make it work.
|
|
struct Shared {
|
|
vec: Vec<u8>,
|
|
original_capacity_repr: usize,
|
|
ref_count: AtomicUsize,
|
|
}
|
|
|
|
// Buffer storage strategy flags.
|
|
const KIND_ARC: usize = 0b00;
|
|
const KIND_INLINE: usize = 0b01;
|
|
const KIND_STATIC: usize = 0b10;
|
|
const KIND_VEC: usize = 0b11;
|
|
const KIND_MASK: usize = 0b11;
|
|
|
|
// The max original capacity value. Any `Bytes` allocated with a greater initial
|
|
// capacity will default to this.
|
|
const MAX_ORIGINAL_CAPACITY_WIDTH: usize = 17;
|
|
// The original capacity algorithm will not take effect unless the originally
|
|
// allocated capacity was at least 1kb in size.
|
|
const MIN_ORIGINAL_CAPACITY_WIDTH: usize = 10;
|
|
// The original capacity is stored in powers of 2 starting at 1kb to a max of
|
|
// 64kb. Representing it as such requires only 3 bits of storage.
|
|
const ORIGINAL_CAPACITY_MASK: usize = 0b11100;
|
|
const ORIGINAL_CAPACITY_OFFSET: usize = 2;
|
|
|
|
// When the storage is in the `Vec` representation, the pointer can be advanced
|
|
// at most this value. This is due to the amount of storage available to track
|
|
// the offset is usize - number of KIND bits and number of ORIGINAL_CAPACITY
|
|
// bits.
|
|
const VEC_POS_OFFSET: usize = 5;
|
|
const MAX_VEC_POS: usize = usize::MAX >> VEC_POS_OFFSET;
|
|
const NOT_VEC_POS_MASK: usize = 0b11111;
|
|
|
|
// Bit op constants for extracting the inline length value from the `arc` field.
|
|
const INLINE_LEN_MASK: usize = 0b1111_1100;
|
|
const INLINE_LEN_OFFSET: usize = 2;
|
|
|
|
// Byte offset from the start of `Inner` to where the inline buffer data
|
|
// starts. On little endian platforms, the first byte of the struct is the
|
|
// storage flag, so the data is shifted by a byte. On big endian systems, the
|
|
// data starts at the beginning of the struct.
|
|
#[cfg(target_endian = "little")]
|
|
const INLINE_DATA_OFFSET: isize = 1;
|
|
#[cfg(target_endian = "big")]
|
|
const INLINE_DATA_OFFSET: isize = 0;
|
|
|
|
#[cfg(target_pointer_width = "64")]
|
|
const PTR_WIDTH: usize = 64;
|
|
#[cfg(target_pointer_width = "32")]
|
|
const PTR_WIDTH: usize = 32;
|
|
|
|
// Inline buffer capacity. This is the size of `Inner` minus 1 byte for the
|
|
// metadata.
|
|
#[cfg(target_pointer_width = "64")]
|
|
const INLINE_CAP: usize = 4 * 8 - 1;
|
|
#[cfg(target_pointer_width = "32")]
|
|
const INLINE_CAP: usize = 4 * 4 - 1;
|
|
|
|
/*
|
|
*
|
|
* ===== Bytes =====
|
|
*
|
|
*/
|
|
|
|
impl Bytes {
|
|
/// Creates a new `Bytes` with the specified capacity.
|
|
///
|
|
/// The returned `Bytes` will be able to hold at least `capacity` bytes
|
|
/// without reallocating. If `capacity` is under `4 * size_of::<usize>() - 1`,
|
|
/// then `BytesMut` will not allocate.
|
|
///
|
|
/// It is important to note that this function does not specify the length
|
|
/// of the returned `Bytes`, but only the capacity.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let mut bytes = Bytes::with_capacity(64);
|
|
///
|
|
/// // `bytes` contains no data, even though there is capacity
|
|
/// assert_eq!(bytes.len(), 0);
|
|
///
|
|
/// bytes.extend_from_slice(&b"hello world"[..]);
|
|
///
|
|
/// assert_eq!(&bytes[..], b"hello world");
|
|
/// ```
|
|
#[inline]
|
|
pub fn with_capacity(capacity: usize) -> Bytes {
|
|
Bytes {
|
|
inner: Inner::with_capacity(capacity),
|
|
}
|
|
}
|
|
|
|
/// Creates a new empty `Bytes`.
|
|
///
|
|
/// This will not allocate and the returned `Bytes` handle will be empty.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let b = Bytes::new();
|
|
/// assert_eq!(&b[..], b"");
|
|
/// ```
|
|
#[inline]
|
|
pub const fn new() -> Bytes {
|
|
// Make it a named const to work around
|
|
// "unsizing casts are not allowed in const fn"
|
|
const EMPTY: &[u8] = &[];
|
|
Bytes::from_static(EMPTY)
|
|
}
|
|
|
|
/// Creates a new `Bytes` from a static slice.
|
|
///
|
|
/// The returned `Bytes` will point directly to the static slice. There is
|
|
/// no allocating or copying.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let b = Bytes::from_static(b"hello");
|
|
/// assert_eq!(&b[..], b"hello");
|
|
/// ```
|
|
#[inline]
|
|
pub const fn from_static(bytes: &'static [u8]) -> Bytes {
|
|
Bytes {
|
|
inner: Inner::from_static(bytes),
|
|
}
|
|
}
|
|
|
|
/// Returns the number of bytes contained in this `Bytes`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let b = Bytes::from(&b"hello"[..]);
|
|
/// assert_eq!(b.len(), 5);
|
|
/// ```
|
|
#[inline]
|
|
pub fn len(&self) -> usize {
|
|
self.inner.len()
|
|
}
|
|
|
|
/// Returns true if the `Bytes` has a length of 0.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let b = Bytes::new();
|
|
/// assert!(b.is_empty());
|
|
/// ```
|
|
#[inline]
|
|
pub fn is_empty(&self) -> bool {
|
|
self.inner.is_empty()
|
|
}
|
|
|
|
/// Return true if the `Bytes` uses inline allocation
|
|
///
|
|
/// # Examples
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// assert!(Bytes::with_capacity(4).is_inline());
|
|
/// assert!(!Bytes::from(Vec::with_capacity(4)).is_inline());
|
|
/// assert!(!Bytes::with_capacity(1024).is_inline());
|
|
/// ```
|
|
pub fn is_inline(&self) -> bool {
|
|
self.inner.is_inline()
|
|
}
|
|
|
|
/// Creates `Bytes` instance from slice, by copying it.
|
|
pub fn copy_from_slice(data: &[u8]) -> Self {
|
|
BytesMut::from(data).freeze()
|
|
}
|
|
|
|
/// Returns a slice of self for the provided range.
|
|
///
|
|
/// This will increment the reference count for the underlying memory and
|
|
/// return a new `Bytes` handle set to the slice.
|
|
///
|
|
/// This operation is `O(1)`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let a = Bytes::from(&b"hello world"[..]);
|
|
/// let b = a.slice(2..5);
|
|
///
|
|
/// assert_eq!(&b[..], b"llo");
|
|
/// ```
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Requires that `begin <= end` and `end <= self.len()`, otherwise slicing
|
|
/// will panic.
|
|
pub fn slice(&self, range: impl RangeBounds<usize>) -> Bytes {
|
|
use std::ops::Bound;
|
|
|
|
let len = self.len();
|
|
|
|
let begin = match range.start_bound() {
|
|
Bound::Included(&n) => n,
|
|
Bound::Excluded(&n) => n + 1,
|
|
Bound::Unbounded => 0,
|
|
};
|
|
|
|
let end = match range.end_bound() {
|
|
Bound::Included(&n) => n + 1,
|
|
Bound::Excluded(&n) => n,
|
|
Bound::Unbounded => len,
|
|
};
|
|
|
|
assert!(begin <= end);
|
|
assert!(end <= len);
|
|
|
|
if end - begin <= INLINE_CAP {
|
|
return Bytes::copy_from_slice(&self[begin..end]);
|
|
}
|
|
|
|
let mut ret = self.clone();
|
|
|
|
unsafe {
|
|
ret.inner.set_end(end);
|
|
ret.inner.set_start(begin);
|
|
}
|
|
|
|
ret
|
|
}
|
|
|
|
/// Returns a slice of self that is equivalent to the given `subset`.
|
|
///
|
|
/// When processing a `Bytes` buffer with other tools, one often gets a
|
|
/// `&[u8]` which is in fact a slice of the `Bytes`, i.e. a subset of it.
|
|
/// This function turns that `&[u8]` into another `Bytes`, as if one had
|
|
/// called `self.slice()` with the offsets that correspond to `subset`.
|
|
///
|
|
/// This operation is `O(1)`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let bytes = Bytes::from(&b"012345678"[..]);
|
|
/// let as_slice = bytes.as_ref();
|
|
/// let subset = &as_slice[2..6];
|
|
/// let subslice = bytes.slice_ref(&subset);
|
|
/// assert_eq!(&subslice[..], b"2345");
|
|
/// ```
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Requires that the given `sub` slice is in fact contained within the
|
|
/// `Bytes` buffer; otherwise this function will panic.
|
|
pub fn slice_ref(&self, subset: &[u8]) -> Bytes {
|
|
let bytes_p = self.as_ptr() as usize;
|
|
let bytes_len = self.len();
|
|
|
|
let sub_p = subset.as_ptr() as usize;
|
|
let sub_len = subset.len();
|
|
|
|
assert!(sub_p >= bytes_p);
|
|
assert!(sub_p + sub_len <= bytes_p + bytes_len);
|
|
|
|
let sub_offset = sub_p - bytes_p;
|
|
|
|
self.slice(sub_offset..(sub_offset + sub_len))
|
|
}
|
|
|
|
/// Splits the bytes into two at the given index.
|
|
///
|
|
/// Afterwards `self` contains elements `[0, at)`, and the returned `Bytes`
|
|
/// contains elements `[at, len)`.
|
|
///
|
|
/// This is an `O(1)` operation that just increases the reference count and
|
|
/// sets a few indices.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let mut a = Bytes::from(&b"hello world"[..]);
|
|
/// let b = a.split_off(5);
|
|
///
|
|
/// assert_eq!(&a[..], b"hello");
|
|
/// assert_eq!(&b[..], b" world");
|
|
/// ```
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `at > len`.
|
|
pub fn split_off(&mut self, at: usize) -> Bytes {
|
|
assert!(at <= self.len());
|
|
|
|
if at == self.len() {
|
|
return Bytes::new();
|
|
}
|
|
|
|
if at == 0 {
|
|
return mem::replace(self, Bytes::new());
|
|
}
|
|
|
|
Bytes {
|
|
inner: self.inner.split_off(at),
|
|
}
|
|
}
|
|
|
|
/// Splits the bytes into two at the given index.
|
|
///
|
|
/// Afterwards `self` contains elements `[at, len)`, and the returned
|
|
/// `Bytes` contains elements `[0, at)`.
|
|
///
|
|
/// This is an `O(1)` operation that just increases the reference count and
|
|
/// sets a few indices.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let mut a = Bytes::from(&b"hello world"[..]);
|
|
/// let b = a.split_to(5);
|
|
///
|
|
/// assert_eq!(&a[..], b" world");
|
|
/// assert_eq!(&b[..], b"hello");
|
|
/// ```
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `at > len`.
|
|
pub fn split_to(&mut self, at: usize) -> Bytes {
|
|
assert!(at <= self.len());
|
|
|
|
if at == self.len() {
|
|
return mem::replace(self, Bytes::new());
|
|
}
|
|
|
|
if at == 0 {
|
|
return Bytes::new();
|
|
}
|
|
|
|
Bytes {
|
|
inner: self.inner.split_to(at),
|
|
}
|
|
}
|
|
|
|
/// Shortens the buffer, keeping the first `len` bytes and dropping the
|
|
/// rest.
|
|
///
|
|
/// If `len` is greater than the buffer's current length, this has no
|
|
/// effect.
|
|
///
|
|
/// The [`split_off`] method can emulate `truncate`, but this causes the
|
|
/// excess bytes to be returned instead of dropped.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let mut buf = Bytes::from(&b"hello world"[..]);
|
|
/// buf.truncate(5);
|
|
/// assert_eq!(buf, b"hello"[..]);
|
|
/// ```
|
|
///
|
|
/// [`split_off`]: #method.split_off
|
|
#[inline]
|
|
pub fn truncate(&mut self, len: usize) {
|
|
self.inner.truncate(len);
|
|
}
|
|
|
|
/// Shortens the buffer to `len` bytes and dropping the rest.
|
|
///
|
|
/// This is useful if underlying buffer is larger than cuurrent bytes object.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let mut buf = Bytes::from(&b"hello world"[..]);
|
|
/// buf.trimdown();
|
|
/// assert_eq!(buf, b"hello world"[..]);
|
|
/// ```
|
|
#[inline]
|
|
pub fn trimdown(&mut self) {
|
|
let kind = self.inner.kind();
|
|
|
|
// trim down only if buffer is not inline or static and
|
|
// buffer cap is greater than 64 bytes
|
|
if !(kind == KIND_INLINE || kind == KIND_STATIC)
|
|
&& (self.inner.capacity() - self.inner.len() >= 64)
|
|
{
|
|
let bytes = Bytes::copy_from_slice(self);
|
|
let _ = mem::replace(self, bytes);
|
|
}
|
|
}
|
|
|
|
/// Clears the buffer, removing all data.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let mut buf = Bytes::from(&b"hello world"[..]);
|
|
/// buf.clear();
|
|
/// assert!(buf.is_empty());
|
|
/// ```
|
|
#[inline]
|
|
pub fn clear(&mut self) {
|
|
self.truncate(0);
|
|
}
|
|
|
|
/// Attempts to convert into a `BytesMut` handle.
|
|
///
|
|
/// This will only succeed if there are no other outstanding references to
|
|
/// the underlying chunk of memory. `Bytes` handles that contain inlined
|
|
/// bytes will always be convertible to `BytesMut`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let a = Bytes::copy_from_slice(&b"Mary had a little lamb, little lamb, little lamb..."[..]);
|
|
///
|
|
/// // Create a shallow clone
|
|
/// let b = a.clone();
|
|
///
|
|
/// // This will fail because `b` shares a reference with `a`
|
|
/// let a = a.try_mut().unwrap_err();
|
|
///
|
|
/// drop(b);
|
|
///
|
|
/// // This will succeed
|
|
/// let mut a = a.try_mut().unwrap();
|
|
///
|
|
/// a[0] = b'b';
|
|
///
|
|
/// assert_eq!(&a[..4], b"bary");
|
|
/// ```
|
|
pub fn try_mut(mut self) -> Result<BytesMut, Bytes> {
|
|
if self.inner.is_mut_safe() {
|
|
Ok(BytesMut { inner: self.inner })
|
|
} else {
|
|
Err(self)
|
|
}
|
|
}
|
|
|
|
/// Acquires a mutable reference to the owned form of the data.
|
|
///
|
|
/// Clones the data if it is not already owned.
|
|
pub fn to_mut(&mut self) -> &mut BytesMut {
|
|
if !self.inner.is_mut_safe() {
|
|
let new = Self::copy_from_slice(&self[..]);
|
|
*self = new;
|
|
}
|
|
unsafe { &mut *(self as *mut Bytes as *mut BytesMut) }
|
|
}
|
|
|
|
/// Appends given bytes to this object.
|
|
///
|
|
/// If this `Bytes` object has not enough capacity, it is resized first.
|
|
/// If it is shared (`refcount > 1`), it is copied first.
|
|
///
|
|
/// This operation can be less effective than the similar operation on
|
|
/// `BytesMut`, especially on small additions.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let mut buf = Bytes::from("aabb");
|
|
/// buf.extend_from_slice(b"ccdd");
|
|
/// buf.extend_from_slice(b"eeff");
|
|
///
|
|
/// assert_eq!(b"aabbccddeeff", &buf[..]);
|
|
/// ```
|
|
pub fn extend_from_slice(&mut self, extend: &[u8]) {
|
|
if extend.is_empty() {
|
|
return;
|
|
}
|
|
|
|
let new_cap = self
|
|
.len()
|
|
.checked_add(extend.len())
|
|
.expect("capacity overflow");
|
|
|
|
let result = match mem::replace(self, Bytes::new()).try_mut() {
|
|
Ok(mut bytes_mut) => {
|
|
bytes_mut.extend_from_slice(extend);
|
|
bytes_mut
|
|
}
|
|
Err(bytes) => {
|
|
let mut bytes_mut = BytesMut::with_capacity(new_cap);
|
|
bytes_mut.put_slice(&bytes);
|
|
bytes_mut.put_slice(extend);
|
|
bytes_mut
|
|
}
|
|
};
|
|
|
|
let _ = mem::replace(self, result.freeze());
|
|
}
|
|
|
|
/// Combine splitted Bytes objects back as contiguous.
|
|
///
|
|
/// If `Bytes` objects were not contiguous originally, they will be extended.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::Bytes;
|
|
///
|
|
/// let mut buf = Bytes::with_capacity(64);
|
|
/// buf.extend_from_slice(b"aaabbbcccddd");
|
|
///
|
|
/// let splitted = buf.split_off(6);
|
|
/// assert_eq!(b"aaabbb", &buf[..]);
|
|
/// assert_eq!(b"cccddd", &splitted[..]);
|
|
///
|
|
/// buf.unsplit(splitted);
|
|
/// assert_eq!(b"aaabbbcccddd", &buf[..]);
|
|
/// ```
|
|
pub fn unsplit(&mut self, other: Bytes) {
|
|
if self.is_empty() {
|
|
*self = other;
|
|
return;
|
|
}
|
|
|
|
if let Err(other_inner) = self.inner.try_unsplit(other.inner) {
|
|
self.extend_from_slice(other_inner.as_ref());
|
|
}
|
|
}
|
|
|
|
/// Returns an iterator over the bytes contained by the buffer.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{Buf, Bytes};
|
|
///
|
|
/// let buf = Bytes::from(&b"abc"[..]);
|
|
/// let mut iter = buf.iter();
|
|
///
|
|
/// assert_eq!(iter.next().map(|b| *b), Some(b'a'));
|
|
/// assert_eq!(iter.next().map(|b| *b), Some(b'b'));
|
|
/// assert_eq!(iter.next().map(|b| *b), Some(b'c'));
|
|
/// assert_eq!(iter.next(), None);
|
|
/// ```
|
|
pub fn iter(&'_ self) -> std::slice::Iter<'_, u8> {
|
|
self.chunk().iter()
|
|
}
|
|
}
|
|
|
|
impl Buf for Bytes {
|
|
#[inline]
|
|
fn remaining(&self) -> usize {
|
|
self.len()
|
|
}
|
|
|
|
#[inline]
|
|
fn chunk(&self) -> &[u8] {
|
|
&(self.inner.as_ref())
|
|
}
|
|
|
|
#[inline]
|
|
fn advance(&mut self, cnt: usize) {
|
|
assert!(
|
|
cnt <= self.inner.as_ref().len(),
|
|
"cannot advance past `remaining`"
|
|
);
|
|
unsafe {
|
|
self.inner.set_start(cnt);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl bytes::buf::Buf for Bytes {
|
|
#[inline]
|
|
fn remaining(&self) -> usize {
|
|
self.len()
|
|
}
|
|
|
|
#[inline]
|
|
fn chunk(&self) -> &[u8] {
|
|
&(self.inner.as_ref())
|
|
}
|
|
|
|
#[inline]
|
|
fn advance(&mut self, cnt: usize) {
|
|
assert!(
|
|
cnt <= self.inner.as_ref().len(),
|
|
"cannot advance past `remaining`"
|
|
);
|
|
unsafe {
|
|
self.inner.set_start(cnt);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Clone for Bytes {
|
|
fn clone(&self) -> Bytes {
|
|
Bytes {
|
|
inner: unsafe { self.inner.shallow_clone(false) },
|
|
}
|
|
}
|
|
}
|
|
|
|
impl AsRef<[u8]> for Bytes {
|
|
#[inline]
|
|
fn as_ref(&self) -> &[u8] {
|
|
self.inner.as_ref()
|
|
}
|
|
}
|
|
|
|
impl Deref for Bytes {
|
|
type Target = [u8];
|
|
|
|
#[inline]
|
|
fn deref(&self) -> &[u8] {
|
|
self.inner.as_ref()
|
|
}
|
|
}
|
|
|
|
impl From<BytesMut> for Bytes {
|
|
fn from(src: BytesMut) -> Bytes {
|
|
src.freeze()
|
|
}
|
|
}
|
|
|
|
impl From<Vec<u8>> for Bytes {
|
|
/// Convert a `Vec` into a `Bytes`
|
|
///
|
|
/// This constructor may be used to avoid the inlining optimization used by
|
|
/// `with_capacity`. A `Bytes` constructed this way will always store its
|
|
/// data on the heap.
|
|
fn from(src: Vec<u8>) -> Bytes {
|
|
if src.is_empty() {
|
|
Bytes::new()
|
|
} else {
|
|
BytesMut::from(src).freeze()
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<String> for Bytes {
|
|
fn from(src: String) -> Bytes {
|
|
BytesMut::from(src).freeze()
|
|
}
|
|
}
|
|
|
|
impl From<&'static [u8]> for Bytes {
|
|
fn from(src: &'static [u8]) -> Bytes {
|
|
Bytes::from_static(src)
|
|
}
|
|
}
|
|
|
|
impl From<&'static str> for Bytes {
|
|
fn from(src: &'static str) -> Bytes {
|
|
Bytes::from_static(src.as_bytes())
|
|
}
|
|
}
|
|
|
|
impl FromIterator<u8> for BytesMut {
|
|
fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
|
|
let iter = into_iter.into_iter();
|
|
let (min, maybe_max) = iter.size_hint();
|
|
|
|
let mut out = BytesMut::with_capacity(maybe_max.unwrap_or(min));
|
|
|
|
for i in iter {
|
|
out.reserve(1);
|
|
out.put_u8(i);
|
|
}
|
|
|
|
out
|
|
}
|
|
}
|
|
|
|
impl FromIterator<u8> for Bytes {
|
|
fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
|
|
BytesMut::from_iter(into_iter).freeze()
|
|
}
|
|
}
|
|
|
|
impl<'a> FromIterator<&'a u8> for BytesMut {
|
|
fn from_iter<T: IntoIterator<Item = &'a u8>>(into_iter: T) -> Self {
|
|
into_iter.into_iter().copied().collect::<BytesMut>()
|
|
}
|
|
}
|
|
|
|
impl<'a> FromIterator<&'a u8> for Bytes {
|
|
fn from_iter<T: IntoIterator<Item = &'a u8>>(into_iter: T) -> Self {
|
|
BytesMut::from_iter(into_iter).freeze()
|
|
}
|
|
}
|
|
|
|
impl PartialEq for Bytes {
|
|
fn eq(&self, other: &Bytes) -> bool {
|
|
self.inner.as_ref() == other.inner.as_ref()
|
|
}
|
|
}
|
|
|
|
impl PartialOrd for Bytes {
|
|
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
|
|
self.inner.as_ref().partial_cmp(other.inner.as_ref())
|
|
}
|
|
}
|
|
|
|
impl Ord for Bytes {
|
|
fn cmp(&self, other: &Bytes) -> cmp::Ordering {
|
|
self.inner.as_ref().cmp(other.inner.as_ref())
|
|
}
|
|
}
|
|
|
|
impl Eq for Bytes {}
|
|
|
|
impl Default for Bytes {
|
|
#[inline]
|
|
fn default() -> Bytes {
|
|
Bytes::new()
|
|
}
|
|
}
|
|
|
|
impl fmt::Debug for Bytes {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
fmt::Debug::fmt(&debug::BsDebug(&self.inner.as_ref()), fmt)
|
|
}
|
|
}
|
|
|
|
impl hash::Hash for Bytes {
|
|
fn hash<H>(&self, state: &mut H)
|
|
where
|
|
H: hash::Hasher,
|
|
{
|
|
let s: &[u8] = self.as_ref();
|
|
s.hash(state);
|
|
}
|
|
}
|
|
|
|
impl Borrow<[u8]> for Bytes {
|
|
fn borrow(&self) -> &[u8] {
|
|
self.as_ref()
|
|
}
|
|
}
|
|
|
|
impl IntoIterator for Bytes {
|
|
type Item = u8;
|
|
type IntoIter = IntoIter<Bytes>;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
IntoIter::new(self)
|
|
}
|
|
}
|
|
|
|
impl<'a> IntoIterator for &'a Bytes {
|
|
type Item = &'a u8;
|
|
type IntoIter = std::slice::Iter<'a, u8>;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
self.as_ref().iter()
|
|
}
|
|
}
|
|
|
|
impl Extend<u8> for Bytes {
|
|
fn extend<T>(&mut self, iter: T)
|
|
where
|
|
T: IntoIterator<Item = u8>,
|
|
{
|
|
let iter = iter.into_iter();
|
|
|
|
let (lower, upper) = iter.size_hint();
|
|
|
|
// Avoid possible conversion into mut if there's nothing to add
|
|
if let Some(0) = upper {
|
|
return;
|
|
}
|
|
|
|
let mut bytes_mut = match mem::replace(self, Bytes::new()).try_mut() {
|
|
Ok(bytes_mut) => bytes_mut,
|
|
Err(bytes) => {
|
|
let mut bytes_mut = BytesMut::with_capacity(bytes.len() + lower);
|
|
bytes_mut.put_slice(&bytes);
|
|
bytes_mut
|
|
}
|
|
};
|
|
|
|
bytes_mut.extend(iter);
|
|
|
|
let _ = mem::replace(self, bytes_mut.freeze());
|
|
}
|
|
}
|
|
|
|
impl<'a> Extend<&'a u8> for Bytes {
|
|
fn extend<T>(&mut self, iter: T)
|
|
where
|
|
T: IntoIterator<Item = &'a u8>,
|
|
{
|
|
self.extend(iter.into_iter().copied())
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ===== BytesMut =====
|
|
*
|
|
*/
|
|
|
|
impl BytesMut {
|
|
/// Creates a new `BytesMut` with the specified capacity.
|
|
///
|
|
/// The returned `BytesMut` will be able to hold at least `capacity` bytes
|
|
/// without reallocating. If `capacity` is under `4 * size_of::<usize>() - 1`,
|
|
/// then `BytesMut` will not allocate.
|
|
///
|
|
/// It is important to note that this function does not specify the length
|
|
/// of the returned `BytesMut`, but only the capacity.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{BytesMut, BufMut};
|
|
///
|
|
/// let mut bytes = BytesMut::with_capacity(64);
|
|
///
|
|
/// // `bytes` contains no data, even though there is capacity
|
|
/// assert_eq!(bytes.len(), 0);
|
|
///
|
|
/// bytes.put(&b"hello world"[..]);
|
|
///
|
|
/// assert_eq!(&bytes[..], b"hello world");
|
|
/// ```
|
|
#[inline]
|
|
pub fn with_capacity(capacity: usize) -> BytesMut {
|
|
BytesMut {
|
|
inner: Inner::with_capacity(capacity),
|
|
}
|
|
}
|
|
|
|
/// Creates a new `BytesMut` with default capacity.
|
|
///
|
|
/// Resulting object has length 0 and unspecified capacity.
|
|
/// This function does not allocate.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{BytesMut, BufMut};
|
|
///
|
|
/// let mut bytes = BytesMut::new();
|
|
///
|
|
/// assert_eq!(0, bytes.len());
|
|
///
|
|
/// bytes.reserve(2);
|
|
/// bytes.put_slice(b"xy");
|
|
///
|
|
/// assert_eq!(&b"xy"[..], &bytes[..]);
|
|
/// ```
|
|
#[inline]
|
|
pub fn new() -> BytesMut {
|
|
BytesMut::with_capacity(0)
|
|
}
|
|
|
|
/// Returns the number of bytes contained in this `BytesMut`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let b = BytesMut::from(&b"hello"[..]);
|
|
/// assert_eq!(b.len(), 5);
|
|
/// ```
|
|
#[inline]
|
|
pub fn len(&self) -> usize {
|
|
self.inner.len()
|
|
}
|
|
|
|
/// Returns true if the `BytesMut` has a length of 0.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let b = BytesMut::with_capacity(64);
|
|
/// assert!(b.is_empty());
|
|
/// ```
|
|
#[inline]
|
|
pub fn is_empty(&self) -> bool {
|
|
self.inner.is_empty()
|
|
}
|
|
|
|
/// Return true if the `BytesMut` uses inline allocation
|
|
///
|
|
/// # Examples
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// assert!(BytesMut::with_capacity(4).is_inline());
|
|
/// assert!(!BytesMut::from(Vec::with_capacity(4)).is_inline());
|
|
/// assert!(!BytesMut::with_capacity(1024).is_inline());
|
|
/// ```
|
|
pub fn is_inline(&self) -> bool {
|
|
self.inner.is_inline()
|
|
}
|
|
|
|
/// Returns the number of bytes the `BytesMut` can hold without reallocating.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let b = BytesMut::with_capacity(64);
|
|
/// assert_eq!(b.capacity(), 64);
|
|
/// ```
|
|
#[inline]
|
|
pub fn capacity(&self) -> usize {
|
|
self.inner.capacity()
|
|
}
|
|
|
|
/// Converts `self` into an immutable `Bytes`.
|
|
///
|
|
/// The conversion is zero cost and is used to indicate that the slice
|
|
/// referenced by the handle will no longer be mutated. Once the conversion
|
|
/// is done, the handle can be cloned and shared across threads.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{BytesMut, BufMut};
|
|
/// use std::thread;
|
|
///
|
|
/// let mut b = BytesMut::with_capacity(64);
|
|
/// b.put("hello world");
|
|
/// let b1 = b.freeze();
|
|
/// let b2 = b1.clone();
|
|
///
|
|
/// let th = thread::spawn(move || {
|
|
/// assert_eq!(&b1[..], b"hello world");
|
|
/// });
|
|
///
|
|
/// assert_eq!(&b2[..], b"hello world");
|
|
/// th.join().unwrap();
|
|
/// ```
|
|
#[inline]
|
|
pub fn freeze(self) -> Bytes {
|
|
Bytes { inner: self.inner }
|
|
}
|
|
|
|
/// Splits the bytes into two at the given index.
|
|
///
|
|
/// Afterwards `self` contains elements `[0, at)`, and the returned
|
|
/// `BytesMut` contains elements `[at, capacity)`.
|
|
///
|
|
/// This is an `O(1)` operation that just increases the reference count
|
|
/// and sets a few indices.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let mut a = BytesMut::from(&b"hello world"[..]);
|
|
/// let mut b = a.split_off(5);
|
|
///
|
|
/// a[0] = b'j';
|
|
/// b[0] = b'!';
|
|
///
|
|
/// assert_eq!(&a[..], b"jello");
|
|
/// assert_eq!(&b[..], b"!world");
|
|
/// ```
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `at > capacity`.
|
|
pub fn split_off(&mut self, at: usize) -> BytesMut {
|
|
BytesMut {
|
|
inner: self.inner.split_off(at),
|
|
}
|
|
}
|
|
|
|
/// Removes the bytes from the current view, returning them in a new
|
|
/// `BytesMut` handle.
|
|
///
|
|
/// Afterwards, `self` will be empty, but will retain any additional
|
|
/// capacity that it had before the operation. This is identical to
|
|
/// `self.split_to(self.len())`.
|
|
///
|
|
/// This is an `O(1)` operation that just increases the reference count and
|
|
/// sets a few indices.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{BytesMut, BufMut};
|
|
///
|
|
/// let mut buf = BytesMut::with_capacity(1024);
|
|
/// buf.put(&b"hello world"[..]);
|
|
///
|
|
/// let other = buf.split();
|
|
///
|
|
/// assert!(buf.is_empty());
|
|
/// assert_eq!(1013, buf.capacity());
|
|
///
|
|
/// assert_eq!(other, b"hello world"[..]);
|
|
/// ```
|
|
pub fn split(&mut self) -> BytesMut {
|
|
let len = self.len();
|
|
self.split_to(len)
|
|
}
|
|
|
|
/// Splits the buffer into two at the given index.
|
|
///
|
|
/// Afterwards `self` contains elements `[at, len)`, and the returned `BytesMut`
|
|
/// contains elements `[0, at)`.
|
|
///
|
|
/// This is an `O(1)` operation that just increases the reference count and
|
|
/// sets a few indices.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let mut a = BytesMut::from(&b"hello world"[..]);
|
|
/// let mut b = a.split_to(5);
|
|
///
|
|
/// a[0] = b'!';
|
|
/// b[0] = b'j';
|
|
///
|
|
/// assert_eq!(&a[..], b"!world");
|
|
/// assert_eq!(&b[..], b"jello");
|
|
/// ```
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `at > len`.
|
|
pub fn split_to(&mut self, at: usize) -> BytesMut {
|
|
assert!(at <= self.len());
|
|
|
|
BytesMut {
|
|
inner: self.inner.split_to(at),
|
|
}
|
|
}
|
|
|
|
/// Shortens the buffer, keeping the first `len` bytes and dropping the
|
|
/// rest.
|
|
///
|
|
/// If `len` is greater than the buffer's current length, this has no
|
|
/// effect.
|
|
///
|
|
/// The [`split_off`] method can emulate `truncate`, but this causes the
|
|
/// excess bytes to be returned instead of dropped.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let mut buf = BytesMut::from(&b"hello world"[..]);
|
|
/// buf.truncate(5);
|
|
/// assert_eq!(buf, b"hello"[..]);
|
|
/// ```
|
|
///
|
|
/// [`split_off`]: #method.split_off
|
|
pub fn truncate(&mut self, len: usize) {
|
|
self.inner.truncate(len);
|
|
}
|
|
|
|
/// Clears the buffer, removing all data.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let mut buf = BytesMut::from(&b"hello world"[..]);
|
|
/// buf.clear();
|
|
/// assert!(buf.is_empty());
|
|
/// ```
|
|
pub fn clear(&mut self) {
|
|
self.truncate(0);
|
|
}
|
|
|
|
/// Resizes the buffer so that `len` is equal to `new_len`.
|
|
///
|
|
/// If `new_len` is greater than `len`, the buffer is extended by the
|
|
/// difference with each additional byte set to `value`. If `new_len` is
|
|
/// less than `len`, the buffer is simply truncated.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let mut buf = BytesMut::new();
|
|
///
|
|
/// buf.resize(3, 0x1);
|
|
/// assert_eq!(&buf[..], &[0x1, 0x1, 0x1]);
|
|
///
|
|
/// buf.resize(2, 0x2);
|
|
/// assert_eq!(&buf[..], &[0x1, 0x1]);
|
|
///
|
|
/// buf.resize(4, 0x3);
|
|
/// assert_eq!(&buf[..], &[0x1, 0x1, 0x3, 0x3]);
|
|
/// ```
|
|
#[inline]
|
|
pub fn resize(&mut self, new_len: usize, value: u8) {
|
|
self.inner.resize(new_len, value);
|
|
}
|
|
|
|
/// Sets the length of the buffer.
|
|
///
|
|
/// This will explicitly set the size of the buffer without actually
|
|
/// modifying the data, so it is up to the caller to ensure that the data
|
|
/// has been initialized.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let mut b = BytesMut::from(&b"hello world"[..]);
|
|
///
|
|
/// unsafe {
|
|
/// b.set_len(5);
|
|
/// }
|
|
///
|
|
/// assert_eq!(&b[..], b"hello");
|
|
///
|
|
/// unsafe {
|
|
/// b.set_len(11);
|
|
/// }
|
|
///
|
|
/// assert_eq!(&b[..], b"hello world");
|
|
/// ```
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// This method will panic if `len` is out of bounds for the underlying
|
|
/// slice or if it comes after the `end` of the configured window.
|
|
#[inline]
|
|
#[allow(clippy::missing_safety_doc)]
|
|
pub unsafe fn set_len(&mut self, len: usize) {
|
|
self.inner.set_len(len)
|
|
}
|
|
|
|
#[inline]
|
|
/// Reserves capacity for at least `additional` more bytes to be inserted
|
|
/// into the given `BytesMut`.
|
|
///
|
|
/// More than `additional` bytes may be reserved in order to avoid frequent
|
|
/// reallocations. A call to `reserve` may result in an allocation.
|
|
///
|
|
/// Before allocating new buffer space, the function will attempt to reclaim
|
|
/// space in the existing buffer. If the current handle references a small
|
|
/// view in the original buffer and all other handles have been dropped,
|
|
/// and the requested capacity is less than or equal to the existing
|
|
/// buffer's capacity, then the current view will be copied to the front of
|
|
/// the buffer and the handle will take ownership of the full buffer.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// In the following example, a new buffer is allocated.
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let mut buf = BytesMut::from(&b"hello"[..]);
|
|
/// buf.reserve(64);
|
|
/// assert!(buf.capacity() >= 69);
|
|
/// ```
|
|
///
|
|
/// In the following example, the existing buffer is reclaimed.
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{BytesMut, BufMut};
|
|
///
|
|
/// let mut buf = BytesMut::with_capacity(128);
|
|
/// buf.put(&[0; 64][..]);
|
|
///
|
|
/// let ptr = buf.as_ptr();
|
|
/// let other = buf.split();
|
|
///
|
|
/// assert!(buf.is_empty());
|
|
/// assert_eq!(buf.capacity(), 64);
|
|
///
|
|
/// drop(other);
|
|
/// buf.reserve(128);
|
|
///
|
|
/// assert_eq!(buf.capacity(), 128);
|
|
/// assert_eq!(buf.as_ptr(), ptr);
|
|
/// ```
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if the new capacity overflows `usize`.
|
|
#[inline]
|
|
pub fn reserve(&mut self, additional: usize) {
|
|
let len = self.len();
|
|
let rem = self.capacity() - len;
|
|
|
|
if additional <= rem {
|
|
// The handle can already store at least `additional` more bytes, so
|
|
// there is no further work needed to be done.
|
|
return;
|
|
}
|
|
|
|
self.inner.reserve_inner(additional)
|
|
}
|
|
|
|
/// Appends given bytes to this object.
|
|
///
|
|
/// If this `BytesMut` object has not enough capacity, it is resized first.
|
|
/// So unlike `put_slice` operation, `extend_from_slice` does not panic.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let mut buf = BytesMut::with_capacity(0);
|
|
/// buf.extend_from_slice(b"aaabbb");
|
|
/// buf.extend_from_slice(b"cccddd");
|
|
///
|
|
/// assert_eq!(b"aaabbbcccddd", &buf[..]);
|
|
/// ```
|
|
#[inline]
|
|
pub fn extend_from_slice(&mut self, extend: &[u8]) {
|
|
self.reserve(extend.len());
|
|
self.put_slice(extend);
|
|
}
|
|
|
|
/// Combine splitted BytesMut objects back as contiguous.
|
|
///
|
|
/// If `BytesMut` objects were not contiguous originally, they will be extended.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::BytesMut;
|
|
///
|
|
/// let mut buf = BytesMut::with_capacity(64);
|
|
/// buf.extend_from_slice(b"aaabbbcccddd");
|
|
///
|
|
/// let splitted = buf.split_off(6);
|
|
/// assert_eq!(b"aaabbb", &buf[..]);
|
|
/// assert_eq!(b"cccddd", &splitted[..]);
|
|
///
|
|
/// buf.unsplit(splitted);
|
|
/// assert_eq!(b"aaabbbcccddd", &buf[..]);
|
|
/// ```
|
|
pub fn unsplit(&mut self, other: BytesMut) {
|
|
if self.is_empty() {
|
|
*self = other;
|
|
return;
|
|
}
|
|
|
|
if let Err(other_inner) = self.inner.try_unsplit(other.inner) {
|
|
self.extend_from_slice(other_inner.as_ref());
|
|
}
|
|
}
|
|
|
|
/// Returns an iterator over the bytes contained by the buffer.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use ntex_bytes::{Buf, BytesMut};
|
|
///
|
|
/// let buf = BytesMut::from(&b"abc"[..]);
|
|
/// let mut iter = buf.iter();
|
|
///
|
|
/// assert_eq!(iter.next().map(|b| *b), Some(b'a'));
|
|
/// assert_eq!(iter.next().map(|b| *b), Some(b'b'));
|
|
/// assert_eq!(iter.next().map(|b| *b), Some(b'c'));
|
|
/// assert_eq!(iter.next(), None);
|
|
/// ```
|
|
pub fn iter(&'_ self) -> std::slice::Iter<'_, u8> {
|
|
self.chunk().iter()
|
|
}
|
|
}
|
|
|
|
impl Buf for BytesMut {
|
|
#[inline]
|
|
fn remaining(&self) -> usize {
|
|
self.len()
|
|
}
|
|
|
|
#[inline]
|
|
fn chunk(&self) -> &[u8] {
|
|
&(self.inner.as_ref())
|
|
}
|
|
|
|
#[inline]
|
|
fn advance(&mut self, cnt: usize) {
|
|
assert!(
|
|
cnt <= self.inner.as_ref().len(),
|
|
"cannot advance past `remaining`"
|
|
);
|
|
unsafe {
|
|
self.inner.set_start(cnt);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl BufMut for BytesMut {
|
|
#[inline]
|
|
fn remaining_mut(&self) -> usize {
|
|
self.capacity() - self.len()
|
|
}
|
|
|
|
#[inline]
|
|
unsafe fn advance_mut(&mut self, cnt: usize) {
|
|
let new_len = self.len() + cnt;
|
|
|
|
// This call will panic if `cnt` is too big
|
|
self.inner.set_len(new_len);
|
|
}
|
|
|
|
#[inline]
|
|
fn chunk_mut(&mut self) -> &mut UninitSlice {
|
|
let len = self.len();
|
|
|
|
unsafe {
|
|
// This will never panic as `len` can never become invalid
|
|
let ptr = &mut self.inner.as_raw()[len..];
|
|
|
|
UninitSlice::from_raw_parts_mut(ptr.as_mut_ptr(), self.capacity() - len)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn put_slice(&mut self, src: &[u8]) {
|
|
assert!(self.remaining_mut() >= src.len());
|
|
|
|
let len = src.len();
|
|
|
|
unsafe {
|
|
ptr::copy_nonoverlapping(
|
|
src.as_ptr(),
|
|
self.chunk_mut().as_mut_ptr() as *mut u8,
|
|
len,
|
|
);
|
|
self.advance_mut(len);
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn put_u8(&mut self, n: u8) {
|
|
self.inner.put_u8(n);
|
|
}
|
|
|
|
#[inline]
|
|
fn put_i8(&mut self, n: i8) {
|
|
self.put_u8(n as u8);
|
|
}
|
|
}
|
|
|
|
impl AsRef<[u8]> for BytesMut {
|
|
#[inline]
|
|
fn as_ref(&self) -> &[u8] {
|
|
self.inner.as_ref()
|
|
}
|
|
}
|
|
|
|
impl Deref for BytesMut {
|
|
type Target = [u8];
|
|
|
|
#[inline]
|
|
fn deref(&self) -> &[u8] {
|
|
self.as_ref()
|
|
}
|
|
}
|
|
|
|
impl AsMut<[u8]> for BytesMut {
|
|
fn as_mut(&mut self) -> &mut [u8] {
|
|
self.inner.as_mut()
|
|
}
|
|
}
|
|
|
|
impl DerefMut for BytesMut {
|
|
#[inline]
|
|
fn deref_mut(&mut self) -> &mut [u8] {
|
|
self.inner.as_mut()
|
|
}
|
|
}
|
|
|
|
impl From<Vec<u8>> for BytesMut {
|
|
/// Convert a `Vec` into a `BytesMut`
|
|
///
|
|
/// This constructor may be used to avoid the inlining optimization used by
|
|
/// `with_capacity`. A `BytesMut` constructed this way will always store
|
|
/// its data on the heap.
|
|
fn from(src: Vec<u8>) -> BytesMut {
|
|
BytesMut {
|
|
inner: Inner::from_vec(src),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<String> for BytesMut {
|
|
fn from(src: String) -> BytesMut {
|
|
BytesMut::from(src.into_bytes())
|
|
}
|
|
}
|
|
|
|
impl<'a> From<&'a [u8]> for BytesMut {
|
|
fn from(src: &'a [u8]) -> BytesMut {
|
|
let len = src.len();
|
|
|
|
if len == 0 {
|
|
BytesMut::new()
|
|
} else if len <= INLINE_CAP {
|
|
unsafe {
|
|
#[allow(clippy::uninit_assumed_init)]
|
|
let mut inner: Inner = mem::MaybeUninit::uninit().assume_init();
|
|
|
|
// Set inline mask
|
|
inner.arc = AtomicPtr::new(KIND_INLINE as *mut Shared);
|
|
inner.set_inline_len(len);
|
|
inner.as_raw()[0..len].copy_from_slice(src);
|
|
|
|
BytesMut { inner }
|
|
}
|
|
} else {
|
|
BytesMut::from(src.to_vec())
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> From<&'a str> for BytesMut {
|
|
fn from(src: &'a str) -> BytesMut {
|
|
BytesMut::from(src.as_bytes())
|
|
}
|
|
}
|
|
|
|
impl From<Bytes> for BytesMut {
|
|
fn from(src: Bytes) -> BytesMut {
|
|
src.try_mut().unwrap_or_else(|src| BytesMut::from(&src[..]))
|
|
}
|
|
}
|
|
|
|
impl PartialEq for BytesMut {
|
|
fn eq(&self, other: &BytesMut) -> bool {
|
|
self.inner.as_ref() == other.inner.as_ref()
|
|
}
|
|
}
|
|
|
|
impl PartialOrd for BytesMut {
|
|
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
|
|
self.inner.as_ref().partial_cmp(other.inner.as_ref())
|
|
}
|
|
}
|
|
|
|
impl Ord for BytesMut {
|
|
fn cmp(&self, other: &BytesMut) -> cmp::Ordering {
|
|
self.inner.as_ref().cmp(other.inner.as_ref())
|
|
}
|
|
}
|
|
|
|
impl Eq for BytesMut {}
|
|
|
|
impl Default for BytesMut {
|
|
#[inline]
|
|
fn default() -> BytesMut {
|
|
BytesMut::new()
|
|
}
|
|
}
|
|
|
|
impl fmt::Debug for BytesMut {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
fmt::Debug::fmt(&debug::BsDebug(&self.inner.as_ref()), fmt)
|
|
}
|
|
}
|
|
|
|
impl hash::Hash for BytesMut {
|
|
fn hash<H>(&self, state: &mut H)
|
|
where
|
|
H: hash::Hasher,
|
|
{
|
|
let s: &[u8] = self.as_ref();
|
|
s.hash(state);
|
|
}
|
|
}
|
|
|
|
impl Borrow<[u8]> for BytesMut {
|
|
fn borrow(&self) -> &[u8] {
|
|
self.as_ref()
|
|
}
|
|
}
|
|
|
|
impl BorrowMut<[u8]> for BytesMut {
|
|
fn borrow_mut(&mut self) -> &mut [u8] {
|
|
self.as_mut()
|
|
}
|
|
}
|
|
|
|
impl fmt::Write for BytesMut {
|
|
#[inline]
|
|
fn write_str(&mut self, s: &str) -> fmt::Result {
|
|
if self.remaining_mut() >= s.len() {
|
|
self.put_slice(s.as_bytes());
|
|
Ok(())
|
|
} else {
|
|
Err(fmt::Error)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn write_fmt(&mut self, args: fmt::Arguments<'_>) -> fmt::Result {
|
|
fmt::write(self, args)
|
|
}
|
|
}
|
|
|
|
impl Clone for BytesMut {
|
|
fn clone(&self) -> BytesMut {
|
|
BytesMut::from(&self[..])
|
|
}
|
|
}
|
|
|
|
impl IntoIterator for BytesMut {
|
|
type Item = u8;
|
|
type IntoIter = IntoIter<BytesMut>;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
IntoIter::new(self)
|
|
}
|
|
}
|
|
|
|
impl<'a> IntoIterator for &'a BytesMut {
|
|
type Item = &'a u8;
|
|
type IntoIter = std::slice::Iter<'a, u8>;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
self.as_ref().iter()
|
|
}
|
|
}
|
|
|
|
impl Extend<u8> for BytesMut {
|
|
fn extend<T>(&mut self, iter: T)
|
|
where
|
|
T: IntoIterator<Item = u8>,
|
|
{
|
|
let iter = iter.into_iter();
|
|
|
|
let (lower, _) = iter.size_hint();
|
|
self.reserve(lower);
|
|
|
|
for b in iter {
|
|
self.put_u8(b);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> Extend<&'a u8> for BytesMut {
|
|
fn extend<T>(&mut self, iter: T)
|
|
where
|
|
T: IntoIterator<Item = &'a u8>,
|
|
{
|
|
self.extend(iter.into_iter().copied())
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ===== Inner =====
|
|
*
|
|
*/
|
|
|
|
impl Inner {
|
|
#[inline]
|
|
const fn from_static(bytes: &'static [u8]) -> Inner {
|
|
let ptr = bytes.as_ptr() as *mut u8;
|
|
|
|
Inner {
|
|
// `arc` won't ever store a pointer. Instead, use it to
|
|
// track the fact that the `Bytes` handle is backed by a
|
|
// static buffer.
|
|
arc: AtomicPtr::new(KIND_STATIC as *mut Shared),
|
|
ptr,
|
|
len: bytes.len(),
|
|
cap: bytes.len(),
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn from_vec(mut src: Vec<u8>) -> Inner {
|
|
let len = src.len();
|
|
let cap = src.capacity();
|
|
let ptr = src.as_mut_ptr();
|
|
|
|
mem::forget(src);
|
|
|
|
let original_capacity_repr = original_capacity_to_repr(cap);
|
|
let arc = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
|
|
|
|
Inner {
|
|
arc: AtomicPtr::new(arc as *mut Shared),
|
|
ptr,
|
|
len,
|
|
cap,
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn with_capacity(capacity: usize) -> Inner {
|
|
if capacity <= INLINE_CAP {
|
|
unsafe {
|
|
// Using uninitialized memory is ~30% faster
|
|
#[allow(clippy::uninit_assumed_init)]
|
|
let mut inner: Inner = mem::MaybeUninit::uninit().assume_init();
|
|
inner.arc = AtomicPtr::new(KIND_INLINE as *mut Shared);
|
|
inner
|
|
}
|
|
} else {
|
|
Inner::from_vec(Vec::with_capacity(capacity))
|
|
}
|
|
}
|
|
|
|
/// Return a slice for the handle's view into the shared buffer
|
|
#[inline]
|
|
fn as_ref(&self) -> &[u8] {
|
|
unsafe {
|
|
if self.is_inline() {
|
|
slice::from_raw_parts(self.inline_ptr(), self.inline_len())
|
|
} else {
|
|
slice::from_raw_parts(self.ptr, self.len)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return a mutable slice for the handle's view into the shared buffer
|
|
#[inline]
|
|
fn as_mut(&mut self) -> &mut [u8] {
|
|
debug_assert!(!self.is_static());
|
|
|
|
unsafe {
|
|
if self.is_inline() {
|
|
slice::from_raw_parts_mut(self.inline_ptr(), self.inline_len())
|
|
} else {
|
|
slice::from_raw_parts_mut(self.ptr, self.len)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return a mutable slice for the handle's view into the shared buffer
|
|
/// including potentially uninitialized bytes.
|
|
#[inline]
|
|
unsafe fn as_raw(&mut self) -> &mut [u8] {
|
|
debug_assert!(!self.is_static());
|
|
|
|
if self.is_inline() {
|
|
slice::from_raw_parts_mut(self.inline_ptr(), INLINE_CAP)
|
|
} else {
|
|
slice::from_raw_parts_mut(self.ptr, self.cap)
|
|
}
|
|
}
|
|
|
|
/// Insert a byte into the next slot and advance the len by 1.
|
|
#[inline]
|
|
fn put_u8(&mut self, n: u8) {
|
|
if self.is_inline() {
|
|
let len = self.inline_len();
|
|
assert!(len < INLINE_CAP);
|
|
unsafe {
|
|
*self.inline_ptr().add(len) = n;
|
|
}
|
|
self.set_inline_len(len + 1);
|
|
} else {
|
|
assert!(self.len < self.cap);
|
|
unsafe {
|
|
*self.ptr.add(self.len) = n;
|
|
}
|
|
self.len += 1;
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn len(&self) -> usize {
|
|
if self.is_inline() {
|
|
self.inline_len()
|
|
} else {
|
|
self.len
|
|
}
|
|
}
|
|
|
|
/// Pointer to the start of the inline buffer
|
|
#[inline]
|
|
unsafe fn inline_ptr(&self) -> *mut u8 {
|
|
(self as *const Inner as *mut Inner as *mut u8).offset(INLINE_DATA_OFFSET)
|
|
}
|
|
|
|
#[inline]
|
|
fn inline_len(&self) -> usize {
|
|
// This is undefind behavior due to a data race, but experimental
|
|
// evidence shows that it works in practice (discussion:
|
|
// https://internals.rust-lang.org/t/bit-wise-reasoning-for-atomic-accesses/8853).
|
|
let p: *const usize = unsafe { mem::transmute(&self.arc) };
|
|
(unsafe { *p } & INLINE_LEN_MASK) >> INLINE_LEN_OFFSET
|
|
}
|
|
|
|
/// Set the length of the inline buffer. This is done by writing to the
|
|
/// least significant byte of the `arc` field.
|
|
#[inline]
|
|
fn set_inline_len(&mut self, len: usize) {
|
|
debug_assert!(len <= INLINE_CAP);
|
|
let p = self.arc.get_mut();
|
|
*p = ((*p as usize & !INLINE_LEN_MASK) | (len << INLINE_LEN_OFFSET)) as _;
|
|
}
|
|
|
|
/// slice.
|
|
#[inline]
|
|
unsafe fn set_len(&mut self, len: usize) {
|
|
if self.is_inline() {
|
|
assert!(len <= INLINE_CAP);
|
|
self.set_inline_len(len);
|
|
} else {
|
|
assert!(len <= self.cap);
|
|
self.len = len;
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn is_empty(&self) -> bool {
|
|
self.len() == 0
|
|
}
|
|
|
|
#[inline]
|
|
fn capacity(&self) -> usize {
|
|
if self.is_inline() {
|
|
INLINE_CAP
|
|
} else {
|
|
self.cap
|
|
}
|
|
}
|
|
|
|
fn split_off(&mut self, at: usize) -> Inner {
|
|
let mut other = unsafe { self.shallow_clone(true) };
|
|
|
|
unsafe {
|
|
other.set_start(at);
|
|
self.set_end(at);
|
|
}
|
|
|
|
other
|
|
}
|
|
|
|
fn split_to(&mut self, at: usize) -> Inner {
|
|
let mut other = unsafe { self.shallow_clone(true) };
|
|
|
|
unsafe {
|
|
other.set_end(at);
|
|
self.set_start(at);
|
|
}
|
|
|
|
other
|
|
}
|
|
|
|
fn truncate(&mut self, len: usize) {
|
|
if len <= self.len() {
|
|
unsafe {
|
|
self.set_len(len);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn try_unsplit(&mut self, other: Inner) -> Result<(), Inner> {
|
|
let ptr;
|
|
|
|
if other.is_empty() {
|
|
return Ok(());
|
|
}
|
|
|
|
unsafe {
|
|
ptr = self.ptr.add(self.len);
|
|
}
|
|
if ptr == other.ptr && self.kind() == KIND_ARC && other.kind() == KIND_ARC {
|
|
debug_assert_eq!(self.arc.load(Acquire), other.arc.load(Acquire));
|
|
// Contiguous blocks, just combine directly
|
|
self.len += other.len;
|
|
self.cap += other.cap;
|
|
Ok(())
|
|
} else {
|
|
Err(other)
|
|
}
|
|
}
|
|
|
|
fn resize(&mut self, new_len: usize, value: u8) {
|
|
let len = self.len();
|
|
if new_len > len {
|
|
let additional = new_len - len;
|
|
self.reserve(additional);
|
|
unsafe {
|
|
let dst = self.as_raw()[len..].as_mut_ptr();
|
|
ptr::write_bytes(dst, value, additional);
|
|
self.set_len(new_len);
|
|
}
|
|
} else {
|
|
self.truncate(new_len);
|
|
}
|
|
}
|
|
|
|
unsafe fn set_start(&mut self, start: usize) {
|
|
// Setting the start to 0 is a no-op, so return early if this is the
|
|
// case.
|
|
if start == 0 {
|
|
return;
|
|
}
|
|
|
|
let kind = self.kind();
|
|
|
|
// Always check `inline` first, because if the handle is using inline
|
|
// data storage, all of the `Inner` struct fields will be gibberish.
|
|
if kind == KIND_INLINE {
|
|
assert!(start <= INLINE_CAP);
|
|
|
|
let len = self.inline_len();
|
|
|
|
if len <= start {
|
|
self.set_inline_len(0);
|
|
} else {
|
|
// `set_start` is essentially shifting data off the front of the
|
|
// view. Inlined buffers only track the length of the slice.
|
|
// So, to update the start, the data at the new starting point
|
|
// is copied to the beginning of the buffer.
|
|
let new_len = len - start;
|
|
|
|
let dst = self.inline_ptr();
|
|
let src = (dst as *const u8).add(start);
|
|
|
|
ptr::copy(src, dst, new_len);
|
|
|
|
self.set_inline_len(new_len);
|
|
}
|
|
} else {
|
|
assert!(start <= self.cap);
|
|
|
|
if kind == KIND_VEC {
|
|
// Setting the start when in vec representation is a little more
|
|
// complicated. First, we have to track how far ahead the
|
|
// "start" of the byte buffer from the beginning of the vec. We
|
|
// also have to ensure that we don't exceed the maximum shift.
|
|
let (mut pos, prev) = self.uncoordinated_get_vec_pos();
|
|
pos += start;
|
|
|
|
if pos <= MAX_VEC_POS {
|
|
self.uncoordinated_set_vec_pos(pos, prev);
|
|
} else {
|
|
// The repr must be upgraded to ARC. This will never happen
|
|
// on 64 bit systems and will only happen on 32 bit systems
|
|
// when shifting past 134,217,727 bytes. As such, we don't
|
|
// worry too much about performance here.
|
|
let _ = self.shallow_clone(true);
|
|
}
|
|
}
|
|
|
|
// Updating the start of the view is setting `ptr` to point to the
|
|
// new start and updating the `len` field to reflect the new length
|
|
// of the view.
|
|
self.ptr = self.ptr.add(start);
|
|
|
|
if self.len >= start {
|
|
self.len -= start;
|
|
} else {
|
|
self.len = 0;
|
|
}
|
|
|
|
self.cap -= start;
|
|
}
|
|
}
|
|
|
|
unsafe fn set_end(&mut self, end: usize) {
|
|
debug_assert!(self.is_shared());
|
|
|
|
// Always check `inline` first, because if the handle is using inline
|
|
// data storage, all of the `Inner` struct fields will be gibberish.
|
|
if self.is_inline() {
|
|
assert!(end <= INLINE_CAP);
|
|
let new_len = cmp::min(self.inline_len(), end);
|
|
self.set_inline_len(new_len);
|
|
} else {
|
|
assert!(end <= self.cap);
|
|
|
|
self.cap = end;
|
|
self.len = cmp::min(self.len, end);
|
|
}
|
|
}
|
|
|
|
/// Checks if it is safe to mutate the memory
|
|
fn is_mut_safe(&mut self) -> bool {
|
|
let kind = self.kind();
|
|
|
|
// Always check `inline` first, because if the handle is using inline
|
|
// data storage, all of the `Inner` struct fields will be gibberish.
|
|
if kind == KIND_INLINE || kind == KIND_VEC {
|
|
// Inlined buffers can always be mutated as the data is never shared
|
|
// across handles.
|
|
true
|
|
} else if kind == KIND_STATIC {
|
|
false
|
|
} else {
|
|
// Otherwise, the underlying buffer is potentially shared with other
|
|
// handles, so the ref_count needs to be checked.
|
|
unsafe { (**self.arc.get_mut()).is_unique() }
|
|
}
|
|
}
|
|
|
|
/// Increments the ref count. This should only be done if it is known that
|
|
/// it can be done safely. As such, this fn is not public, instead other
|
|
/// fns will use this one while maintaining the guarantees.
|
|
/// Parameter `mut_self` should only be set to `true` if caller holds
|
|
/// `&mut self` reference.
|
|
///
|
|
/// "Safely" is defined as not exposing two `BytesMut` values that point to
|
|
/// the same byte window.
|
|
///
|
|
/// This function is thread safe.
|
|
unsafe fn shallow_clone(&self, mut_self: bool) -> Inner {
|
|
// Always check `inline` first, because if the handle is using inline
|
|
// data storage, all of the `Inner` struct fields will be gibberish.
|
|
//
|
|
// Additionally, if kind is STATIC, then Arc is *never* changed, making
|
|
// it safe and faster to check for it now before an atomic acquire.
|
|
|
|
if self.is_inline_or_static() {
|
|
// In this case, a shallow_clone still involves copying the data.
|
|
let mut inner: mem::MaybeUninit<Inner> = mem::MaybeUninit::uninit();
|
|
ptr::copy_nonoverlapping(self, inner.as_mut_ptr(), 1);
|
|
inner.assume_init()
|
|
} else {
|
|
self.shallow_clone_sync(mut_self)
|
|
}
|
|
}
|
|
|
|
#[cold]
|
|
unsafe fn shallow_clone_sync(&self, mut_self: bool) -> Inner {
|
|
// The function requires `&self`, this means that `shallow_clone`
|
|
// could be called concurrently.
|
|
//
|
|
// The first step is to load the value of `arc`. This will determine
|
|
// how to proceed. The `Acquire` ordering synchronizes with the
|
|
// `compare_and_swap` that comes later in this function. The goal is
|
|
// to ensure that if `arc` is currently set to point to a `Shared`,
|
|
// that the current thread acquires the associated memory.
|
|
let arc = self.arc.load(Acquire);
|
|
let kind = arc as usize & KIND_MASK;
|
|
|
|
if kind == KIND_ARC {
|
|
self.shallow_clone_arc(arc)
|
|
} else {
|
|
assert!(kind == KIND_VEC);
|
|
self.shallow_clone_vec(arc as usize, mut_self)
|
|
}
|
|
}
|
|
|
|
unsafe fn shallow_clone_arc(&self, arc: *mut Shared) -> Inner {
|
|
debug_assert!(arc as usize & KIND_MASK == KIND_ARC);
|
|
|
|
let old_size = (*arc).ref_count.fetch_add(1, Relaxed);
|
|
|
|
if old_size == usize::MAX {
|
|
abort();
|
|
}
|
|
|
|
Inner {
|
|
arc: AtomicPtr::new(arc),
|
|
..*self
|
|
}
|
|
}
|
|
|
|
#[cold]
|
|
unsafe fn shallow_clone_vec(&self, arc: usize, mut_self: bool) -> Inner {
|
|
// If the buffer is still tracked in a `Vec<u8>`. It is time to
|
|
// promote the vec to an `Arc`. This could potentially be called
|
|
// concurrently, so some care must be taken.
|
|
|
|
debug_assert!(arc & KIND_MASK == KIND_VEC);
|
|
|
|
let original_capacity_repr =
|
|
(arc as usize & ORIGINAL_CAPACITY_MASK) >> ORIGINAL_CAPACITY_OFFSET;
|
|
|
|
// The vec offset cannot be concurrently mutated, so there
|
|
// should be no danger reading it.
|
|
let off = (arc as usize) >> VEC_POS_OFFSET;
|
|
|
|
// First, allocate a new `Shared` instance containing the
|
|
// `Vec` fields. It's important to note that `ptr`, `len`,
|
|
// and `cap` cannot be mutated without having `&mut self`.
|
|
// This means that these fields will not be concurrently
|
|
// updated and since the buffer hasn't been promoted to an
|
|
// `Arc`, those three fields still are the components of the
|
|
// vector.
|
|
let shared = Box::new(Shared {
|
|
vec: rebuild_vec(self.ptr, self.len, self.cap, off),
|
|
original_capacity_repr,
|
|
// Initialize refcount to 2. One for this reference, and one
|
|
// for the new clone that will be returned from
|
|
// `shallow_clone`.
|
|
ref_count: AtomicUsize::new(2),
|
|
});
|
|
|
|
let shared = Box::into_raw(shared);
|
|
|
|
// The pointer should be aligned, so this assert should
|
|
// always succeed.
|
|
debug_assert!(0 == (shared as usize & 0b11));
|
|
|
|
// If there are no references to self in other threads,
|
|
// expensive atomic operations can be avoided.
|
|
if mut_self {
|
|
self.arc.store(shared, Relaxed);
|
|
return Inner {
|
|
arc: AtomicPtr::new(shared),
|
|
..*self
|
|
};
|
|
}
|
|
|
|
// Try compare & swapping the pointer into the `arc` field.
|
|
// `Release` is used synchronize with other threads that
|
|
// will load the `arc` field.
|
|
//
|
|
// If the `compare_exchange` fails, then the thread lost the
|
|
// race to promote the buffer to shared. The `Acquire`
|
|
// ordering will synchronize with the `compare_and_swap`
|
|
// that happened in the other thread and the `Shared`
|
|
// pointed to by `actual` will be visible.
|
|
match self
|
|
.arc
|
|
.compare_exchange(arc as *mut Shared, shared, AcqRel, Acquire)
|
|
{
|
|
Ok(actual) => {
|
|
debug_assert!(actual as usize == arc);
|
|
// The upgrade was successful, the new handle can be
|
|
// returned.
|
|
Inner {
|
|
arc: AtomicPtr::new(shared),
|
|
..*self
|
|
}
|
|
}
|
|
Err(actual) => {
|
|
// The upgrade failed, a concurrent clone happened. Release
|
|
// the allocation that was made in this thread, it will not
|
|
// be needed.
|
|
let shared = Box::from_raw(shared);
|
|
mem::forget(*shared);
|
|
|
|
// Buffer already promoted to shared storage, so increment ref
|
|
// count.
|
|
self.shallow_clone_arc(actual)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn reserve(&mut self, additional: usize) {
|
|
let len = self.len();
|
|
let rem = self.capacity() - len;
|
|
|
|
if additional <= rem {
|
|
// The handle can already store at least `additional` more bytes, so
|
|
// there is no further work needed to be done.
|
|
return;
|
|
}
|
|
|
|
self.reserve_inner(additional)
|
|
}
|
|
|
|
#[inline]
|
|
// In separate function to allow the short-circuits in `reserve` to
|
|
// be inline-able. Significant helps performance.
|
|
fn reserve_inner(&mut self, additional: usize) {
|
|
let len = self.len();
|
|
let kind = self.kind();
|
|
|
|
// Always check `inline` first, because if the handle is using inline
|
|
// data storage, all of the `Inner` struct fields will be gibberish.
|
|
if kind == KIND_INLINE {
|
|
let new_cap = len + additional;
|
|
|
|
// Promote to a vector
|
|
let mut v = Vec::with_capacity(new_cap);
|
|
v.extend_from_slice(self.as_ref());
|
|
|
|
self.ptr = v.as_mut_ptr();
|
|
self.len = v.len();
|
|
self.cap = v.capacity();
|
|
|
|
// Since the minimum capacity is `INLINE_CAP`, don't bother encoding
|
|
// the original capacity as INLINE_CAP
|
|
self.arc = AtomicPtr::new(KIND_VEC as *mut Shared);
|
|
|
|
mem::forget(v);
|
|
return;
|
|
}
|
|
|
|
if kind == KIND_VEC {
|
|
// If there's enough free space before the start of the buffer, then
|
|
// just copy the data backwards and reuse the already-allocated
|
|
// space.
|
|
//
|
|
// Otherwise, since backed by a vector, use `Vec::reserve`
|
|
unsafe {
|
|
let (off, prev) = self.uncoordinated_get_vec_pos();
|
|
|
|
// Only reuse space if we stand to gain at least capacity/2
|
|
// bytes of space back
|
|
if off >= additional && off >= (self.cap / 2) {
|
|
// There's space - reuse it
|
|
//
|
|
// Just move the pointer back to the start after copying
|
|
// data back.
|
|
let base_ptr = self.ptr.offset(-(off as isize));
|
|
ptr::copy(self.ptr, base_ptr, self.len);
|
|
self.ptr = base_ptr;
|
|
self.uncoordinated_set_vec_pos(0, prev);
|
|
|
|
// Length stays constant, but since we moved backwards we
|
|
// can gain capacity back.
|
|
self.cap += off;
|
|
} else {
|
|
// No space - allocate more
|
|
let mut v = rebuild_vec(self.ptr, self.len, self.cap, off);
|
|
v.reserve(additional);
|
|
|
|
// Update the info
|
|
self.ptr = v.as_mut_ptr().add(off);
|
|
self.len = v.len() - off;
|
|
self.cap = v.capacity() - off;
|
|
|
|
// Drop the vec reference
|
|
mem::forget(v);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
let arc = *self.arc.get_mut();
|
|
|
|
debug_assert!(kind == KIND_ARC);
|
|
|
|
// Reserving involves abandoning the currently shared buffer and
|
|
// allocating a new vector with the requested capacity.
|
|
//
|
|
// Compute the new capacity
|
|
let mut new_cap = len + additional;
|
|
let original_capacity;
|
|
let original_capacity_repr;
|
|
|
|
unsafe {
|
|
original_capacity_repr = (*arc).original_capacity_repr;
|
|
original_capacity = original_capacity_from_repr(original_capacity_repr);
|
|
|
|
// First, try to reclaim the buffer. This is possible if the current
|
|
// handle is the only outstanding handle pointing to the buffer.
|
|
if (*arc).is_unique() {
|
|
// This is the only handle to the buffer. It can be reclaimed.
|
|
// However, before doing the work of copying data, check to make
|
|
// sure that the vector has enough capacity.
|
|
let v = &mut (*arc).vec;
|
|
|
|
if v.capacity() >= new_cap {
|
|
// The capacity is sufficient, reclaim the buffer
|
|
let ptr = v.as_mut_ptr();
|
|
|
|
ptr::copy(self.ptr, ptr, len);
|
|
|
|
self.ptr = ptr;
|
|
self.cap = v.capacity();
|
|
|
|
return;
|
|
}
|
|
|
|
// The vector capacity is not sufficient. The reserve request is
|
|
// asking for more than the initial buffer capacity. Allocate more
|
|
// than requested if `new_cap` is not much bigger than the current
|
|
// capacity.
|
|
//
|
|
// There are some situations, using `reserve_exact` that the
|
|
// buffer capacity could be below `original_capacity`, so do a
|
|
// check.
|
|
new_cap =
|
|
cmp::max(cmp::max(v.capacity() << 1, new_cap), original_capacity);
|
|
} else {
|
|
new_cap = cmp::max(new_cap, original_capacity);
|
|
}
|
|
}
|
|
|
|
// Create a new vector to store the data
|
|
let mut v = Vec::with_capacity(new_cap);
|
|
|
|
// Copy the bytes
|
|
v.extend_from_slice(self.as_ref());
|
|
|
|
// Release the shared handle. This must be done *after* the bytes are
|
|
// copied.
|
|
release_shared(arc);
|
|
|
|
// Update self
|
|
self.ptr = v.as_mut_ptr();
|
|
self.len = v.len();
|
|
self.cap = v.capacity();
|
|
|
|
let arc = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
|
|
|
|
self.arc = AtomicPtr::new(arc as *mut Shared);
|
|
|
|
// Forget the vector handle
|
|
mem::forget(v);
|
|
}
|
|
|
|
/// Returns true if the buffer is stored inline
|
|
#[inline]
|
|
fn is_inline(&self) -> bool {
|
|
self.kind() == KIND_INLINE
|
|
}
|
|
|
|
#[inline]
|
|
fn is_inline_or_static(&self) -> bool {
|
|
// The value returned by `kind` isn't itself safe, but the value could
|
|
// inform what operations to take, and unsafely do something without
|
|
// synchronization.
|
|
//
|
|
// KIND_INLINE and KIND_STATIC will *never* change, so branches on that
|
|
// information is safe.
|
|
let kind = self.kind();
|
|
kind == KIND_INLINE || kind == KIND_STATIC
|
|
}
|
|
|
|
/// Used for `debug_assert` statements. &mut is used to guarantee that it is
|
|
/// safe to check VEC_KIND
|
|
#[inline]
|
|
fn is_shared(&mut self) -> bool {
|
|
!matches!(self.kind(), KIND_VEC)
|
|
}
|
|
|
|
/// Used for `debug_assert` statements
|
|
#[inline]
|
|
fn is_static(&mut self) -> bool {
|
|
matches!(self.kind(), KIND_STATIC)
|
|
}
|
|
|
|
#[inline]
|
|
fn kind(&self) -> usize {
|
|
// This function is going to probably raise some eyebrows. The function
|
|
// returns true if the buffer is stored inline. This is done by checking
|
|
// the least significant bit in the `arc` field.
|
|
//
|
|
// Now, you may notice that `arc` is an `AtomicPtr` and this is
|
|
// accessing it as a normal field without performing an atomic load...
|
|
//
|
|
// Again, the function only cares about the least significant bit, and
|
|
// this bit is set when `Inner` is created and never changed after that.
|
|
// All platforms have atomic "word" operations and won't randomly flip
|
|
// bits, so even without any explicit atomic operations, reading the
|
|
// flag will be correct.
|
|
//
|
|
// This is undefined behavior due to a data race, but experimental
|
|
// evidence shows that it works in practice (discussion:
|
|
// https://internals.rust-lang.org/t/bit-wise-reasoning-for-atomic-accesses/8853).
|
|
//
|
|
// This function is very critical performance wise as it is called for
|
|
// every operation. Performing an atomic load would mess with the
|
|
// compiler's ability to optimize. Simple benchmarks show up to a 10%
|
|
// slowdown using a `Relaxed` atomic load on x86.
|
|
|
|
#[cfg(target_endian = "little")]
|
|
#[inline]
|
|
fn imp(arc: &AtomicPtr<Shared>) -> usize {
|
|
unsafe {
|
|
let p: *const u8 = mem::transmute(arc);
|
|
(*p as usize) & KIND_MASK
|
|
}
|
|
}
|
|
|
|
#[cfg(target_endian = "big")]
|
|
#[inline]
|
|
fn imp(arc: &AtomicPtr<Shared>) -> usize {
|
|
unsafe {
|
|
let p: *const usize = mem::transmute(arc);
|
|
*p & KIND_MASK
|
|
}
|
|
}
|
|
|
|
imp(&self.arc)
|
|
}
|
|
|
|
#[inline]
|
|
fn uncoordinated_get_vec_pos(&mut self) -> (usize, usize) {
|
|
// Similar to above, this is a pretty crazed function. This should only
|
|
// be called when in the KIND_VEC mode. This + the &mut self argument
|
|
// guarantees that there is no possibility of concurrent calls to this
|
|
// function.
|
|
let prev = unsafe {
|
|
let p: &AtomicPtr<Shared> = &self.arc;
|
|
let p: *const usize = mem::transmute(p);
|
|
*p
|
|
};
|
|
|
|
(prev >> VEC_POS_OFFSET, prev)
|
|
}
|
|
|
|
#[inline]
|
|
fn uncoordinated_set_vec_pos(&mut self, pos: usize, prev: usize) {
|
|
// Once more... crazy
|
|
debug_assert!(pos <= MAX_VEC_POS);
|
|
|
|
unsafe {
|
|
let p: &mut AtomicPtr<Shared> = &mut self.arc;
|
|
let p: &mut usize = &mut *(p as *mut _ as *mut usize);
|
|
*p = (pos << VEC_POS_OFFSET) | (prev & NOT_VEC_POS_MASK);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn rebuild_vec(ptr: *mut u8, mut len: usize, mut cap: usize, off: usize) -> Vec<u8> {
|
|
unsafe {
|
|
let ptr = ptr.offset(-(off as isize));
|
|
len += off;
|
|
cap += off;
|
|
|
|
Vec::from_raw_parts(ptr, len, cap)
|
|
}
|
|
}
|
|
|
|
impl Drop for Inner {
|
|
fn drop(&mut self) {
|
|
let kind = self.kind();
|
|
|
|
if kind == KIND_VEC {
|
|
let (off, _) = self.uncoordinated_get_vec_pos();
|
|
|
|
// Vector storage, free the vector
|
|
let _ = rebuild_vec(self.ptr, self.len, self.cap, off);
|
|
} else if kind == KIND_ARC {
|
|
release_shared(*self.arc.get_mut());
|
|
}
|
|
}
|
|
}
|
|
|
|
fn release_shared(ptr: *mut Shared) {
|
|
// `Shared` storage... follow the drop steps from Arc.
|
|
unsafe {
|
|
if (*ptr).ref_count.fetch_sub(1, Release) != 1 {
|
|
return;
|
|
}
|
|
|
|
// This fence is needed to prevent reordering of use of the data and
|
|
// deletion of the data. Because it is marked `Release`, the decreasing
|
|
// of the reference count synchronizes with this `Acquire` fence. This
|
|
// means that use of the data happens before decreasing the reference
|
|
// count, which happens before this fence, which happens before the
|
|
// deletion of the data.
|
|
//
|
|
// As explained in the [Boost documentation][1],
|
|
//
|
|
// > It is important to enforce any possible access to the object in one
|
|
// > thread (through an existing reference) to *happen before* deleting
|
|
// > the object in a different thread. This is achieved by a "release"
|
|
// > operation after dropping a reference (any access to the object
|
|
// > through this reference must obviously happened before), and an
|
|
// > "acquire" operation before deleting the object.
|
|
//
|
|
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
|
|
atomic::fence(Acquire);
|
|
|
|
// Drop the data
|
|
Box::from_raw(ptr);
|
|
}
|
|
}
|
|
|
|
impl Shared {
|
|
fn is_unique(&self) -> bool {
|
|
// The goal is to check if the current handle is the only handle
|
|
// that currently has access to the buffer. This is done by
|
|
// checking if the `ref_count` is currently 1.
|
|
//
|
|
// The `Acquire` ordering synchronizes with the `Release` as
|
|
// part of the `fetch_sub` in `release_shared`. The `fetch_sub`
|
|
// operation guarantees that any mutations done in other threads
|
|
// are ordered before the `ref_count` is decremented. As such,
|
|
// this `Acquire` will guarantee that those mutations are
|
|
// visible to the current thread.
|
|
self.ref_count.load(Acquire) == 1
|
|
}
|
|
}
|
|
|
|
fn original_capacity_to_repr(cap: usize) -> usize {
|
|
let width =
|
|
PTR_WIDTH - ((cap >> MIN_ORIGINAL_CAPACITY_WIDTH).leading_zeros() as usize);
|
|
cmp::min(
|
|
width,
|
|
MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH,
|
|
)
|
|
}
|
|
|
|
fn original_capacity_from_repr(repr: usize) -> usize {
|
|
if repr == 0 {
|
|
return 0;
|
|
}
|
|
|
|
1 << (repr + (MIN_ORIGINAL_CAPACITY_WIDTH - 1))
|
|
}
|
|
|
|
#[test]
|
|
fn test_original_capacity_to_repr() {
|
|
assert_eq!(original_capacity_to_repr(0), 0);
|
|
|
|
let max_width = 32;
|
|
|
|
for width in 1..(max_width + 1) {
|
|
let cap = 1 << width - 1;
|
|
|
|
let expected = if width < MIN_ORIGINAL_CAPACITY_WIDTH {
|
|
0
|
|
} else if width < MAX_ORIGINAL_CAPACITY_WIDTH {
|
|
width - MIN_ORIGINAL_CAPACITY_WIDTH
|
|
} else {
|
|
MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH
|
|
};
|
|
|
|
assert_eq!(original_capacity_to_repr(cap), expected);
|
|
|
|
if width > 1 {
|
|
assert_eq!(original_capacity_to_repr(cap + 1), expected);
|
|
}
|
|
|
|
// MIN_ORIGINAL_CAPACITY_WIDTH must be bigger than 7 to pass tests below
|
|
if width == MIN_ORIGINAL_CAPACITY_WIDTH + 1 {
|
|
assert_eq!(original_capacity_to_repr(cap - 24), expected - 1);
|
|
assert_eq!(original_capacity_to_repr(cap + 76), expected);
|
|
} else if width == MIN_ORIGINAL_CAPACITY_WIDTH + 2 {
|
|
assert_eq!(original_capacity_to_repr(cap - 1), expected - 1);
|
|
assert_eq!(original_capacity_to_repr(cap - 48), expected - 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_original_capacity_from_repr() {
|
|
assert_eq!(0, original_capacity_from_repr(0));
|
|
|
|
let min_cap = 1 << MIN_ORIGINAL_CAPACITY_WIDTH;
|
|
|
|
assert_eq!(min_cap, original_capacity_from_repr(1));
|
|
assert_eq!(min_cap * 2, original_capacity_from_repr(2));
|
|
assert_eq!(min_cap * 4, original_capacity_from_repr(3));
|
|
assert_eq!(min_cap * 8, original_capacity_from_repr(4));
|
|
assert_eq!(min_cap * 16, original_capacity_from_repr(5));
|
|
assert_eq!(min_cap * 32, original_capacity_from_repr(6));
|
|
assert_eq!(min_cap * 64, original_capacity_from_repr(7));
|
|
}
|
|
|
|
unsafe impl Send for Inner {}
|
|
unsafe impl Sync for Inner {}
|
|
|
|
/*
|
|
*
|
|
* ===== PartialEq / PartialOrd =====
|
|
*
|
|
*/
|
|
|
|
impl PartialEq<[u8]> for BytesMut {
|
|
fn eq(&self, other: &[u8]) -> bool {
|
|
&**self == other
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<[u8]> for BytesMut {
|
|
fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
|
|
(**self).partial_cmp(other)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesMut> for [u8] {
|
|
fn eq(&self, other: &BytesMut) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<BytesMut> for [u8] {
|
|
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<str> for BytesMut {
|
|
fn eq(&self, other: &str) -> bool {
|
|
&**self == other.as_bytes()
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<str> for BytesMut {
|
|
fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
|
|
(**self).partial_cmp(other.as_bytes())
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesMut> for str {
|
|
fn eq(&self, other: &BytesMut) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<BytesMut> for str {
|
|
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<Vec<u8>> for BytesMut {
|
|
fn eq(&self, other: &Vec<u8>) -> bool {
|
|
*self == other[..]
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<Vec<u8>> for BytesMut {
|
|
fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
|
|
(**self).partial_cmp(&other[..])
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesMut> for Vec<u8> {
|
|
fn eq(&self, other: &BytesMut) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<BytesMut> for Vec<u8> {
|
|
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<String> for BytesMut {
|
|
fn eq(&self, other: &String) -> bool {
|
|
*self == other[..]
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<String> for BytesMut {
|
|
fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
|
|
(**self).partial_cmp(other.as_bytes())
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesMut> for String {
|
|
fn eq(&self, other: &BytesMut) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<BytesMut> for String {
|
|
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl<'a, T: ?Sized> PartialEq<&'a T> for BytesMut
|
|
where
|
|
BytesMut: PartialEq<T>,
|
|
{
|
|
fn eq(&self, other: &&'a T) -> bool {
|
|
*self == **other
|
|
}
|
|
}
|
|
|
|
impl<'a, T: ?Sized> PartialOrd<&'a T> for BytesMut
|
|
where
|
|
BytesMut: PartialOrd<T>,
|
|
{
|
|
fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
|
|
self.partial_cmp(*other)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesMut> for &[u8] {
|
|
fn eq(&self, other: &BytesMut) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<BytesMut> for &[u8] {
|
|
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesMut> for &str {
|
|
fn eq(&self, other: &BytesMut) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<BytesMut> for &str {
|
|
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<[u8]> for Bytes {
|
|
fn eq(&self, other: &[u8]) -> bool {
|
|
self.inner.as_ref() == other
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<[u8]> for Bytes {
|
|
fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
|
|
self.inner.as_ref().partial_cmp(other)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<Bytes> for [u8] {
|
|
fn eq(&self, other: &Bytes) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<Bytes> for [u8] {
|
|
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<str> for Bytes {
|
|
fn eq(&self, other: &str) -> bool {
|
|
self.inner.as_ref() == other.as_bytes()
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<str> for Bytes {
|
|
fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
|
|
self.inner.as_ref().partial_cmp(other.as_bytes())
|
|
}
|
|
}
|
|
|
|
impl PartialEq<Bytes> for str {
|
|
fn eq(&self, other: &Bytes) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<Bytes> for str {
|
|
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<Vec<u8>> for Bytes {
|
|
fn eq(&self, other: &Vec<u8>) -> bool {
|
|
*self == other[..]
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<Vec<u8>> for Bytes {
|
|
fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
|
|
self.inner.as_ref().partial_cmp(&other[..])
|
|
}
|
|
}
|
|
|
|
impl PartialEq<Bytes> for Vec<u8> {
|
|
fn eq(&self, other: &Bytes) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<Bytes> for Vec<u8> {
|
|
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<String> for Bytes {
|
|
fn eq(&self, other: &String) -> bool {
|
|
*self == other[..]
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<String> for Bytes {
|
|
fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
|
|
self.inner.as_ref().partial_cmp(other.as_bytes())
|
|
}
|
|
}
|
|
|
|
impl PartialEq<Bytes> for String {
|
|
fn eq(&self, other: &Bytes) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<Bytes> for String {
|
|
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<Bytes> for &[u8] {
|
|
fn eq(&self, other: &Bytes) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<Bytes> for &[u8] {
|
|
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<Bytes> for &str {
|
|
fn eq(&self, other: &Bytes) -> bool {
|
|
*other == *self
|
|
}
|
|
}
|
|
|
|
impl PartialOrd<Bytes> for &str {
|
|
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
|
|
other.partial_cmp(self)
|
|
}
|
|
}
|
|
|
|
impl<'a, T: ?Sized> PartialEq<&'a T> for Bytes
|
|
where
|
|
Bytes: PartialEq<T>,
|
|
{
|
|
fn eq(&self, other: &&'a T) -> bool {
|
|
*self == **other
|
|
}
|
|
}
|
|
|
|
impl<'a, T: ?Sized> PartialOrd<&'a T> for Bytes
|
|
where
|
|
Bytes: PartialOrd<T>,
|
|
{
|
|
fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
|
|
self.partial_cmp(&**other)
|
|
}
|
|
}
|
|
|
|
impl PartialEq<BytesMut> for Bytes {
|
|
fn eq(&self, other: &BytesMut) -> bool {
|
|
other[..] == self[..]
|
|
}
|
|
}
|
|
|
|
impl PartialEq<Bytes> for BytesMut {
|
|
fn eq(&self, other: &Bytes) -> bool {
|
|
other[..] == self[..]
|
|
}
|
|
}
|
|
|
|
// While there is `std::process:abort`, it's only available in Rust 1.17, and
|
|
// our minimum supported version is currently 1.15. So, this acts as an abort
|
|
// by triggering a double panic, which always aborts in Rust.
|
|
struct Abort;
|
|
|
|
impl Drop for Abort {
|
|
fn drop(&mut self) {
|
|
panic!();
|
|
}
|
|
}
|
|
|
|
#[inline(never)]
|
|
#[cold]
|
|
fn abort() {
|
|
let _a = Abort;
|
|
panic!();
|
|
}
|