ntex/ntex-io/src/ioref.rs
2021-12-24 03:53:39 +06:00

537 lines
16 KiB
Rust

use std::{any, fmt, io};
use ntex_bytes::{BytesMut, PoolRef};
use ntex_codec::{Decoder, Encoder};
use super::io::{Flags, IoRef, OnDisconnect};
use super::{types, Filter};
impl IoRef {
#[inline]
#[doc(hidden)]
/// Get current state flags
pub fn flags(&self) -> Flags {
self.0.flags.get()
}
#[inline]
/// Set flags
pub(crate) fn set_flags(&self, flags: Flags) {
self.0.flags.set(flags)
}
#[inline]
/// Get memory pool
pub(crate) fn filter(&self) -> &dyn Filter {
self.0.filter.get()
}
#[inline]
/// Get memory pool
pub fn memory_pool(&self) -> PoolRef {
self.0.pool.get()
}
#[inline]
/// Check if io is still active
pub fn is_io_open(&self) -> bool {
self.0.is_io_open()
}
#[inline]
/// Check if keep-alive timeout occured
pub fn is_keepalive(&self) -> bool {
self.0.flags.get().contains(Flags::DSP_KEEPALIVE)
}
#[inline]
/// Check if io stream is closed
pub fn is_closed(&self) -> bool {
self.0.flags.get().intersects(
Flags::IO_ERR
| Flags::IO_SHUTDOWN
| Flags::IO_CLOSED
| Flags::IO_FILTERS
| Flags::DSP_STOP,
)
}
#[inline]
/// Take io error if any occured
pub fn take_error(&self) -> Option<io::Error> {
self.0.error.take()
}
#[inline]
/// Wake dispatcher task
pub fn wake_dispatcher(&self) {
self.0.dispatch_task.wake();
}
#[inline]
/// Mark dispatcher as stopped
pub fn stop_dispatcher(&self) {
self.0.insert_flags(Flags::DSP_STOP);
}
#[inline]
/// Gracefully close connection
///
/// First stop dispatcher, then dispatcher stops io tasks
pub fn close(&self) {
self.0.insert_flags(Flags::DSP_STOP);
self.0.dispatch_task.wake();
}
#[inline]
/// Force close connection
///
/// Dispatcher does not wait for uncompleted responses, but flushes io buffers.
pub fn force_close(&self) {
log::trace!("force close framed object");
self.0.insert_flags(Flags::DSP_STOP | Flags::IO_SHUTDOWN);
self.0.read_task.wake();
self.0.write_task.wake();
self.0.dispatch_task.wake();
}
#[inline]
/// Notify when io stream get disconnected
pub fn on_disconnect(&self) -> OnDisconnect {
OnDisconnect::new(self.0.clone())
}
#[inline]
/// Query specific data
pub fn query<T: 'static>(&self) -> types::QueryItem<T> {
if let Some(item) = self.filter().query(any::TypeId::of::<T>()) {
types::QueryItem::new(item)
} else {
types::QueryItem::empty()
}
}
#[inline]
/// Check if write task is ready
pub fn is_write_ready(&self) -> bool {
!self.0.flags.get().contains(Flags::WR_BACKPRESSURE)
}
#[inline]
/// Check if read buffer has new data
pub fn is_read_ready(&self) -> bool {
self.0.flags.get().contains(Flags::RD_READY)
}
#[inline]
/// Check if write buffer is full
pub fn is_write_buf_full(&self) -> bool {
let len = self
.0
.with_write_buf(|buf| buf.as_ref().map(|b| b.len()).unwrap_or(0));
len >= self.memory_pool().write_params_high()
}
#[inline]
/// Check if read buffer is full
pub fn is_read_buf_full(&self) -> bool {
let len = self
.0
.with_read_buf(false, |buf| buf.as_ref().map(|b| b.len()).unwrap_or(0));
len >= self.memory_pool().read_params_high()
}
#[inline]
/// Wait until write task flushes data to io stream
///
/// Write task must be waken up separately.
pub fn enable_write_backpressure(&self) {
log::trace!("enable write back-pressure");
self.0.insert_flags(Flags::WR_BACKPRESSURE);
}
#[inline]
/// Get mut access to write buffer
pub fn with_write_buf<F, R>(&self, f: F) -> Result<R, io::Error>
where
F: FnOnce(&mut BytesMut) -> R,
{
let filter = self.0.filter.get();
let mut buf = filter
.get_write_buf()
.unwrap_or_else(|| self.memory_pool().get_write_buf());
let result = f(&mut buf);
filter.release_write_buf(buf)?;
Ok(result)
}
#[inline]
/// Get mut access to read buffer
pub fn with_read_buf<F, R>(&self, f: F) -> R
where
F: FnOnce(&mut BytesMut) -> R,
{
self.0.with_read_buf(true, |buf| {
// set buf
if buf.is_none() {
*buf = Some(self.memory_pool().get_read_buf());
}
f(buf.as_mut().unwrap())
})
}
#[inline]
/// Encode and write item to a buffer and wake up write task
///
/// Returns write buffer state, false is returned if write buffer if full.
pub fn encode<U>(&self, item: U::Item, codec: &U) -> Result<bool, <U as Encoder>::Error>
where
U: Encoder,
{
let flags = self.0.flags.get();
if !flags.intersects(Flags::IO_ERR | Flags::IO_SHUTDOWN) {
let filter = self.0.filter.get();
let mut buf = filter
.get_write_buf()
.unwrap_or_else(|| self.memory_pool().get_write_buf());
let is_write_sleep = buf.is_empty();
let (hw, lw) = self.memory_pool().write_params().unpack();
// make sure we've got room
let remaining = buf.capacity() - buf.len();
if remaining < lw {
buf.reserve(hw - remaining);
}
// encode item and wake write task
let result = codec.encode(item, &mut buf).map(|_| {
if is_write_sleep {
self.0.write_task.wake();
}
buf.len() < hw
});
if let Err(err) = filter.release_write_buf(buf) {
self.0.set_error(Some(err));
}
result
} else {
Ok(true)
}
}
#[inline]
/// Attempts to decode a frame from the read buffer
///
/// Read buffer ready state gets cleanup if decoder cannot
/// decode any frame.
pub fn decode<U>(
&self,
codec: &U,
) -> Result<Option<<U as Decoder>::Item>, <U as Decoder>::Error>
where
U: Decoder,
{
self.0.with_read_buf(false, |buf| {
buf.as_mut().map(|b| codec.decode(b)).unwrap_or(Ok(None))
})
}
#[inline]
/// Write bytes to a buffer and wake up write task
///
/// Returns write buffer state, false is returned if write buffer if full.
pub fn write(&self, src: &[u8]) -> Result<bool, io::Error> {
let flags = self.0.flags.get();
if !flags.intersects(Flags::IO_ERR | Flags::IO_SHUTDOWN) {
let filter = self.0.filter.get();
let mut buf = filter
.get_write_buf()
.unwrap_or_else(|| self.memory_pool().get_write_buf());
let is_write_sleep = buf.is_empty();
// write and wake write task
buf.extend_from_slice(src);
let result = buf.len() < self.memory_pool().write_params_high();
if is_write_sleep {
self.0.write_task.wake();
}
if let Err(err) = filter.release_write_buf(buf) {
self.0.set_error(Some(err));
}
Ok(result)
} else {
Ok(true)
}
}
}
impl fmt::Debug for IoRef {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("IoRef")
.field("open", &!self.is_closed())
.finish()
}
}
#[cfg(test)]
mod tests {
use std::{cell::Cell, future::Future, pin::Pin, rc::Rc, task::Context, task::Poll};
use ntex_bytes::Bytes;
use ntex_codec::BytesCodec;
use ntex_util::future::{lazy, poll_fn, Ready};
use ntex_util::time::{sleep, Millis};
use super::*;
use crate::testing::IoTest;
use crate::{Filter, FilterFactory, Io, ReadStatus, WriteStatus};
const BIN: &[u8] = b"GET /test HTTP/1\r\n\r\n";
const TEXT: &str = "GET /test HTTP/1\r\n\r\n";
#[ntex::test]
async fn utils() {
let (client, server) = IoTest::create();
client.remote_buffer_cap(1024);
client.write(TEXT);
let state = Io::new(server);
assert!(!state.is_read_buf_full());
assert!(!state.is_write_buf_full());
let msg = state.recv(&BytesCodec).await.unwrap().unwrap();
assert_eq!(msg, Bytes::from_static(BIN));
let res = poll_fn(|cx| Poll::Ready(state.poll_recv(&BytesCodec, cx))).await;
assert!(res.is_pending());
client.write(TEXT);
sleep(Millis(50)).await;
let res = poll_fn(|cx| Poll::Ready(state.poll_recv(&BytesCodec, cx))).await;
if let Poll::Ready(msg) = res {
assert_eq!(msg.unwrap().unwrap(), Bytes::from_static(BIN));
}
client.read_error(io::Error::new(io::ErrorKind::Other, "err"));
let msg = state.recv(&BytesCodec).await;
assert!(msg.is_err());
assert!(state.flags().contains(Flags::IO_ERR));
assert!(state.flags().contains(Flags::DSP_STOP));
let (client, server) = IoTest::create();
client.remote_buffer_cap(1024);
let state = Io::new(server);
client.read_error(io::Error::new(io::ErrorKind::Other, "err"));
let res = poll_fn(|cx| Poll::Ready(state.poll_recv(&BytesCodec, cx))).await;
if let Poll::Ready(msg) = res {
assert!(msg.is_err());
assert!(state.flags().contains(Flags::IO_ERR));
assert!(state.flags().contains(Flags::DSP_STOP));
}
let (client, server) = IoTest::create();
client.remote_buffer_cap(1024);
let state = Io::new(server);
state
.send(&BytesCodec, Bytes::from_static(b"test"))
.await
.unwrap();
let buf = client.read().await.unwrap();
assert_eq!(buf, Bytes::from_static(b"test"));
client.write_error(io::Error::new(io::ErrorKind::Other, "err"));
let res = state.send(&BytesCodec, Bytes::from_static(b"test")).await;
assert!(res.is_err());
assert!(state.flags().contains(Flags::IO_ERR));
assert!(state.flags().contains(Flags::DSP_STOP));
let (client, server) = IoTest::create();
client.remote_buffer_cap(1024);
let state = Io::new(server);
state.force_close();
assert!(state.flags().contains(Flags::DSP_STOP));
assert!(state.flags().contains(Flags::IO_SHUTDOWN));
}
#[ntex::test]
async fn on_disconnect() {
let (client, server) = IoTest::create();
let state = Io::new(server);
let mut waiter = state.on_disconnect();
assert_eq!(
lazy(|cx| Pin::new(&mut waiter).poll(cx)).await,
Poll::Pending
);
let mut waiter2 = waiter.clone();
assert_eq!(
lazy(|cx| Pin::new(&mut waiter2).poll(cx)).await,
Poll::Pending
);
client.close().await;
assert_eq!(waiter.await, ());
assert_eq!(waiter2.await, ());
let mut waiter = state.on_disconnect();
assert_eq!(
lazy(|cx| Pin::new(&mut waiter).poll(cx)).await,
Poll::Ready(())
);
let (client, server) = IoTest::create();
let state = Io::new(server);
let mut waiter = state.on_disconnect();
assert_eq!(
lazy(|cx| Pin::new(&mut waiter).poll(cx)).await,
Poll::Pending
);
client.read_error(io::Error::new(io::ErrorKind::Other, "err"));
assert_eq!(waiter.await, ());
}
struct Counter<F> {
inner: F,
in_bytes: Rc<Cell<usize>>,
out_bytes: Rc<Cell<usize>>,
}
impl<F: Filter> Filter for Counter<F> {
fn poll_shutdown(&self) -> Poll<io::Result<()>> {
Poll::Ready(Ok(()))
}
fn want_read(&self) {}
fn want_shutdown(&self) {}
fn query(&self, _: std::any::TypeId) -> Option<Box<dyn std::any::Any>> {
None
}
fn poll_read_ready(&self, cx: &mut Context<'_>) -> Poll<ReadStatus> {
self.inner.poll_read_ready(cx)
}
fn closed(&self, err: Option<io::Error>) {
self.inner.closed(err)
}
fn get_read_buf(&self) -> Option<BytesMut> {
self.inner.get_read_buf()
}
fn release_read_buf(
&self,
buf: BytesMut,
new_bytes: usize,
) -> Result<(), io::Error> {
self.in_bytes.set(self.in_bytes.get() + new_bytes);
self.inner.release_read_buf(buf, new_bytes)
}
fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll<WriteStatus> {
self.inner.poll_write_ready(cx)
}
fn get_write_buf(&self) -> Option<BytesMut> {
if let Some(buf) = self.inner.get_write_buf() {
self.out_bytes.set(self.out_bytes.get() - buf.len());
Some(buf)
} else {
None
}
}
fn release_write_buf(&self, buf: BytesMut) -> Result<(), io::Error> {
self.out_bytes.set(self.out_bytes.get() + buf.len());
self.inner.release_write_buf(buf)
}
}
struct CounterFactory(Rc<Cell<usize>>, Rc<Cell<usize>>);
impl<F: Filter> FilterFactory<F> for CounterFactory {
type Filter = Counter<F>;
type Error = ();
type Future = Ready<Io<Counter<F>>, Self::Error>;
fn create(self, io: Io<F>) -> Self::Future {
let in_bytes = self.0.clone();
let out_bytes = self.1.clone();
Ready::Ok(
io.map_filter(|inner| {
Ok::<_, ()>(Counter {
inner,
in_bytes,
out_bytes,
})
})
.unwrap(),
)
}
}
#[ntex::test]
async fn filter() {
let in_bytes = Rc::new(Cell::new(0));
let out_bytes = Rc::new(Cell::new(0));
let factory = CounterFactory(in_bytes.clone(), out_bytes.clone());
let (client, server) = IoTest::create();
let state = Io::new(server).add_filter(factory).await.unwrap();
client.remote_buffer_cap(1024);
client.write(TEXT);
let msg = state.recv(&BytesCodec).await.unwrap().unwrap();
assert_eq!(msg, Bytes::from_static(BIN));
state
.send(&BytesCodec, Bytes::from_static(b"test"))
.await
.unwrap();
let buf = client.read().await.unwrap();
assert_eq!(buf, Bytes::from_static(b"test"));
assert_eq!(in_bytes.get(), BIN.len());
assert_eq!(out_bytes.get(), 4);
}
#[ntex::test]
async fn boxed_filter() {
let in_bytes = Rc::new(Cell::new(0));
let out_bytes = Rc::new(Cell::new(0));
let (client, server) = IoTest::create();
let state = Io::new(server)
.add_filter(CounterFactory(in_bytes.clone(), out_bytes.clone()))
.await
.unwrap()
.add_filter(CounterFactory(in_bytes.clone(), out_bytes.clone()))
.await
.unwrap();
let state = state.seal();
client.remote_buffer_cap(1024);
client.write(TEXT);
let msg = state.recv(&BytesCodec).await.unwrap().unwrap();
assert_eq!(msg, Bytes::from_static(BIN));
state
.send(&BytesCodec, Bytes::from_static(b"test"))
.await
.unwrap();
let buf = client.read().await.unwrap();
assert_eq!(buf, Bytes::from_static(b"test"));
assert_eq!(in_bytes.get(), BIN.len() * 2);
assert_eq!(out_bytes.get(), 8);
// refs
assert_eq!(Rc::strong_count(&in_bytes), 3);
drop(state);
assert_eq!(Rc::strong_count(&in_bytes), 1);
}
}