add Go mod support

This commit is contained in:
Marten Seemann 2019-02-27 17:43:56 +09:00
parent d28794a944
commit c00eb1f5b5
84 changed files with 53 additions and 21469 deletions

View file

@ -10,13 +10,14 @@ jobs:
default: false
docker:
- image: << parameters.image >>
environment:
GO111MODULE: "on"
working_directory: /go/src/github.com/lucas-clemente/quic-go
steps:
- checkout
- run:
name: "Setup build environment"
command: |
go get -t ./...
go get github.com/onsi/ginkgo/ginkgo
go get github.com/onsi/gomega
- run:

View file

@ -12,6 +12,7 @@ go:
env:
global:
- TIMESCALE_FACTOR=20
- GO111MODULE=on
matrix:
- TRAVIS_GOARCH=amd64 TESTMODE=lint
- TRAVIS_GOARCH=amd64 TESTMODE=unit

View file

@ -17,13 +17,13 @@ install:
- appveyor DownloadFile https://storage.googleapis.com/golang/go1.12.windows-amd64.zip
- 7z x go1.12.windows-amd64.zip -y -oC:\ > NUL
- set PATH=%PATH%;%GOPATH%\bin\windows_%GOARCH%;%GOPATH%\bin
- set GO111MODULE=on
- echo %PATH%
- echo %GOPATH%
- go get github.com/onsi/ginkgo/ginkgo
- go get github.com/onsi/gomega
- go version
- go env
- go get -v -t ./...
build_script:
- ginkgo -r -v -randomizeAllSpecs -randomizeSuites -trace -skipPackage benchmark,integrationtests

13
go.mod Normal file
View file

@ -0,0 +1,13 @@
module github.com/lucas-clemente/quic-go
go 1.12
require (
github.com/cheekybits/genny v1.0.0
github.com/golang/mock v1.2.0
github.com/marten-seemann/qtls v0.1.0
github.com/onsi/ginkgo v1.7.0
github.com/onsi/gomega v1.4.3
golang.org/x/crypto v0.0.0-20190225124518-7f87c0fbb88b
golang.org/x/net v0.0.0-20180906233101-161cd47e91fd
)

36
go.sum Normal file
View file

@ -0,0 +1,36 @@
github.com/cheekybits/genny v1.0.0 h1:uGGa4nei+j20rOSeDeP5Of12XVm7TGUd4dJA9RDitfE=
github.com/cheekybits/genny v1.0.0/go.mod h1:+tQajlRqAUrPI7DOSpB0XAqZYtQakVtB7wXkRAgjxjQ=
github.com/fsnotify/fsnotify v1.4.7 h1:IXs+QLmnXW2CcXuY+8Mzv/fWEsPGWxqefPtCP5CnV9I=
github.com/fsnotify/fsnotify v1.4.7/go.mod h1:jwhsz4b93w/PPRr/qN1Yymfu8t87LnFCMoQvtojpjFo=
github.com/golang/mock v1.2.0 h1:28o5sBqPkBsMGnC6b4MvE2TzSr5/AT4c/1fLqVGIwlk=
github.com/golang/mock v1.2.0/go.mod h1:oTYuIxOrZwtPieC+H1uAHpcLFnEyAGVDL/k47Jfbm0A=
github.com/golang/protobuf v1.2.0 h1:P3YflyNX/ehuJFLhxviNdFxQPkGK5cDcApsge1SqnvM=
github.com/golang/protobuf v1.2.0/go.mod h1:6lQm79b+lXiMfvg/cZm0SGofjICqVBUtrP5yJMmIC1U=
github.com/hpcloud/tail v1.0.0 h1:nfCOvKYfkgYP8hkirhJocXT2+zOD8yUNjXaWfTlyFKI=
github.com/hpcloud/tail v1.0.0/go.mod h1:ab1qPbhIpdTxEkNHXyeSf5vhxWSCs/tWer42PpOxQnU=
github.com/marten-seemann/qtls v0.1.0 h1:rU4tM4KsiR4uEL15U7roq5B6IzFJyQdP6po0tCN08mE=
github.com/marten-seemann/qtls v0.1.0/go.mod h1:F6kuCIZ1zxAmETSSJGN/5VENU7NZBXg9zqnA6dYZrgA=
github.com/onsi/ginkgo v1.6.0/go.mod h1:lLunBs/Ym6LB5Z9jYTR76FiuTmxDTDusOGeTQH+WWjE=
github.com/onsi/ginkgo v1.7.0 h1:WSHQ+IS43OoUrWtD1/bbclrwK8TTH5hzp+umCiuxHgs=
github.com/onsi/ginkgo v1.7.0/go.mod h1:lLunBs/Ym6LB5Z9jYTR76FiuTmxDTDusOGeTQH+WWjE=
github.com/onsi/gomega v1.4.3 h1:RE1xgDvH7imwFD45h+u2SgIfERHlS2yNG4DObb5BSKU=
github.com/onsi/gomega v1.4.3/go.mod h1:ex+gbHU/CVuBBDIJjb2X0qEXbFg53c61hWP/1CpauHY=
golang.org/x/crypto v0.0.0-20190225124518-7f87c0fbb88b h1:+/WWzjwW6gidDJnMKWLKLX1gxn7irUTF1fLpQovfQ5M=
golang.org/x/crypto v0.0.0-20190225124518-7f87c0fbb88b/go.mod h1:6SG95UA2DQfeDnfUPMdvaQW0Q7yPrPDi9nlGo2tz2b4=
golang.org/x/net v0.0.0-20180906233101-161cd47e91fd h1:nTDtHvHSdCn1m6ITfMRqtOd/9+7a3s8RBNOZ3eYZzJA=
golang.org/x/net v0.0.0-20180906233101-161cd47e91fd/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f h1:wMNYb4v58l5UBM7MYRLPG6ZhfOqbKu7X5eyFl8ZhKvA=
golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sys v0.0.0-20180909124046-d0be0721c37e/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190226215855-775f8194d0f9 h1:N26gncmS+iqc/W/SKhX3ElI5pkt72XYoRLgi5Z70LSc=
golang.org/x/sys v0.0.0-20190226215855-775f8194d0f9/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/text v0.3.0 h1:g61tztE5qeGQ89tm6NTjjM9VPIm088od1l6aSorWRWg=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405 h1:yhCVgyC4o1eVCa2tZl7eS0r+SDo693bJlVdllGtEeKM=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/fsnotify.v1 v1.4.7 h1:xOHLXZwVvI9hhs+cLKq5+I5onOuwQLhQwiu63xxlHs4=
gopkg.in/fsnotify.v1 v1.4.7/go.mod h1:Tz8NjZHkW78fSQdbUxIjBTcgA1z1m8ZHf0WmKUhAMys=
gopkg.in/tomb.v1 v1.0.0-20141024135613-dd632973f1e7 h1:uRGJdciOHaEIrze2W8Q3AKkepLTh2hOroT7a+7czfdQ=
gopkg.in/tomb.v1 v1.0.0-20141024135613-dd632973f1e7/go.mod h1:dt/ZhP58zS4L8KSrWDmTeBkI65Dw0HsyUHuEVlX15mw=
gopkg.in/yaml.v2 v2.2.1 h1:mUhvW9EsL+naU5Q3cakzfE91YhliOondGd6ZrsDBHQE=
gopkg.in/yaml.v2 v2.2.1/go.mod h1:hI93XBmqTisBFMUTm0b8Fm+jr3Dg1NNxqwp+5A1VGuI=

View file

@ -1,22 +0,0 @@
The MIT License (MIT)
Copyright (c) 2014 cheekybits
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View file

@ -1,2 +0,0 @@
// Package generic contains the generic marker types.
package generic

View file

@ -1,13 +0,0 @@
package generic
// Type is the placeholder type that indicates a generic value.
// When genny is executed, variables of this type will be replaced with
// references to the specific types.
// var GenericType generic.Type
type Type interface{}
// Number is the placehoder type that indiccates a generic numerical value.
// When genny is executed, variables of this type will be replaced with
// references to the specific types.
// var GenericType generic.Number
type Number float64

View file

@ -1,85 +0,0 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package qtls
import "strconv"
type alert uint8
const (
// alert level
alertLevelWarning = 1
alertLevelError = 2
)
const (
alertCloseNotify alert = 0
alertUnexpectedMessage alert = 10
alertBadRecordMAC alert = 20
alertDecryptionFailed alert = 21
alertRecordOverflow alert = 22
alertDecompressionFailure alert = 30
alertHandshakeFailure alert = 40
alertBadCertificate alert = 42
alertUnsupportedCertificate alert = 43
alertCertificateRevoked alert = 44
alertCertificateExpired alert = 45
alertCertificateUnknown alert = 46
alertIllegalParameter alert = 47
alertUnknownCA alert = 48
alertAccessDenied alert = 49
alertDecodeError alert = 50
alertDecryptError alert = 51
alertProtocolVersion alert = 70
alertInsufficientSecurity alert = 71
alertInternalError alert = 80
alertInappropriateFallback alert = 86
alertUserCanceled alert = 90
alertNoRenegotiation alert = 100
alertMissingExtension alert = 109
alertUnsupportedExtension alert = 110
alertNoApplicationProtocol alert = 120
)
var alertText = map[alert]string{
alertCloseNotify: "close notify",
alertUnexpectedMessage: "unexpected message",
alertBadRecordMAC: "bad record MAC",
alertDecryptionFailed: "decryption failed",
alertRecordOverflow: "record overflow",
alertDecompressionFailure: "decompression failure",
alertHandshakeFailure: "handshake failure",
alertBadCertificate: "bad certificate",
alertUnsupportedCertificate: "unsupported certificate",
alertCertificateRevoked: "revoked certificate",
alertCertificateExpired: "expired certificate",
alertCertificateUnknown: "unknown certificate",
alertIllegalParameter: "illegal parameter",
alertUnknownCA: "unknown certificate authority",
alertAccessDenied: "access denied",
alertDecodeError: "error decoding message",
alertDecryptError: "error decrypting message",
alertProtocolVersion: "protocol version not supported",
alertInsufficientSecurity: "insufficient security level",
alertInternalError: "internal error",
alertInappropriateFallback: "inappropriate fallback",
alertUserCanceled: "user canceled",
alertNoRenegotiation: "no renegotiation",
alertMissingExtension: "missing extension",
alertUnsupportedExtension: "unsupported extension",
alertNoApplicationProtocol: "no application protocol",
}
func (e alert) String() string {
s, ok := alertText[e]
if ok {
return "tls: " + s
}
return "tls: alert(" + strconv.Itoa(int(e)) + ")"
}
func (e alert) Error() string {
return e.String()
}

View file

@ -1,221 +0,0 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package qtls
import (
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rsa"
"encoding/asn1"
"errors"
"fmt"
"hash"
"io"
)
// pickSignatureAlgorithm selects a signature algorithm that is compatible with
// the given public key and the list of algorithms from the peer and this side.
// The lists of signature algorithms (peerSigAlgs and ourSigAlgs) are ignored
// for tlsVersion < VersionTLS12.
//
// The returned SignatureScheme codepoint is only meaningful for TLS 1.2,
// previous TLS versions have a fixed hash function.
func pickSignatureAlgorithm(pubkey crypto.PublicKey, peerSigAlgs, ourSigAlgs []SignatureScheme, tlsVersion uint16) (sigAlg SignatureScheme, sigType uint8, hashFunc crypto.Hash, err error) {
if tlsVersion < VersionTLS12 || len(peerSigAlgs) == 0 {
// For TLS 1.1 and before, the signature algorithm could not be
// negotiated and the hash is fixed based on the signature type. For TLS
// 1.2, if the client didn't send signature_algorithms extension then we
// can assume that it supports SHA1. See RFC 5246, Section 7.4.1.4.1.
switch pubkey.(type) {
case *rsa.PublicKey:
if tlsVersion < VersionTLS12 {
return 0, signaturePKCS1v15, crypto.MD5SHA1, nil
} else {
return PKCS1WithSHA1, signaturePKCS1v15, crypto.SHA1, nil
}
case *ecdsa.PublicKey:
return ECDSAWithSHA1, signatureECDSA, crypto.SHA1, nil
default:
return 0, 0, 0, fmt.Errorf("tls: unsupported public key: %T", pubkey)
}
}
for _, sigAlg := range peerSigAlgs {
if !isSupportedSignatureAlgorithm(sigAlg, ourSigAlgs) {
continue
}
hashAlg, err := hashFromSignatureScheme(sigAlg)
if err != nil {
panic("tls: supported signature algorithm has an unknown hash function")
}
sigType := signatureFromSignatureScheme(sigAlg)
switch pubkey.(type) {
case *rsa.PublicKey:
if sigType == signaturePKCS1v15 || sigType == signatureRSAPSS {
return sigAlg, sigType, hashAlg, nil
}
case *ecdsa.PublicKey:
if sigType == signatureECDSA {
return sigAlg, sigType, hashAlg, nil
}
default:
return 0, 0, 0, fmt.Errorf("tls: unsupported public key: %T", pubkey)
}
}
return 0, 0, 0, errors.New("tls: peer doesn't support any common signature algorithms")
}
// verifyHandshakeSignature verifies a signature against pre-hashed handshake
// contents.
func verifyHandshakeSignature(sigType uint8, pubkey crypto.PublicKey, hashFunc crypto.Hash, digest, sig []byte) error {
switch sigType {
case signatureECDSA:
pubKey, ok := pubkey.(*ecdsa.PublicKey)
if !ok {
return errors.New("tls: ECDSA signing requires a ECDSA public key")
}
ecdsaSig := new(ecdsaSignature)
if _, err := asn1.Unmarshal(sig, ecdsaSig); err != nil {
return err
}
if ecdsaSig.R.Sign() <= 0 || ecdsaSig.S.Sign() <= 0 {
return errors.New("tls: ECDSA signature contained zero or negative values")
}
if !ecdsa.Verify(pubKey, digest, ecdsaSig.R, ecdsaSig.S) {
return errors.New("tls: ECDSA verification failure")
}
case signaturePKCS1v15:
pubKey, ok := pubkey.(*rsa.PublicKey)
if !ok {
return errors.New("tls: RSA signing requires a RSA public key")
}
if err := rsa.VerifyPKCS1v15(pubKey, hashFunc, digest, sig); err != nil {
return err
}
case signatureRSAPSS:
pubKey, ok := pubkey.(*rsa.PublicKey)
if !ok {
return errors.New("tls: RSA signing requires a RSA public key")
}
signOpts := &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash}
if err := rsa.VerifyPSS(pubKey, hashFunc, digest, sig, signOpts); err != nil {
return err
}
default:
return errors.New("tls: unknown signature algorithm")
}
return nil
}
const (
serverSignatureContext = "TLS 1.3, server CertificateVerify\x00"
clientSignatureContext = "TLS 1.3, client CertificateVerify\x00"
)
var signaturePadding = []byte{
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
}
// writeSignedMessage writes the content to be signed by certificate keys in TLS
// 1.3 to sigHash. See RFC 8446, Section 4.4.3.
func writeSignedMessage(sigHash io.Writer, context string, transcript hash.Hash) {
sigHash.Write(signaturePadding)
io.WriteString(sigHash, context)
sigHash.Write(transcript.Sum(nil))
}
// signatureSchemesForCertificate returns the list of supported SignatureSchemes
// for a given certificate, based on the public key and the protocol version. It
// does not support the crypto.Decrypter interface, so shouldn't be used on the
// server side in TLS 1.2 and earlier.
func signatureSchemesForCertificate(version uint16, cert *Certificate) []SignatureScheme {
priv, ok := cert.PrivateKey.(crypto.Signer)
if !ok {
return nil
}
switch pub := priv.Public().(type) {
case *ecdsa.PublicKey:
if version != VersionTLS13 {
// In TLS 1.2 and earlier, ECDSA algorithms are not
// constrained to a single curve.
return []SignatureScheme{
ECDSAWithP256AndSHA256,
ECDSAWithP384AndSHA384,
ECDSAWithP521AndSHA512,
ECDSAWithSHA1,
}
}
switch pub.Curve {
case elliptic.P256():
return []SignatureScheme{ECDSAWithP256AndSHA256}
case elliptic.P384():
return []SignatureScheme{ECDSAWithP384AndSHA384}
case elliptic.P521():
return []SignatureScheme{ECDSAWithP521AndSHA512}
default:
return nil
}
case *rsa.PublicKey:
if version != VersionTLS13 {
return []SignatureScheme{
PSSWithSHA256,
PSSWithSHA384,
PSSWithSHA512,
PKCS1WithSHA256,
PKCS1WithSHA384,
PKCS1WithSHA512,
PKCS1WithSHA1,
}
}
// RSA keys with RSA-PSS OID are not supported by crypto/x509.
return []SignatureScheme{
PSSWithSHA256,
PSSWithSHA384,
PSSWithSHA512,
}
default:
return nil
}
}
// unsupportedCertificateError returns a helpful error for certificates with
// an unsupported private key.
func unsupportedCertificateError(cert *Certificate) error {
switch cert.PrivateKey.(type) {
case rsa.PrivateKey, ecdsa.PrivateKey:
return fmt.Errorf("tls: unsupported certificate: private key is %T, expected *%T",
cert.PrivateKey, cert.PrivateKey)
}
signer, ok := cert.PrivateKey.(crypto.Signer)
if !ok {
return fmt.Errorf("tls: certificate private key (%T) does not implement crypto.Signer",
cert.PrivateKey)
}
switch pub := signer.Public().(type) {
case *ecdsa.PublicKey:
switch pub.Curve {
case elliptic.P256():
case elliptic.P384():
case elliptic.P521():
default:
return fmt.Errorf("tls: unsupported certificate curve (%s)", pub.Curve.Params().Name)
}
case *rsa.PublicKey:
default:
return fmt.Errorf("tls: unsupported certificate key (%T)", pub)
}
return fmt.Errorf("tls: internal error: unsupported key (%T)", cert.PrivateKey)
}

View file

@ -1,487 +0,0 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package qtls
import (
"crypto"
"crypto/aes"
"crypto/cipher"
"crypto/des"
"crypto/hmac"
"crypto/rc4"
"crypto/sha1"
"crypto/sha256"
"crypto/x509"
"hash"
"golang.org/x/crypto/chacha20poly1305"
)
// a keyAgreement implements the client and server side of a TLS key agreement
// protocol by generating and processing key exchange messages.
type keyAgreement interface {
// On the server side, the first two methods are called in order.
// In the case that the key agreement protocol doesn't use a
// ServerKeyExchange message, generateServerKeyExchange can return nil,
// nil.
generateServerKeyExchange(*Config, *Certificate, *clientHelloMsg, *serverHelloMsg) (*serverKeyExchangeMsg, error)
processClientKeyExchange(*Config, *Certificate, *clientKeyExchangeMsg, uint16) ([]byte, error)
// On the client side, the next two methods are called in order.
// This method may not be called if the server doesn't send a
// ServerKeyExchange message.
processServerKeyExchange(*Config, *clientHelloMsg, *serverHelloMsg, *x509.Certificate, *serverKeyExchangeMsg) error
generateClientKeyExchange(*Config, *clientHelloMsg, *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error)
}
const (
// suiteECDH indicates that the cipher suite involves elliptic curve
// Diffie-Hellman. This means that it should only be selected when the
// client indicates that it supports ECC with a curve and point format
// that we're happy with.
suiteECDHE = 1 << iota
// suiteECDSA indicates that the cipher suite involves an ECDSA
// signature and therefore may only be selected when the server's
// certificate is ECDSA. If this is not set then the cipher suite is
// RSA based.
suiteECDSA
// suiteTLS12 indicates that the cipher suite should only be advertised
// and accepted when using TLS 1.2.
suiteTLS12
// suiteSHA384 indicates that the cipher suite uses SHA384 as the
// handshake hash.
suiteSHA384
// suiteDefaultOff indicates that this cipher suite is not included by
// default.
suiteDefaultOff
)
type CipherSuite struct {
*cipherSuiteTLS13
}
func (c *CipherSuite) Hash() crypto.Hash { return c.hash }
func (c *CipherSuite) KeyLen() int { return c.keyLen }
func (c *CipherSuite) IVLen() int { return aeadNonceLength }
func (c *CipherSuite) AEAD(key, fixedNonce []byte) cipher.AEAD { return c.aead(key, fixedNonce) }
// A cipherSuite is a specific combination of key agreement, cipher and MAC function.
type cipherSuite struct {
id uint16
// the lengths, in bytes, of the key material needed for each component.
keyLen int
macLen int
ivLen int
ka func(version uint16) keyAgreement
// flags is a bitmask of the suite* values, above.
flags int
cipher func(key, iv []byte, isRead bool) interface{}
mac func(version uint16, macKey []byte) macFunction
aead func(key, fixedNonce []byte) aead
}
var cipherSuites = []*cipherSuite{
// Ciphersuite order is chosen so that ECDHE comes before plain RSA and
// AEADs are the top preference.
{TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305, 32, 0, 12, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadChaCha20Poly1305},
{TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, 32, 0, 12, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadChaCha20Poly1305},
{TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadAESGCM},
{TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadAESGCM},
{TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
{TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteDefaultOff, cipherAES, macSHA256, nil},
{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteDefaultOff, cipherAES, macSHA256, nil},
{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil},
{TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
{TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil},
{TLS_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, rsaKA, suiteTLS12, nil, nil, aeadAESGCM},
{TLS_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, rsaKA, suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
{TLS_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, rsaKA, suiteTLS12 | suiteDefaultOff, cipherAES, macSHA256, nil},
{TLS_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil},
{TLS_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil},
{TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, ecdheRSAKA, suiteECDHE, cipher3DES, macSHA1, nil},
{TLS_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, rsaKA, 0, cipher3DES, macSHA1, nil},
// RC4-based cipher suites are disabled by default.
{TLS_RSA_WITH_RC4_128_SHA, 16, 20, 0, rsaKA, suiteDefaultOff, cipherRC4, macSHA1, nil},
{TLS_ECDHE_RSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheRSAKA, suiteECDHE | suiteDefaultOff, cipherRC4, macSHA1, nil},
{TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteDefaultOff, cipherRC4, macSHA1, nil},
}
// A cipherSuiteTLS13 defines only the pair of the AEAD algorithm and hash
// algorithm to be used with HKDF. See RFC 8446, Appendix B.4.
type cipherSuiteTLS13 struct {
id uint16
keyLen int
aead func(key, fixedNonce []byte) aead
hash crypto.Hash
}
var cipherSuitesTLS13 = []*cipherSuiteTLS13{
{TLS_AES_128_GCM_SHA256, 16, aeadAESGCMTLS13, crypto.SHA256},
{TLS_CHACHA20_POLY1305_SHA256, 32, aeadChaCha20Poly1305, crypto.SHA256},
{TLS_AES_256_GCM_SHA384, 32, aeadAESGCMTLS13, crypto.SHA384},
}
func cipherRC4(key, iv []byte, isRead bool) interface{} {
cipher, _ := rc4.NewCipher(key)
return cipher
}
func cipher3DES(key, iv []byte, isRead bool) interface{} {
block, _ := des.NewTripleDESCipher(key)
if isRead {
return cipher.NewCBCDecrypter(block, iv)
}
return cipher.NewCBCEncrypter(block, iv)
}
func cipherAES(key, iv []byte, isRead bool) interface{} {
block, _ := aes.NewCipher(key)
if isRead {
return cipher.NewCBCDecrypter(block, iv)
}
return cipher.NewCBCEncrypter(block, iv)
}
// macSHA1 returns a macFunction for the given protocol version.
func macSHA1(version uint16, key []byte) macFunction {
if version == VersionSSL30 {
mac := ssl30MAC{
h: sha1.New(),
key: make([]byte, len(key)),
}
copy(mac.key, key)
return mac
}
return tls10MAC{h: hmac.New(newConstantTimeHash(sha1.New), key)}
}
// macSHA256 returns a SHA-256 based MAC. These are only supported in TLS 1.2
// so the given version is ignored.
func macSHA256(version uint16, key []byte) macFunction {
return tls10MAC{h: hmac.New(sha256.New, key)}
}
type macFunction interface {
// Size returns the length of the MAC.
Size() int
// MAC appends the MAC of (seq, header, data) to out. The extra data is fed
// into the MAC after obtaining the result to normalize timing. The result
// is only valid until the next invocation of MAC as the buffer is reused.
MAC(seq, header, data, extra []byte) []byte
}
type aead interface {
cipher.AEAD
// explicitNonceLen returns the number of bytes of explicit nonce
// included in each record. This is eight for older AEADs and
// zero for modern ones.
explicitNonceLen() int
}
const (
aeadNonceLength = 12
noncePrefixLength = 4
)
// prefixNonceAEAD wraps an AEAD and prefixes a fixed portion of the nonce to
// each call.
type prefixNonceAEAD struct {
// nonce contains the fixed part of the nonce in the first four bytes.
nonce [aeadNonceLength]byte
aead cipher.AEAD
}
func (f *prefixNonceAEAD) NonceSize() int { return aeadNonceLength - noncePrefixLength }
func (f *prefixNonceAEAD) Overhead() int { return f.aead.Overhead() }
func (f *prefixNonceAEAD) explicitNonceLen() int { return f.NonceSize() }
func (f *prefixNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte {
copy(f.nonce[4:], nonce)
return f.aead.Seal(out, f.nonce[:], plaintext, additionalData)
}
func (f *prefixNonceAEAD) Open(out, nonce, ciphertext, additionalData []byte) ([]byte, error) {
copy(f.nonce[4:], nonce)
return f.aead.Open(out, f.nonce[:], ciphertext, additionalData)
}
// xoredNonceAEAD wraps an AEAD by XORing in a fixed pattern to the nonce
// before each call.
type xorNonceAEAD struct {
nonceMask [aeadNonceLength]byte
aead cipher.AEAD
}
func (f *xorNonceAEAD) NonceSize() int { return 8 } // 64-bit sequence number
func (f *xorNonceAEAD) Overhead() int { return f.aead.Overhead() }
func (f *xorNonceAEAD) explicitNonceLen() int { return 0 }
func (f *xorNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte {
for i, b := range nonce {
f.nonceMask[4+i] ^= b
}
result := f.aead.Seal(out, f.nonceMask[:], plaintext, additionalData)
for i, b := range nonce {
f.nonceMask[4+i] ^= b
}
return result
}
func (f *xorNonceAEAD) Open(out, nonce, ciphertext, additionalData []byte) ([]byte, error) {
for i, b := range nonce {
f.nonceMask[4+i] ^= b
}
result, err := f.aead.Open(out, f.nonceMask[:], ciphertext, additionalData)
for i, b := range nonce {
f.nonceMask[4+i] ^= b
}
return result, err
}
func aeadAESGCM(key, noncePrefix []byte) aead {
if len(noncePrefix) != noncePrefixLength {
panic("tls: internal error: wrong nonce length")
}
aes, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
aead, err := cipher.NewGCM(aes)
if err != nil {
panic(err)
}
ret := &prefixNonceAEAD{aead: aead}
copy(ret.nonce[:], noncePrefix)
return ret
}
// AEADAESGCMTLS13 creates a new AES-GCM AEAD for TLS 1.3
func AEADAESGCMTLS13(key, fixedNonce []byte) cipher.AEAD {
return aeadAESGCMTLS13(key, fixedNonce)
}
func aeadAESGCMTLS13(key, nonceMask []byte) aead {
if len(nonceMask) != aeadNonceLength {
panic("tls: internal error: wrong nonce length")
}
aes, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
aead, err := cipher.NewGCM(aes)
if err != nil {
panic(err)
}
ret := &xorNonceAEAD{aead: aead}
copy(ret.nonceMask[:], nonceMask)
return ret
}
func aeadChaCha20Poly1305(key, nonceMask []byte) aead {
if len(nonceMask) != aeadNonceLength {
panic("tls: internal error: wrong nonce length")
}
aead, err := chacha20poly1305.New(key)
if err != nil {
panic(err)
}
ret := &xorNonceAEAD{aead: aead}
copy(ret.nonceMask[:], nonceMask)
return ret
}
// ssl30MAC implements the SSLv3 MAC function, as defined in
// www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt section 5.2.3.1
type ssl30MAC struct {
h hash.Hash
key []byte
buf []byte
}
func (s ssl30MAC) Size() int {
return s.h.Size()
}
var ssl30Pad1 = [48]byte{0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36}
var ssl30Pad2 = [48]byte{0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c}
// MAC does not offer constant timing guarantees for SSL v3.0, since it's deemed
// useless considering the similar, protocol-level POODLE vulnerability.
func (s ssl30MAC) MAC(seq, header, data, extra []byte) []byte {
padLength := 48
if s.h.Size() == 20 {
padLength = 40
}
s.h.Reset()
s.h.Write(s.key)
s.h.Write(ssl30Pad1[:padLength])
s.h.Write(seq)
s.h.Write(header[:1])
s.h.Write(header[3:5])
s.h.Write(data)
s.buf = s.h.Sum(s.buf[:0])
s.h.Reset()
s.h.Write(s.key)
s.h.Write(ssl30Pad2[:padLength])
s.h.Write(s.buf)
return s.h.Sum(s.buf[:0])
}
type constantTimeHash interface {
hash.Hash
ConstantTimeSum(b []byte) []byte
}
// cthWrapper wraps any hash.Hash that implements ConstantTimeSum, and replaces
// with that all calls to Sum. It's used to obtain a ConstantTimeSum-based HMAC.
type cthWrapper struct {
h constantTimeHash
}
func (c *cthWrapper) Size() int { return c.h.Size() }
func (c *cthWrapper) BlockSize() int { return c.h.BlockSize() }
func (c *cthWrapper) Reset() { c.h.Reset() }
func (c *cthWrapper) Write(p []byte) (int, error) { return c.h.Write(p) }
func (c *cthWrapper) Sum(b []byte) []byte { return c.h.ConstantTimeSum(b) }
func newConstantTimeHash(h func() hash.Hash) func() hash.Hash {
return func() hash.Hash {
return &cthWrapper{h().(constantTimeHash)}
}
}
// tls10MAC implements the TLS 1.0 MAC function. RFC 2246, Section 6.2.3.
type tls10MAC struct {
h hash.Hash
buf []byte
}
func (s tls10MAC) Size() int {
return s.h.Size()
}
// MAC is guaranteed to take constant time, as long as
// len(seq)+len(header)+len(data)+len(extra) is constant. extra is not fed into
// the MAC, but is only provided to make the timing profile constant.
func (s tls10MAC) MAC(seq, header, data, extra []byte) []byte {
s.h.Reset()
s.h.Write(seq)
s.h.Write(header)
s.h.Write(data)
res := s.h.Sum(s.buf[:0])
if extra != nil {
s.h.Write(extra)
}
return res
}
func rsaKA(version uint16) keyAgreement {
return rsaKeyAgreement{}
}
func ecdheECDSAKA(version uint16) keyAgreement {
return &ecdheKeyAgreement{
isRSA: false,
version: version,
}
}
func ecdheRSAKA(version uint16) keyAgreement {
return &ecdheKeyAgreement{
isRSA: true,
version: version,
}
}
// mutualCipherSuite returns a cipherSuite given a list of supported
// ciphersuites and the id requested by the peer.
func mutualCipherSuite(have []uint16, want uint16) *cipherSuite {
for _, id := range have {
if id == want {
return cipherSuiteByID(id)
}
}
return nil
}
func cipherSuiteByID(id uint16) *cipherSuite {
for _, cipherSuite := range cipherSuites {
if cipherSuite.id == id {
return cipherSuite
}
}
return nil
}
func mutualCipherSuiteTLS13(have []uint16, want uint16) *cipherSuiteTLS13 {
for _, id := range have {
if id == want {
return cipherSuiteTLS13ByID(id)
}
}
return nil
}
func cipherSuiteTLS13ByID(id uint16) *cipherSuiteTLS13 {
for _, cipherSuite := range cipherSuitesTLS13 {
if cipherSuite.id == id {
return cipherSuite
}
}
return nil
}
// A list of cipher suite IDs that are, or have been, implemented by this
// package.
//
// Taken from https://www.iana.org/assignments/tls-parameters/tls-parameters.xml
const (
// TLS 1.0 - 1.2 cipher suites.
TLS_RSA_WITH_RC4_128_SHA uint16 = 0x0005
TLS_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0x000a
TLS_RSA_WITH_AES_128_CBC_SHA uint16 = 0x002f
TLS_RSA_WITH_AES_256_CBC_SHA uint16 = 0x0035
TLS_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0x003c
TLS_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0x009c
TLS_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0x009d
TLS_ECDHE_ECDSA_WITH_RC4_128_SHA uint16 = 0xc007
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA uint16 = 0xc009
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA uint16 = 0xc00a
TLS_ECDHE_RSA_WITH_RC4_128_SHA uint16 = 0xc011
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0xc012
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA uint16 = 0xc013
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA uint16 = 0xc014
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 uint16 = 0xc023
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0xc027
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02f
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02b
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0xc030
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 uint16 = 0xc02c
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305 uint16 = 0xcca8
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305 uint16 = 0xcca9
// TLS 1.3 cipher suites.
TLS_AES_128_GCM_SHA256 uint16 = 0x1301
TLS_AES_256_GCM_SHA384 uint16 = 0x1302
TLS_CHACHA20_POLY1305_SHA256 uint16 = 0x1303
// TLS_FALLBACK_SCSV isn't a standard cipher suite but an indicator
// that the client is doing version fallback. See RFC 7507.
TLS_FALLBACK_SCSV uint16 = 0x5600
)

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,680 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package qtls
import (
"bytes"
"crypto"
"crypto/hmac"
"crypto/rsa"
"errors"
"hash"
"sync/atomic"
"time"
)
type clientHandshakeStateTLS13 struct {
c *Conn
serverHello *serverHelloMsg
hello *clientHelloMsg
ecdheParams ecdheParameters
session *ClientSessionState
earlySecret []byte
binderKey []byte
certReq *certificateRequestMsgTLS13
usingPSK bool
sentDummyCCS bool
suite *cipherSuiteTLS13
transcript hash.Hash
masterSecret []byte
trafficSecret []byte // client_application_traffic_secret_0
}
// handshake requires hs.c, hs.hello, hs.serverHello, hs.ecdheParams, and,
// optionally, hs.session, hs.earlySecret and hs.binderKey to be set.
func (hs *clientHandshakeStateTLS13) handshake() error {
c := hs.c
// The server must not select TLS 1.3 in a renegotiation. See RFC 8446,
// sections 4.1.2 and 4.1.3.
if c.handshakes > 0 {
c.sendAlert(alertProtocolVersion)
return errors.New("tls: server selected TLS 1.3 in a renegotiation")
}
// Consistency check on the presence of a keyShare and its parameters.
if hs.ecdheParams == nil || len(hs.hello.keyShares) != 1 {
return c.sendAlert(alertInternalError)
}
if err := hs.checkServerHelloOrHRR(); err != nil {
return err
}
hs.transcript = hs.suite.hash.New()
hs.transcript.Write(hs.hello.marshal())
if bytes.Equal(hs.serverHello.random, helloRetryRequestRandom) {
if err := hs.sendDummyChangeCipherSpec(); err != nil {
return err
}
if err := hs.processHelloRetryRequest(); err != nil {
return err
}
}
hs.transcript.Write(hs.serverHello.marshal())
c.buffering = true
if err := hs.processServerHello(); err != nil {
return err
}
if err := hs.sendDummyChangeCipherSpec(); err != nil {
return err
}
if err := hs.establishHandshakeKeys(); err != nil {
return err
}
if err := hs.readServerParameters(); err != nil {
return err
}
if err := hs.readServerCertificate(); err != nil {
return err
}
if err := hs.readServerFinished(); err != nil {
return err
}
if err := hs.sendClientCertificate(); err != nil {
return err
}
if err := hs.sendClientFinished(); err != nil {
return err
}
if _, err := c.flush(); err != nil {
return err
}
atomic.StoreUint32(&c.handshakeStatus, 1)
return nil
}
// checkServerHelloOrHRR does validity checks that apply to both ServerHello and
// HelloRetryRequest messages. It sets hs.suite.
func (hs *clientHandshakeStateTLS13) checkServerHelloOrHRR() error {
c := hs.c
if hs.serverHello.supportedVersion == 0 {
c.sendAlert(alertMissingExtension)
return errors.New("tls: server selected TLS 1.3 using the legacy version field")
}
if hs.serverHello.supportedVersion != VersionTLS13 {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: server selected an invalid version after a HelloRetryRequest")
}
if hs.serverHello.vers != VersionTLS12 {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: server sent an incorrect legacy version")
}
if hs.serverHello.nextProtoNeg ||
len(hs.serverHello.nextProtos) != 0 ||
hs.serverHello.ocspStapling ||
hs.serverHello.ticketSupported ||
hs.serverHello.secureRenegotiationSupported ||
len(hs.serverHello.secureRenegotiation) != 0 ||
len(hs.serverHello.alpnProtocol) != 0 ||
len(hs.serverHello.scts) != 0 {
c.sendAlert(alertUnsupportedExtension)
return errors.New("tls: server sent a ServerHello extension forbidden in TLS 1.3")
}
if !bytes.Equal(hs.hello.sessionId, hs.serverHello.sessionId) {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: server did not echo the legacy session ID")
}
if hs.serverHello.compressionMethod != compressionNone {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: server selected unsupported compression format")
}
selectedSuite := mutualCipherSuiteTLS13(hs.hello.cipherSuites, hs.serverHello.cipherSuite)
if hs.suite != nil && selectedSuite != hs.suite {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: server changed cipher suite after a HelloRetryRequest")
}
if selectedSuite == nil {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: server chose an unconfigured cipher suite")
}
hs.suite = selectedSuite
c.cipherSuite = hs.suite.id
return nil
}
// sendDummyChangeCipherSpec sends a ChangeCipherSpec record for compatibility
// with middleboxes that didn't implement TLS correctly. See RFC 8446, Appendix D.4.
func (hs *clientHandshakeStateTLS13) sendDummyChangeCipherSpec() error {
if hs.sentDummyCCS {
return nil
}
hs.sentDummyCCS = true
_, err := hs.c.writeRecord(recordTypeChangeCipherSpec, []byte{1})
return err
}
// processHelloRetryRequest handles the HRR in hs.serverHello, modifies and
// resends hs.hello, and reads the new ServerHello into hs.serverHello.
func (hs *clientHandshakeStateTLS13) processHelloRetryRequest() error {
c := hs.c
// The first ClientHello gets double-hashed into the transcript upon a
// HelloRetryRequest. See RFC 8446, Section 4.4.1.
chHash := hs.transcript.Sum(nil)
hs.transcript.Reset()
hs.transcript.Write([]byte{typeMessageHash, 0, 0, uint8(len(chHash))})
hs.transcript.Write(chHash)
hs.transcript.Write(hs.serverHello.marshal())
if hs.serverHello.serverShare.group != 0 {
c.sendAlert(alertDecodeError)
return errors.New("tls: received malformed key_share extension")
}
curveID := hs.serverHello.selectedGroup
if curveID == 0 {
c.sendAlert(alertMissingExtension)
return errors.New("tls: received HelloRetryRequest without selected group")
}
curveOK := false
for _, id := range hs.hello.supportedCurves {
if id == curveID {
curveOK = true
break
}
}
if !curveOK {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: server selected unsupported group")
}
if hs.ecdheParams.CurveID() == curveID {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: server sent an unnecessary HelloRetryRequest message")
}
if _, ok := curveForCurveID(curveID); curveID != X25519 && !ok {
c.sendAlert(alertInternalError)
return errors.New("tls: CurvePreferences includes unsupported curve")
}
params, err := generateECDHEParameters(c.config.rand(), curveID)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
hs.ecdheParams = params
hs.hello.keyShares = []keyShare{{group: curveID, data: params.PublicKey()}}
hs.hello.cookie = hs.serverHello.cookie
hs.hello.raw = nil
if len(hs.hello.pskIdentities) > 0 {
pskSuite := cipherSuiteTLS13ByID(hs.session.cipherSuite)
if pskSuite == nil {
return c.sendAlert(alertInternalError)
}
if pskSuite.hash == hs.suite.hash {
// Update binders and obfuscated_ticket_age.
ticketAge := uint32(c.config.time().Sub(hs.session.receivedAt) / time.Millisecond)
hs.hello.pskIdentities[0].obfuscatedTicketAge = ticketAge + hs.session.ageAdd
transcript := hs.suite.hash.New()
transcript.Write([]byte{typeMessageHash, 0, 0, uint8(len(chHash))})
transcript.Write(chHash)
transcript.Write(hs.serverHello.marshal())
transcript.Write(hs.hello.marshalWithoutBinders())
pskBinders := [][]byte{hs.suite.finishedHash(hs.binderKey, transcript)}
hs.hello.updateBinders(pskBinders)
} else {
// Server selected a cipher suite incompatible with the PSK.
hs.hello.pskIdentities = nil
hs.hello.pskBinders = nil
}
}
hs.transcript.Write(hs.hello.marshal())
if _, err := c.writeRecord(recordTypeHandshake, hs.hello.marshal()); err != nil {
return err
}
msg, err := c.readHandshake()
if err != nil {
return err
}
serverHello, ok := msg.(*serverHelloMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(serverHello, msg)
}
hs.serverHello = serverHello
if err := hs.checkServerHelloOrHRR(); err != nil {
return err
}
return nil
}
func (hs *clientHandshakeStateTLS13) processServerHello() error {
c := hs.c
if bytes.Equal(hs.serverHello.random, helloRetryRequestRandom) {
c.sendAlert(alertUnexpectedMessage)
return errors.New("tls: server sent two HelloRetryRequest messages")
}
if len(hs.serverHello.cookie) != 0 {
c.sendAlert(alertUnsupportedExtension)
return errors.New("tls: server sent a cookie in a normal ServerHello")
}
if hs.serverHello.selectedGroup != 0 {
c.sendAlert(alertDecodeError)
return errors.New("tls: malformed key_share extension")
}
if hs.serverHello.serverShare.group == 0 {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: server did not send a key share")
}
if hs.serverHello.serverShare.group != hs.ecdheParams.CurveID() {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: server selected unsupported group")
}
if !hs.serverHello.selectedIdentityPresent {
return nil
}
if int(hs.serverHello.selectedIdentity) >= len(hs.hello.pskIdentities) {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: server selected an invalid PSK")
}
if len(hs.hello.pskIdentities) != 1 || hs.session == nil {
return c.sendAlert(alertInternalError)
}
pskSuite := cipherSuiteTLS13ByID(hs.session.cipherSuite)
if pskSuite == nil {
return c.sendAlert(alertInternalError)
}
if pskSuite.hash != hs.suite.hash {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: server selected an invalid PSK and cipher suite pair")
}
hs.usingPSK = true
c.didResume = true
c.peerCertificates = hs.session.serverCertificates
c.verifiedChains = hs.session.verifiedChains
return nil
}
func (hs *clientHandshakeStateTLS13) establishHandshakeKeys() error {
c := hs.c
sharedKey := hs.ecdheParams.SharedKey(hs.serverHello.serverShare.data)
if sharedKey == nil {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: invalid server key share")
}
earlySecret := hs.earlySecret
if !hs.usingPSK {
earlySecret = hs.suite.extract(nil, nil)
}
handshakeSecret := hs.suite.extract(sharedKey,
hs.suite.deriveSecret(earlySecret, "derived", nil))
clientSecret := hs.suite.deriveSecret(handshakeSecret,
clientHandshakeTrafficLabel, hs.transcript)
c.out.exportKey(hs.suite, clientSecret)
c.out.setTrafficSecret(hs.suite, clientSecret)
serverSecret := hs.suite.deriveSecret(handshakeSecret,
serverHandshakeTrafficLabel, hs.transcript)
c.in.exportKey(hs.suite, serverSecret)
c.in.setTrafficSecret(hs.suite, serverSecret)
err := c.config.writeKeyLog(keyLogLabelClientHandshake, hs.hello.random, clientSecret)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
err = c.config.writeKeyLog(keyLogLabelServerHandshake, hs.hello.random, serverSecret)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
hs.masterSecret = hs.suite.extract(nil,
hs.suite.deriveSecret(handshakeSecret, "derived", nil))
return nil
}
func (hs *clientHandshakeStateTLS13) readServerParameters() error {
c := hs.c
msg, err := c.readHandshake()
if err != nil {
return err
}
encryptedExtensions, ok := msg.(*encryptedExtensionsMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(encryptedExtensions, msg)
}
if hs.c.config.ReceivedExtensions != nil {
hs.c.config.ReceivedExtensions(typeEncryptedExtensions, encryptedExtensions.additionalExtensions)
}
hs.transcript.Write(encryptedExtensions.marshal())
if len(encryptedExtensions.alpnProtocol) != 0 && len(hs.hello.alpnProtocols) == 0 {
c.sendAlert(alertUnsupportedExtension)
return errors.New("tls: server advertised unrequested ALPN extension")
}
c.clientProtocol = encryptedExtensions.alpnProtocol
return nil
}
func (hs *clientHandshakeStateTLS13) readServerCertificate() error {
c := hs.c
// Either a PSK or a certificate is always used, but not both.
// See RFC 8446, Section 4.1.1.
if hs.usingPSK {
return nil
}
msg, err := c.readHandshake()
if err != nil {
return err
}
certReq, ok := msg.(*certificateRequestMsgTLS13)
if ok {
hs.transcript.Write(certReq.marshal())
hs.certReq = certReq
msg, err = c.readHandshake()
if err != nil {
return err
}
}
certMsg, ok := msg.(*certificateMsgTLS13)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(certMsg, msg)
}
if len(certMsg.certificate.Certificate) == 0 {
c.sendAlert(alertDecodeError)
return errors.New("tls: received empty certificates message")
}
hs.transcript.Write(certMsg.marshal())
c.scts = certMsg.certificate.SignedCertificateTimestamps
c.ocspResponse = certMsg.certificate.OCSPStaple
if err := c.verifyServerCertificate(certMsg.certificate.Certificate); err != nil {
return err
}
msg, err = c.readHandshake()
if err != nil {
return err
}
certVerify, ok := msg.(*certificateVerifyMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(certVerify, msg)
}
// See RFC 8446, Section 4.4.3.
if !isSupportedSignatureAlgorithm(certVerify.signatureAlgorithm, supportedSignatureAlgorithms) {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: invalid certificate signature algorithm")
}
sigType := signatureFromSignatureScheme(certVerify.signatureAlgorithm)
sigHash, err := hashFromSignatureScheme(certVerify.signatureAlgorithm)
if sigType == 0 || err != nil {
c.sendAlert(alertInternalError)
return err
}
if sigType == signaturePKCS1v15 || sigHash == crypto.SHA1 {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: invalid certificate signature algorithm")
}
h := sigHash.New()
writeSignedMessage(h, serverSignatureContext, hs.transcript)
if err := verifyHandshakeSignature(sigType, c.peerCertificates[0].PublicKey,
sigHash, h.Sum(nil), certVerify.signature); err != nil {
c.sendAlert(alertDecryptError)
return errors.New("tls: invalid certificate signature")
}
hs.transcript.Write(certVerify.marshal())
return nil
}
func (hs *clientHandshakeStateTLS13) readServerFinished() error {
c := hs.c
msg, err := c.readHandshake()
if err != nil {
return err
}
finished, ok := msg.(*finishedMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(finished, msg)
}
expectedMAC := hs.suite.finishedHash(c.in.trafficSecret, hs.transcript)
if !hmac.Equal(expectedMAC, finished.verifyData) {
c.sendAlert(alertDecryptError)
return errors.New("tls: invalid server finished hash")
}
hs.transcript.Write(finished.marshal())
// Derive secrets that take context through the server Finished.
hs.trafficSecret = hs.suite.deriveSecret(hs.masterSecret,
clientApplicationTrafficLabel, hs.transcript)
serverSecret := hs.suite.deriveSecret(hs.masterSecret,
serverApplicationTrafficLabel, hs.transcript)
c.in.exportKey(hs.suite, serverSecret)
c.in.setTrafficSecret(hs.suite, serverSecret)
err = c.config.writeKeyLog(keyLogLabelClientTraffic, hs.hello.random, hs.trafficSecret)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
err = c.config.writeKeyLog(keyLogLabelServerTraffic, hs.hello.random, serverSecret)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
c.ekm = hs.suite.exportKeyingMaterial(hs.masterSecret, hs.transcript)
return nil
}
func (hs *clientHandshakeStateTLS13) sendClientCertificate() error {
c := hs.c
if hs.certReq == nil {
return nil
}
cert, err := c.getClientCertificate(&CertificateRequestInfo{
AcceptableCAs: hs.certReq.certificateAuthorities,
SignatureSchemes: hs.certReq.supportedSignatureAlgorithms,
})
if err != nil {
return err
}
certMsg := new(certificateMsgTLS13)
certMsg.certificate = *cert
certMsg.scts = hs.certReq.scts && len(cert.SignedCertificateTimestamps) > 0
certMsg.ocspStapling = hs.certReq.ocspStapling && len(cert.OCSPStaple) > 0
hs.transcript.Write(certMsg.marshal())
if _, err := c.writeRecord(recordTypeHandshake, certMsg.marshal()); err != nil {
return err
}
// If we sent an empty certificate message, skip the CertificateVerify.
if len(cert.Certificate) == 0 {
return nil
}
certVerifyMsg := new(certificateVerifyMsg)
certVerifyMsg.hasSignatureAlgorithm = true
supportedAlgs := signatureSchemesForCertificate(c.vers, cert)
if supportedAlgs == nil {
c.sendAlert(alertInternalError)
return unsupportedCertificateError(cert)
}
// Pick signature scheme in server preference order, as the client
// preference order is not configurable.
for _, preferredAlg := range hs.certReq.supportedSignatureAlgorithms {
if isSupportedSignatureAlgorithm(preferredAlg, supportedAlgs) {
certVerifyMsg.signatureAlgorithm = preferredAlg
break
}
}
if certVerifyMsg.signatureAlgorithm == 0 {
// getClientCertificate returned a certificate incompatible with the
// CertificateRequestInfo supported signature algorithms.
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: server doesn't support selected certificate")
}
sigType := signatureFromSignatureScheme(certVerifyMsg.signatureAlgorithm)
sigHash, err := hashFromSignatureScheme(certVerifyMsg.signatureAlgorithm)
if sigType == 0 || err != nil {
return c.sendAlert(alertInternalError)
}
h := sigHash.New()
writeSignedMessage(h, clientSignatureContext, hs.transcript)
signOpts := crypto.SignerOpts(sigHash)
if sigType == signatureRSAPSS {
signOpts = &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash, Hash: sigHash}
}
sig, err := cert.PrivateKey.(crypto.Signer).Sign(c.config.rand(), h.Sum(nil), signOpts)
if err != nil {
c.sendAlert(alertInternalError)
return errors.New("tls: failed to sign handshake: " + err.Error())
}
certVerifyMsg.signature = sig
hs.transcript.Write(certVerifyMsg.marshal())
if _, err := c.writeRecord(recordTypeHandshake, certVerifyMsg.marshal()); err != nil {
return err
}
return nil
}
func (hs *clientHandshakeStateTLS13) sendClientFinished() error {
c := hs.c
finished := &finishedMsg{
verifyData: hs.suite.finishedHash(c.out.trafficSecret, hs.transcript),
}
hs.transcript.Write(finished.marshal())
if _, err := c.writeRecord(recordTypeHandshake, finished.marshal()); err != nil {
return err
}
c.out.exportKey(hs.suite, hs.trafficSecret)
c.out.setTrafficSecret(hs.suite, hs.trafficSecret)
if !c.config.SessionTicketsDisabled && c.config.ClientSessionCache != nil {
c.resumptionSecret = hs.suite.deriveSecret(hs.masterSecret,
resumptionLabel, hs.transcript)
}
return nil
}
func (c *Conn) handleNewSessionTicket(msg *newSessionTicketMsgTLS13) error {
if !c.isClient {
c.sendAlert(alertUnexpectedMessage)
return errors.New("tls: received new session ticket from a client")
}
if c.config.SessionTicketsDisabled || c.config.ClientSessionCache == nil {
return nil
}
// See RFC 8446, Section 4.6.1.
if msg.lifetime == 0 {
return nil
}
lifetime := time.Duration(msg.lifetime) * time.Second
if lifetime > maxSessionTicketLifetime {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: received a session ticket with invalid lifetime")
}
cipherSuite := cipherSuiteTLS13ByID(c.cipherSuite)
if cipherSuite == nil || c.resumptionSecret == nil {
return c.sendAlert(alertInternalError)
}
// Save the resumption_master_secret and nonce instead of deriving the PSK
// to do the least amount of work on NewSessionTicket messages before we
// know if the ticket will be used. Forward secrecy of resumed connections
// is guaranteed by the requirement for pskModeDHE.
session := &ClientSessionState{
sessionTicket: msg.label,
vers: c.vers,
cipherSuite: c.cipherSuite,
masterSecret: c.resumptionSecret,
serverCertificates: c.peerCertificates,
verifiedChains: c.verifiedChains,
receivedAt: c.config.time(),
nonce: msg.nonce,
useBy: c.config.time().Add(lifetime),
ageAdd: msg.ageAdd,
}
cacheKey := clientSessionCacheKey(c.conn.RemoteAddr(), c.config)
c.config.ClientSessionCache.Put(cacheKey, session)
return nil
}

File diff suppressed because it is too large Load diff

View file

@ -1,826 +0,0 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package qtls
import (
"crypto"
"crypto/ecdsa"
"crypto/rsa"
"crypto/subtle"
"crypto/x509"
"errors"
"fmt"
"io"
"sync/atomic"
)
// serverHandshakeState contains details of a server handshake in progress.
// It's discarded once the handshake has completed.
type serverHandshakeState struct {
c *Conn
clientHello *clientHelloMsg
hello *serverHelloMsg
suite *cipherSuite
ellipticOk bool
ecdsaOk bool
rsaDecryptOk bool
rsaSignOk bool
sessionState *sessionState
finishedHash finishedHash
masterSecret []byte
cert *Certificate
}
// serverHandshake performs a TLS handshake as a server.
func (c *Conn) serverHandshake() error {
// If this is the first server handshake, we generate a random key to
// encrypt the tickets with.
c.config.serverInitOnce.Do(func() { c.config.serverInit(nil) })
c.setAlternativeRecordLayer()
clientHello, err := c.readClientHello()
if err != nil {
return err
}
if c.vers == VersionTLS13 {
hs := serverHandshakeStateTLS13{
c: c,
clientHello: clientHello,
}
return hs.handshake()
}
hs := serverHandshakeState{
c: c,
clientHello: clientHello,
}
return hs.handshake()
}
func (hs *serverHandshakeState) handshake() error {
c := hs.c
if err := hs.processClientHello(); err != nil {
return err
}
// For an overview of TLS handshaking, see RFC 5246, Section 7.3.
c.buffering = true
if hs.checkForResumption() {
// The client has included a session ticket and so we do an abbreviated handshake.
if err := hs.doResumeHandshake(); err != nil {
return err
}
if err := hs.establishKeys(); err != nil {
return err
}
// ticketSupported is set in a resumption handshake if the
// ticket from the client was encrypted with an old session
// ticket key and thus a refreshed ticket should be sent.
if hs.hello.ticketSupported {
if err := hs.sendSessionTicket(); err != nil {
return err
}
}
if err := hs.sendFinished(c.serverFinished[:]); err != nil {
return err
}
if _, err := c.flush(); err != nil {
return err
}
c.clientFinishedIsFirst = false
if err := hs.readFinished(nil); err != nil {
return err
}
c.didResume = true
} else {
// The client didn't include a session ticket, or it wasn't
// valid so we do a full handshake.
if err := hs.pickCipherSuite(); err != nil {
return err
}
if err := hs.doFullHandshake(); err != nil {
return err
}
if err := hs.establishKeys(); err != nil {
return err
}
if err := hs.readFinished(c.clientFinished[:]); err != nil {
return err
}
c.clientFinishedIsFirst = true
c.buffering = true
if err := hs.sendSessionTicket(); err != nil {
return err
}
if err := hs.sendFinished(nil); err != nil {
return err
}
if _, err := c.flush(); err != nil {
return err
}
}
c.ekm = ekmFromMasterSecret(c.vers, hs.suite, hs.masterSecret, hs.clientHello.random, hs.hello.random)
atomic.StoreUint32(&c.handshakeStatus, 1)
return nil
}
// readClientHello reads a ClientHello message and selects the protocol version.
func (c *Conn) readClientHello() (*clientHelloMsg, error) {
msg, err := c.readHandshake()
if err != nil {
return nil, err
}
clientHello, ok := msg.(*clientHelloMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return nil, unexpectedMessageError(clientHello, msg)
}
if c.config.GetConfigForClient != nil {
chi := clientHelloInfo(c, clientHello)
if newConfig, err := c.config.GetConfigForClient(chi); err != nil {
c.sendAlert(alertInternalError)
return nil, err
} else if newConfig != nil {
newConfig.serverInitOnce.Do(func() { newConfig.serverInit(c.config) })
c.config = newConfig
}
}
clientVersions := clientHello.supportedVersions
if len(clientHello.supportedVersions) == 0 {
clientVersions = supportedVersionsFromMax(clientHello.vers)
}
c.vers, ok = c.config.mutualVersion(false, clientVersions)
if !ok {
c.sendAlert(alertProtocolVersion)
return nil, fmt.Errorf("tls: client offered only unsupported versions: %x", clientVersions)
}
c.haveVers = true
c.in.version = c.vers
c.out.version = c.vers
if c.vers == VersionTLS13 && c.config.ReceivedExtensions != nil {
c.config.ReceivedExtensions(typeClientHello, clientHello.additionalExtensions)
}
return clientHello, nil
}
func (hs *serverHandshakeState) processClientHello() error {
c := hs.c
hs.hello = new(serverHelloMsg)
hs.hello.vers = c.vers
supportedCurve := false
preferredCurves := c.config.curvePreferences()
Curves:
for _, curve := range hs.clientHello.supportedCurves {
for _, supported := range preferredCurves {
if supported == curve {
supportedCurve = true
break Curves
}
}
}
supportedPointFormat := false
for _, pointFormat := range hs.clientHello.supportedPoints {
if pointFormat == pointFormatUncompressed {
supportedPointFormat = true
break
}
}
hs.ellipticOk = supportedCurve && supportedPointFormat
foundCompression := false
// We only support null compression, so check that the client offered it.
for _, compression := range hs.clientHello.compressionMethods {
if compression == compressionNone {
foundCompression = true
break
}
}
if !foundCompression {
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: client does not support uncompressed connections")
}
hs.hello.random = make([]byte, 32)
serverRandom := hs.hello.random
// Downgrade protection canaries. See RFC 8446, Section 4.1.3.
maxVers := c.config.maxSupportedVersion(false)
if maxVers >= VersionTLS12 && c.vers < maxVers {
if c.vers == VersionTLS12 {
copy(serverRandom[24:], downgradeCanaryTLS12)
} else {
copy(serverRandom[24:], downgradeCanaryTLS11)
}
serverRandom = serverRandom[:24]
}
_, err := io.ReadFull(c.config.rand(), serverRandom)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
if len(hs.clientHello.secureRenegotiation) != 0 {
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: initial handshake had non-empty renegotiation extension")
}
hs.hello.secureRenegotiationSupported = hs.clientHello.secureRenegotiationSupported
hs.hello.compressionMethod = compressionNone
if len(hs.clientHello.serverName) > 0 {
c.serverName = hs.clientHello.serverName
}
if len(hs.clientHello.alpnProtocols) > 0 {
if selectedProto, fallback := mutualProtocol(hs.clientHello.alpnProtocols, c.config.NextProtos); !fallback {
hs.hello.alpnProtocol = selectedProto
c.clientProtocol = selectedProto
}
} else {
// Although sending an empty NPN extension is reasonable, Firefox has
// had a bug around this. Best to send nothing at all if
// c.config.NextProtos is empty. See
// https://golang.org/issue/5445.
if hs.clientHello.nextProtoNeg && len(c.config.NextProtos) > 0 {
hs.hello.nextProtoNeg = true
hs.hello.nextProtos = c.config.NextProtos
}
}
hs.cert, err = c.config.getCertificate(clientHelloInfo(c, hs.clientHello))
if err != nil {
c.sendAlert(alertInternalError)
return err
}
if hs.clientHello.scts {
hs.hello.scts = hs.cert.SignedCertificateTimestamps
}
if priv, ok := hs.cert.PrivateKey.(crypto.Signer); ok {
switch priv.Public().(type) {
case *ecdsa.PublicKey:
hs.ecdsaOk = true
case *rsa.PublicKey:
hs.rsaSignOk = true
default:
c.sendAlert(alertInternalError)
return fmt.Errorf("tls: unsupported signing key type (%T)", priv.Public())
}
}
if priv, ok := hs.cert.PrivateKey.(crypto.Decrypter); ok {
switch priv.Public().(type) {
case *rsa.PublicKey:
hs.rsaDecryptOk = true
default:
c.sendAlert(alertInternalError)
return fmt.Errorf("tls: unsupported decryption key type (%T)", priv.Public())
}
}
return nil
}
func (hs *serverHandshakeState) pickCipherSuite() error {
c := hs.c
var preferenceList, supportedList []uint16
if c.config.PreferServerCipherSuites {
preferenceList = c.config.cipherSuites()
supportedList = hs.clientHello.cipherSuites
} else {
preferenceList = hs.clientHello.cipherSuites
supportedList = c.config.cipherSuites()
}
for _, id := range preferenceList {
if hs.setCipherSuite(id, supportedList, c.vers) {
break
}
}
if hs.suite == nil {
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: no cipher suite supported by both client and server")
}
for _, id := range hs.clientHello.cipherSuites {
if id == TLS_FALLBACK_SCSV {
// The client is doing a fallback connection. See RFC 7507.
if hs.clientHello.vers < c.config.maxSupportedVersion(false) {
c.sendAlert(alertInappropriateFallback)
return errors.New("tls: client using inappropriate protocol fallback")
}
break
}
}
return nil
}
// checkForResumption reports whether we should perform resumption on this connection.
func (hs *serverHandshakeState) checkForResumption() bool {
c := hs.c
if c.config.SessionTicketsDisabled {
return false
}
plaintext, usedOldKey := c.decryptTicket(hs.clientHello.sessionTicket)
if plaintext == nil {
return false
}
hs.sessionState = &sessionState{usedOldKey: usedOldKey}
ok := hs.sessionState.unmarshal(plaintext)
if !ok {
return false
}
// Never resume a session for a different TLS version.
if c.vers != hs.sessionState.vers {
return false
}
cipherSuiteOk := false
// Check that the client is still offering the ciphersuite in the session.
for _, id := range hs.clientHello.cipherSuites {
if id == hs.sessionState.cipherSuite {
cipherSuiteOk = true
break
}
}
if !cipherSuiteOk {
return false
}
// Check that we also support the ciphersuite from the session.
if !hs.setCipherSuite(hs.sessionState.cipherSuite, c.config.cipherSuites(), hs.sessionState.vers) {
return false
}
sessionHasClientCerts := len(hs.sessionState.certificates) != 0
needClientCerts := requiresClientCert(c.config.ClientAuth)
if needClientCerts && !sessionHasClientCerts {
return false
}
if sessionHasClientCerts && c.config.ClientAuth == NoClientCert {
return false
}
return true
}
func (hs *serverHandshakeState) doResumeHandshake() error {
c := hs.c
hs.hello.cipherSuite = hs.suite.id
// We echo the client's session ID in the ServerHello to let it know
// that we're doing a resumption.
hs.hello.sessionId = hs.clientHello.sessionId
hs.hello.ticketSupported = hs.sessionState.usedOldKey
hs.finishedHash = newFinishedHash(c.vers, hs.suite)
hs.finishedHash.discardHandshakeBuffer()
hs.finishedHash.Write(hs.clientHello.marshal())
hs.finishedHash.Write(hs.hello.marshal())
if _, err := c.writeRecord(recordTypeHandshake, hs.hello.marshal()); err != nil {
return err
}
if err := c.processCertsFromClient(Certificate{
Certificate: hs.sessionState.certificates,
}); err != nil {
return err
}
hs.masterSecret = hs.sessionState.masterSecret
return nil
}
func (hs *serverHandshakeState) doFullHandshake() error {
c := hs.c
if hs.clientHello.ocspStapling && len(hs.cert.OCSPStaple) > 0 {
hs.hello.ocspStapling = true
}
hs.hello.ticketSupported = hs.clientHello.ticketSupported && !c.config.SessionTicketsDisabled
hs.hello.cipherSuite = hs.suite.id
hs.finishedHash = newFinishedHash(hs.c.vers, hs.suite)
if c.config.ClientAuth == NoClientCert {
// No need to keep a full record of the handshake if client
// certificates won't be used.
hs.finishedHash.discardHandshakeBuffer()
}
hs.finishedHash.Write(hs.clientHello.marshal())
hs.finishedHash.Write(hs.hello.marshal())
if _, err := c.writeRecord(recordTypeHandshake, hs.hello.marshal()); err != nil {
return err
}
certMsg := new(certificateMsg)
certMsg.certificates = hs.cert.Certificate
hs.finishedHash.Write(certMsg.marshal())
if _, err := c.writeRecord(recordTypeHandshake, certMsg.marshal()); err != nil {
return err
}
if hs.hello.ocspStapling {
certStatus := new(certificateStatusMsg)
certStatus.response = hs.cert.OCSPStaple
hs.finishedHash.Write(certStatus.marshal())
if _, err := c.writeRecord(recordTypeHandshake, certStatus.marshal()); err != nil {
return err
}
}
keyAgreement := hs.suite.ka(c.vers)
skx, err := keyAgreement.generateServerKeyExchange(c.config, hs.cert, hs.clientHello, hs.hello)
if err != nil {
c.sendAlert(alertHandshakeFailure)
return err
}
if skx != nil {
hs.finishedHash.Write(skx.marshal())
if _, err := c.writeRecord(recordTypeHandshake, skx.marshal()); err != nil {
return err
}
}
if c.config.ClientAuth >= RequestClientCert {
// Request a client certificate
certReq := new(certificateRequestMsg)
certReq.certificateTypes = []byte{
byte(certTypeRSASign),
byte(certTypeECDSASign),
}
if c.vers >= VersionTLS12 {
certReq.hasSignatureAlgorithm = true
certReq.supportedSignatureAlgorithms = supportedSignatureAlgorithmsTLS12
}
// An empty list of certificateAuthorities signals to
// the client that it may send any certificate in response
// to our request. When we know the CAs we trust, then
// we can send them down, so that the client can choose
// an appropriate certificate to give to us.
if c.config.ClientCAs != nil {
certReq.certificateAuthorities = c.config.ClientCAs.Subjects()
}
hs.finishedHash.Write(certReq.marshal())
if _, err := c.writeRecord(recordTypeHandshake, certReq.marshal()); err != nil {
return err
}
}
helloDone := new(serverHelloDoneMsg)
hs.finishedHash.Write(helloDone.marshal())
if _, err := c.writeRecord(recordTypeHandshake, helloDone.marshal()); err != nil {
return err
}
if _, err := c.flush(); err != nil {
return err
}
var pub crypto.PublicKey // public key for client auth, if any
msg, err := c.readHandshake()
if err != nil {
return err
}
// If we requested a client certificate, then the client must send a
// certificate message, even if it's empty.
if c.config.ClientAuth >= RequestClientCert {
certMsg, ok := msg.(*certificateMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(certMsg, msg)
}
hs.finishedHash.Write(certMsg.marshal())
if err := c.processCertsFromClient(Certificate{
Certificate: certMsg.certificates,
}); err != nil {
return err
}
if len(certMsg.certificates) != 0 {
pub = c.peerCertificates[0].PublicKey
}
msg, err = c.readHandshake()
if err != nil {
return err
}
}
// Get client key exchange
ckx, ok := msg.(*clientKeyExchangeMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(ckx, msg)
}
hs.finishedHash.Write(ckx.marshal())
preMasterSecret, err := keyAgreement.processClientKeyExchange(c.config, hs.cert, ckx, c.vers)
if err != nil {
c.sendAlert(alertHandshakeFailure)
return err
}
hs.masterSecret = masterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret, hs.clientHello.random, hs.hello.random)
if err := c.config.writeKeyLog(keyLogLabelTLS12, hs.clientHello.random, hs.masterSecret); err != nil {
c.sendAlert(alertInternalError)
return err
}
// If we received a client cert in response to our certificate request message,
// the client will send us a certificateVerifyMsg immediately after the
// clientKeyExchangeMsg. This message is a digest of all preceding
// handshake-layer messages that is signed using the private key corresponding
// to the client's certificate. This allows us to verify that the client is in
// possession of the private key of the certificate.
if len(c.peerCertificates) > 0 {
msg, err = c.readHandshake()
if err != nil {
return err
}
certVerify, ok := msg.(*certificateVerifyMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(certVerify, msg)
}
// Determine the signature type.
_, sigType, hashFunc, err := pickSignatureAlgorithm(pub, []SignatureScheme{certVerify.signatureAlgorithm}, supportedSignatureAlgorithmsTLS12, c.vers)
if err != nil {
c.sendAlert(alertIllegalParameter)
return err
}
var digest []byte
if digest, err = hs.finishedHash.hashForClientCertificate(sigType, hashFunc, hs.masterSecret); err == nil {
err = verifyHandshakeSignature(sigType, pub, hashFunc, digest, certVerify.signature)
}
if err != nil {
c.sendAlert(alertBadCertificate)
return errors.New("tls: could not validate signature of connection nonces: " + err.Error())
}
hs.finishedHash.Write(certVerify.marshal())
}
hs.finishedHash.discardHandshakeBuffer()
return nil
}
func (hs *serverHandshakeState) establishKeys() error {
c := hs.c
clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV :=
keysFromMasterSecret(c.vers, hs.suite, hs.masterSecret, hs.clientHello.random, hs.hello.random, hs.suite.macLen, hs.suite.keyLen, hs.suite.ivLen)
var clientCipher, serverCipher interface{}
var clientHash, serverHash macFunction
if hs.suite.aead == nil {
clientCipher = hs.suite.cipher(clientKey, clientIV, true /* for reading */)
clientHash = hs.suite.mac(c.vers, clientMAC)
serverCipher = hs.suite.cipher(serverKey, serverIV, false /* not for reading */)
serverHash = hs.suite.mac(c.vers, serverMAC)
} else {
clientCipher = hs.suite.aead(clientKey, clientIV)
serverCipher = hs.suite.aead(serverKey, serverIV)
}
c.in.prepareCipherSpec(c.vers, clientCipher, clientHash)
c.out.prepareCipherSpec(c.vers, serverCipher, serverHash)
return nil
}
func (hs *serverHandshakeState) readFinished(out []byte) error {
c := hs.c
if err := c.readChangeCipherSpec(); err != nil {
return err
}
if hs.hello.nextProtoNeg {
msg, err := c.readHandshake()
if err != nil {
return err
}
nextProto, ok := msg.(*nextProtoMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(nextProto, msg)
}
hs.finishedHash.Write(nextProto.marshal())
c.clientProtocol = nextProto.proto
}
msg, err := c.readHandshake()
if err != nil {
return err
}
clientFinished, ok := msg.(*finishedMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(clientFinished, msg)
}
verify := hs.finishedHash.clientSum(hs.masterSecret)
if len(verify) != len(clientFinished.verifyData) ||
subtle.ConstantTimeCompare(verify, clientFinished.verifyData) != 1 {
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: client's Finished message is incorrect")
}
hs.finishedHash.Write(clientFinished.marshal())
copy(out, verify)
return nil
}
func (hs *serverHandshakeState) sendSessionTicket() error {
if !hs.hello.ticketSupported {
return nil
}
c := hs.c
m := new(newSessionTicketMsg)
var certsFromClient [][]byte
for _, cert := range c.peerCertificates {
certsFromClient = append(certsFromClient, cert.Raw)
}
state := sessionState{
vers: c.vers,
cipherSuite: hs.suite.id,
masterSecret: hs.masterSecret,
certificates: certsFromClient,
}
var err error
m.ticket, err = c.encryptTicket(state.marshal())
if err != nil {
return err
}
hs.finishedHash.Write(m.marshal())
if _, err := c.writeRecord(recordTypeHandshake, m.marshal()); err != nil {
return err
}
return nil
}
func (hs *serverHandshakeState) sendFinished(out []byte) error {
c := hs.c
if _, err := c.writeRecord(recordTypeChangeCipherSpec, []byte{1}); err != nil {
return err
}
finished := new(finishedMsg)
finished.verifyData = hs.finishedHash.serverSum(hs.masterSecret)
hs.finishedHash.Write(finished.marshal())
if _, err := c.writeRecord(recordTypeHandshake, finished.marshal()); err != nil {
return err
}
c.cipherSuite = hs.suite.id
copy(out, finished.verifyData)
return nil
}
// processCertsFromClient takes a chain of client certificates either from a
// Certificates message or from a sessionState and verifies them. It returns
// the public key of the leaf certificate.
func (c *Conn) processCertsFromClient(certificate Certificate) error {
certificates := certificate.Certificate
certs := make([]*x509.Certificate, len(certificates))
var err error
for i, asn1Data := range certificates {
if certs[i], err = x509.ParseCertificate(asn1Data); err != nil {
c.sendAlert(alertBadCertificate)
return errors.New("tls: failed to parse client certificate: " + err.Error())
}
}
if len(certs) == 0 && requiresClientCert(c.config.ClientAuth) {
c.sendAlert(alertBadCertificate)
return errors.New("tls: client didn't provide a certificate")
}
if c.config.ClientAuth >= VerifyClientCertIfGiven && len(certs) > 0 {
opts := x509.VerifyOptions{
Roots: c.config.ClientCAs,
CurrentTime: c.config.time(),
Intermediates: x509.NewCertPool(),
KeyUsages: []x509.ExtKeyUsage{x509.ExtKeyUsageClientAuth},
}
for _, cert := range certs[1:] {
opts.Intermediates.AddCert(cert)
}
chains, err := certs[0].Verify(opts)
if err != nil {
c.sendAlert(alertBadCertificate)
return errors.New("tls: failed to verify client's certificate: " + err.Error())
}
c.verifiedChains = chains
}
if c.config.VerifyPeerCertificate != nil {
if err := c.config.VerifyPeerCertificate(certificates, c.verifiedChains); err != nil {
c.sendAlert(alertBadCertificate)
return err
}
}
if len(certs) == 0 {
return nil
}
switch certs[0].PublicKey.(type) {
case *ecdsa.PublicKey, *rsa.PublicKey:
default:
c.sendAlert(alertUnsupportedCertificate)
return fmt.Errorf("tls: client's certificate contains an unsupported public key of type %T", certs[0].PublicKey)
}
c.peerCertificates = certs
c.ocspResponse = certificate.OCSPStaple
c.scts = certificate.SignedCertificateTimestamps
return nil
}
// setCipherSuite sets a cipherSuite with the given id as the serverHandshakeState
// suite if that cipher suite is acceptable to use.
// It returns a bool indicating if the suite was set.
func (hs *serverHandshakeState) setCipherSuite(id uint16, supportedCipherSuites []uint16, version uint16) bool {
for _, supported := range supportedCipherSuites {
if id == supported {
candidate := cipherSuiteByID(id)
if candidate == nil {
continue
}
// Don't select a ciphersuite which we can't
// support for this client.
if candidate.flags&suiteECDHE != 0 {
if !hs.ellipticOk {
continue
}
if candidate.flags&suiteECDSA != 0 {
if !hs.ecdsaOk {
continue
}
} else if !hs.rsaSignOk {
continue
}
} else if !hs.rsaDecryptOk {
continue
}
if version < VersionTLS12 && candidate.flags&suiteTLS12 != 0 {
continue
}
hs.suite = candidate
return true
}
}
return false
}
func clientHelloInfo(c *Conn, clientHello *clientHelloMsg) *ClientHelloInfo {
supportedVersions := clientHello.supportedVersions
if len(clientHello.supportedVersions) == 0 {
supportedVersions = supportedVersionsFromMax(clientHello.vers)
}
return &ClientHelloInfo{
CipherSuites: clientHello.cipherSuites,
ServerName: clientHello.serverName,
SupportedCurves: clientHello.supportedCurves,
SupportedPoints: clientHello.supportedPoints,
SignatureSchemes: clientHello.supportedSignatureAlgorithms,
SupportedProtos: clientHello.alpnProtocols,
SupportedVersions: supportedVersions,
Conn: c.conn,
}
}

View file

@ -1,867 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package qtls
import (
"bytes"
"crypto"
"crypto/hmac"
"crypto/rsa"
"errors"
"hash"
"io"
"sync/atomic"
"time"
)
// maxClientPSKIdentities is the number of client PSK identities the server will
// attempt to validate. It will ignore the rest not to let cheap ClientHello
// messages cause too much work in session ticket decryption attempts.
const maxClientPSKIdentities = 5
type serverHandshakeStateTLS13 struct {
c *Conn
clientHello *clientHelloMsg
hello *serverHelloMsg
sentDummyCCS bool
usingPSK bool
suite *cipherSuiteTLS13
cert *Certificate
sigAlg SignatureScheme
earlySecret []byte
sharedKey []byte
handshakeSecret []byte
masterSecret []byte
trafficSecret []byte // client_application_traffic_secret_0
transcript hash.Hash
clientFinished []byte
}
func (hs *serverHandshakeStateTLS13) handshake() error {
c := hs.c
// For an overview of the TLS 1.3 handshake, see RFC 8446, Section 2.
if err := hs.processClientHello(); err != nil {
return err
}
if err := hs.checkForResumption(); err != nil {
return err
}
if err := hs.pickCertificate(); err != nil {
return err
}
c.buffering = true
if err := hs.sendServerParameters(); err != nil {
return err
}
if err := hs.sendServerCertificate(); err != nil {
return err
}
if err := hs.sendServerFinished(); err != nil {
return err
}
// Note that at this point we could start sending application data without
// waiting for the client's second flight, but the application might not
// expect the lack of replay protection of the ClientHello parameters.
if _, err := c.flush(); err != nil {
return err
}
if err := hs.readClientCertificate(); err != nil {
return err
}
if err := hs.readClientFinished(); err != nil {
return err
}
atomic.StoreUint32(&c.handshakeStatus, 1)
return nil
}
func (hs *serverHandshakeStateTLS13) processClientHello() error {
c := hs.c
hs.hello = new(serverHelloMsg)
// TLS 1.3 froze the ServerHello.legacy_version field, and uses
// supported_versions instead. See RFC 8446, sections 4.1.3 and 4.2.1.
hs.hello.vers = VersionTLS12
hs.hello.supportedVersion = c.vers
if len(hs.clientHello.supportedVersions) == 0 {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: client used the legacy version field to negotiate TLS 1.3")
}
// Abort if the client is doing a fallback and landing lower than what we
// support. See RFC 7507, which however does not specify the interaction
// with supported_versions. The only difference is that with
// supported_versions a client has a chance to attempt a [TLS 1.2, TLS 1.4]
// handshake in case TLS 1.3 is broken but 1.2 is not. Alas, in that case,
// it will have to drop the TLS_FALLBACK_SCSV protection if it falls back to
// TLS 1.2, because a TLS 1.3 server would abort here. The situation before
// supported_versions was not better because there was just no way to do a
// TLS 1.4 handshake without risking the server selecting TLS 1.3.
for _, id := range hs.clientHello.cipherSuites {
if id == TLS_FALLBACK_SCSV {
// Use c.vers instead of max(supported_versions) because an attacker
// could defeat this by adding an arbitrary high version otherwise.
if c.vers < c.config.maxSupportedVersion(false) {
c.sendAlert(alertInappropriateFallback)
return errors.New("tls: client using inappropriate protocol fallback")
}
break
}
}
if len(hs.clientHello.compressionMethods) != 1 ||
hs.clientHello.compressionMethods[0] != compressionNone {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: TLS 1.3 client supports illegal compression methods")
}
hs.hello.random = make([]byte, 32)
if _, err := io.ReadFull(c.config.rand(), hs.hello.random); err != nil {
c.sendAlert(alertInternalError)
return err
}
if len(hs.clientHello.secureRenegotiation) != 0 {
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: initial handshake had non-empty renegotiation extension")
}
if hs.clientHello.earlyData {
// See RFC 8446, Section 4.2.10 for the complicated behavior required
// here. The scenario is that a different server at our address offered
// to accept early data in the past, which we can't handle. For now, all
// 0-RTT enabled session tickets need to expire before a Go server can
// replace a server or join a pool. That's the same requirement that
// applies to mixing or replacing with any TLS 1.2 server.
c.sendAlert(alertUnsupportedExtension)
return errors.New("tls: client sent unexpected early data")
}
hs.hello.sessionId = hs.clientHello.sessionId
hs.hello.compressionMethod = compressionNone
var preferenceList, supportedList []uint16
if c.config.PreferServerCipherSuites {
preferenceList = defaultCipherSuitesTLS13()
supportedList = hs.clientHello.cipherSuites
} else {
preferenceList = hs.clientHello.cipherSuites
supportedList = defaultCipherSuitesTLS13()
}
for _, suiteID := range preferenceList {
hs.suite = mutualCipherSuiteTLS13(supportedList, suiteID)
if hs.suite != nil {
break
}
}
if hs.suite == nil {
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: no cipher suite supported by both client and server")
}
c.cipherSuite = hs.suite.id
hs.hello.cipherSuite = hs.suite.id
hs.transcript = hs.suite.hash.New()
// Pick the ECDHE group in server preference order, but give priority to
// groups with a key share, to avoid a HelloRetryRequest round-trip.
var selectedGroup CurveID
var clientKeyShare *keyShare
GroupSelection:
for _, preferredGroup := range c.config.curvePreferences() {
for _, ks := range hs.clientHello.keyShares {
if ks.group == preferredGroup {
selectedGroup = ks.group
clientKeyShare = &ks
break GroupSelection
}
}
if selectedGroup != 0 {
continue
}
for _, group := range hs.clientHello.supportedCurves {
if group == preferredGroup {
selectedGroup = group
break
}
}
}
if selectedGroup == 0 {
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: no ECDHE curve supported by both client and server")
}
if clientKeyShare == nil {
if err := hs.doHelloRetryRequest(selectedGroup); err != nil {
return err
}
clientKeyShare = &hs.clientHello.keyShares[0]
}
if _, ok := curveForCurveID(selectedGroup); selectedGroup != X25519 && !ok {
c.sendAlert(alertInternalError)
return errors.New("tls: CurvePreferences includes unsupported curve")
}
params, err := generateECDHEParameters(c.config.rand(), selectedGroup)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
hs.hello.serverShare = keyShare{group: selectedGroup, data: params.PublicKey()}
hs.sharedKey = params.SharedKey(clientKeyShare.data)
if hs.sharedKey == nil {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: invalid client key share")
}
c.serverName = hs.clientHello.serverName
return nil
}
func (hs *serverHandshakeStateTLS13) checkForResumption() error {
c := hs.c
if c.config.SessionTicketsDisabled {
return nil
}
modeOK := false
for _, mode := range hs.clientHello.pskModes {
if mode == pskModeDHE {
modeOK = true
break
}
}
if !modeOK {
return nil
}
if len(hs.clientHello.pskIdentities) != len(hs.clientHello.pskBinders) {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: invalid or missing PSK binders")
}
if len(hs.clientHello.pskIdentities) == 0 {
return nil
}
for i, identity := range hs.clientHello.pskIdentities {
if i >= maxClientPSKIdentities {
break
}
plaintext, _ := c.decryptTicket(identity.label)
if plaintext == nil {
continue
}
sessionState := new(sessionStateTLS13)
if ok := sessionState.unmarshal(plaintext); !ok {
continue
}
createdAt := time.Unix(int64(sessionState.createdAt), 0)
if c.config.time().Sub(createdAt) > maxSessionTicketLifetime {
continue
}
// We don't check the obfuscated ticket age because it's affected by
// clock skew and it's only a freshness signal useful for shrinking the
// window for replay attacks, which don't affect us as we don't do 0-RTT.
pskSuite := cipherSuiteTLS13ByID(sessionState.cipherSuite)
if pskSuite == nil || pskSuite.hash != hs.suite.hash {
continue
}
// PSK connections don't re-establish client certificates, but carry
// them over in the session ticket. Ensure the presence of client certs
// in the ticket is consistent with the configured requirements.
sessionHasClientCerts := len(sessionState.certificate.Certificate) != 0
needClientCerts := requiresClientCert(c.config.ClientAuth)
if needClientCerts && !sessionHasClientCerts {
continue
}
if sessionHasClientCerts && c.config.ClientAuth == NoClientCert {
continue
}
psk := hs.suite.expandLabel(sessionState.resumptionSecret, "resumption",
nil, hs.suite.hash.Size())
hs.earlySecret = hs.suite.extract(psk, nil)
binderKey := hs.suite.deriveSecret(hs.earlySecret, resumptionBinderLabel, nil)
// Clone the transcript in case a HelloRetryRequest was recorded.
transcript := cloneHash(hs.transcript, hs.suite.hash)
if transcript == nil {
c.sendAlert(alertInternalError)
return errors.New("tls: internal error: failed to clone hash")
}
transcript.Write(hs.clientHello.marshalWithoutBinders())
pskBinder := hs.suite.finishedHash(binderKey, transcript)
if !hmac.Equal(hs.clientHello.pskBinders[i], pskBinder) {
c.sendAlert(alertDecryptError)
return errors.New("tls: invalid PSK binder")
}
if err := c.processCertsFromClient(sessionState.certificate); err != nil {
return err
}
hs.hello.selectedIdentityPresent = true
hs.hello.selectedIdentity = uint16(i)
hs.usingPSK = true
c.didResume = true
return nil
}
return nil
}
// cloneHash uses the encoding.BinaryMarshaler and encoding.BinaryUnmarshaler
// interfaces implemented by standard library hashes to clone the state of in
// to a new instance of h. It returns nil if the operation fails.
func cloneHash(in hash.Hash, h crypto.Hash) hash.Hash {
// Recreate the interface to avoid importing encoding.
type binaryMarshaler interface {
MarshalBinary() (data []byte, err error)
UnmarshalBinary(data []byte) error
}
marshaler, ok := in.(binaryMarshaler)
if !ok {
return nil
}
state, err := marshaler.MarshalBinary()
if err != nil {
return nil
}
out := h.New()
unmarshaler, ok := out.(binaryMarshaler)
if !ok {
return nil
}
if err := unmarshaler.UnmarshalBinary(state); err != nil {
return nil
}
return out
}
func (hs *serverHandshakeStateTLS13) pickCertificate() error {
c := hs.c
// Only one of PSK and certificates are used at a time.
if hs.usingPSK {
return nil
}
// This implements a very simplistic certificate selection strategy for now:
// getCertificate delegates to the application Config.GetCertificate, or
// selects based on the server_name only. If the selected certificate's
// public key does not match the client signature_algorithms, the handshake
// is aborted. No attention is given to signature_algorithms_cert, and it is
// not passed to the application Config.GetCertificate. This will need to
// improve according to RFC 8446, sections 4.4.2.2 and 4.2.3.
certificate, err := c.config.getCertificate(clientHelloInfo(c, hs.clientHello))
if err != nil {
c.sendAlert(alertInternalError)
return err
}
supportedAlgs := signatureSchemesForCertificate(c.vers, certificate)
if supportedAlgs == nil {
c.sendAlert(alertInternalError)
return unsupportedCertificateError(certificate)
}
// Pick signature scheme in client preference order, as the server
// preference order is not configurable.
for _, preferredAlg := range hs.clientHello.supportedSignatureAlgorithms {
if isSupportedSignatureAlgorithm(preferredAlg, supportedAlgs) {
hs.sigAlg = preferredAlg
break
}
}
if hs.sigAlg == 0 {
// getCertificate returned a certificate incompatible with the
// ClientHello supported signature algorithms.
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: client doesn't support selected certificate")
}
hs.cert = certificate
return nil
}
// sendDummyChangeCipherSpec sends a ChangeCipherSpec record for compatibility
// with middleboxes that didn't implement TLS correctly. See RFC 8446, Appendix D.4.
func (hs *serverHandshakeStateTLS13) sendDummyChangeCipherSpec() error {
if hs.sentDummyCCS {
return nil
}
hs.sentDummyCCS = true
_, err := hs.c.writeRecord(recordTypeChangeCipherSpec, []byte{1})
return err
}
func (hs *serverHandshakeStateTLS13) doHelloRetryRequest(selectedGroup CurveID) error {
c := hs.c
// The first ClientHello gets double-hashed into the transcript upon a
// HelloRetryRequest. See RFC 8446, Section 4.4.1.
hs.transcript.Write(hs.clientHello.marshal())
chHash := hs.transcript.Sum(nil)
hs.transcript.Reset()
hs.transcript.Write([]byte{typeMessageHash, 0, 0, uint8(len(chHash))})
hs.transcript.Write(chHash)
helloRetryRequest := &serverHelloMsg{
vers: hs.hello.vers,
random: helloRetryRequestRandom,
sessionId: hs.hello.sessionId,
cipherSuite: hs.hello.cipherSuite,
compressionMethod: hs.hello.compressionMethod,
supportedVersion: hs.hello.supportedVersion,
selectedGroup: selectedGroup,
}
hs.transcript.Write(helloRetryRequest.marshal())
if _, err := c.writeRecord(recordTypeHandshake, helloRetryRequest.marshal()); err != nil {
return err
}
if err := hs.sendDummyChangeCipherSpec(); err != nil {
return err
}
msg, err := c.readHandshake()
if err != nil {
return err
}
clientHello, ok := msg.(*clientHelloMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(clientHello, msg)
}
if len(clientHello.keyShares) != 1 || clientHello.keyShares[0].group != selectedGroup {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: client sent invalid key share in second ClientHello")
}
if clientHello.earlyData {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: client indicated early data in second ClientHello")
}
if illegalClientHelloChange(clientHello, hs.clientHello) {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: client illegally modified second ClientHello")
}
hs.clientHello = clientHello
return nil
}
// illegalClientHelloChange reports whether the two ClientHello messages are
// different, with the exception of the changes allowed before and after a
// HelloRetryRequest. See RFC 8446, Section 4.1.2.
func illegalClientHelloChange(ch, ch1 *clientHelloMsg) bool {
if len(ch.supportedVersions) != len(ch1.supportedVersions) ||
len(ch.cipherSuites) != len(ch1.cipherSuites) ||
len(ch.supportedCurves) != len(ch1.supportedCurves) ||
len(ch.supportedSignatureAlgorithms) != len(ch1.supportedSignatureAlgorithms) ||
len(ch.supportedSignatureAlgorithmsCert) != len(ch1.supportedSignatureAlgorithmsCert) ||
len(ch.alpnProtocols) != len(ch1.alpnProtocols) {
return true
}
for i := range ch.supportedVersions {
if ch.supportedVersions[i] != ch1.supportedVersions[i] {
return true
}
}
for i := range ch.cipherSuites {
if ch.cipherSuites[i] != ch1.cipherSuites[i] {
return true
}
}
for i := range ch.supportedCurves {
if ch.supportedCurves[i] != ch1.supportedCurves[i] {
return true
}
}
for i := range ch.supportedSignatureAlgorithms {
if ch.supportedSignatureAlgorithms[i] != ch1.supportedSignatureAlgorithms[i] {
return true
}
}
for i := range ch.supportedSignatureAlgorithmsCert {
if ch.supportedSignatureAlgorithmsCert[i] != ch1.supportedSignatureAlgorithmsCert[i] {
return true
}
}
for i := range ch.alpnProtocols {
if ch.alpnProtocols[i] != ch1.alpnProtocols[i] {
return true
}
}
return ch.vers != ch1.vers ||
!bytes.Equal(ch.random, ch1.random) ||
!bytes.Equal(ch.sessionId, ch1.sessionId) ||
!bytes.Equal(ch.compressionMethods, ch1.compressionMethods) ||
ch.nextProtoNeg != ch1.nextProtoNeg ||
ch.serverName != ch1.serverName ||
ch.ocspStapling != ch1.ocspStapling ||
!bytes.Equal(ch.supportedPoints, ch1.supportedPoints) ||
ch.ticketSupported != ch1.ticketSupported ||
!bytes.Equal(ch.sessionTicket, ch1.sessionTicket) ||
ch.secureRenegotiationSupported != ch1.secureRenegotiationSupported ||
!bytes.Equal(ch.secureRenegotiation, ch1.secureRenegotiation) ||
ch.scts != ch1.scts ||
!bytes.Equal(ch.cookie, ch1.cookie) ||
!bytes.Equal(ch.pskModes, ch1.pskModes)
}
func (hs *serverHandshakeStateTLS13) sendServerParameters() error {
c := hs.c
hs.transcript.Write(hs.clientHello.marshal())
hs.transcript.Write(hs.hello.marshal())
if _, err := c.writeRecord(recordTypeHandshake, hs.hello.marshal()); err != nil {
return err
}
if err := hs.sendDummyChangeCipherSpec(); err != nil {
return err
}
earlySecret := hs.earlySecret
if earlySecret == nil {
earlySecret = hs.suite.extract(nil, nil)
}
hs.handshakeSecret = hs.suite.extract(hs.sharedKey,
hs.suite.deriveSecret(earlySecret, "derived", nil))
clientSecret := hs.suite.deriveSecret(hs.handshakeSecret,
clientHandshakeTrafficLabel, hs.transcript)
c.in.exportKey(hs.suite, clientSecret)
c.in.setTrafficSecret(hs.suite, clientSecret)
serverSecret := hs.suite.deriveSecret(hs.handshakeSecret,
serverHandshakeTrafficLabel, hs.transcript)
c.out.exportKey(hs.suite, serverSecret)
c.out.setTrafficSecret(hs.suite, serverSecret)
err := c.config.writeKeyLog(keyLogLabelClientHandshake, hs.clientHello.random, clientSecret)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
err = c.config.writeKeyLog(keyLogLabelServerHandshake, hs.clientHello.random, serverSecret)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
encryptedExtensions := new(encryptedExtensionsMsg)
if len(hs.clientHello.alpnProtocols) > 0 {
if selectedProto, fallback := mutualProtocol(hs.clientHello.alpnProtocols, c.config.NextProtos); !fallback {
encryptedExtensions.alpnProtocol = selectedProto
c.clientProtocol = selectedProto
}
}
if hs.c.config.GetExtensions != nil {
encryptedExtensions.additionalExtensions = hs.c.config.GetExtensions(typeEncryptedExtensions)
}
hs.transcript.Write(encryptedExtensions.marshal())
if _, err := c.writeRecord(recordTypeHandshake, encryptedExtensions.marshal()); err != nil {
return err
}
return nil
}
func (hs *serverHandshakeStateTLS13) requestClientCert() bool {
return hs.c.config.ClientAuth >= RequestClientCert && !hs.usingPSK
}
func (hs *serverHandshakeStateTLS13) sendServerCertificate() error {
c := hs.c
// Only one of PSK and certificates are used at a time.
if hs.usingPSK {
return nil
}
if hs.requestClientCert() {
// Request a client certificate
certReq := new(certificateRequestMsgTLS13)
certReq.ocspStapling = true
certReq.scts = true
certReq.supportedSignatureAlgorithms = supportedSignatureAlgorithms
if c.config.ClientCAs != nil {
certReq.certificateAuthorities = c.config.ClientCAs.Subjects()
}
hs.transcript.Write(certReq.marshal())
if _, err := c.writeRecord(recordTypeHandshake, certReq.marshal()); err != nil {
return err
}
}
certMsg := new(certificateMsgTLS13)
certMsg.certificate = *hs.cert
certMsg.scts = hs.clientHello.scts && len(hs.cert.SignedCertificateTimestamps) > 0
certMsg.ocspStapling = hs.clientHello.ocspStapling && len(hs.cert.OCSPStaple) > 0
hs.transcript.Write(certMsg.marshal())
if _, err := c.writeRecord(recordTypeHandshake, certMsg.marshal()); err != nil {
return err
}
certVerifyMsg := new(certificateVerifyMsg)
certVerifyMsg.hasSignatureAlgorithm = true
certVerifyMsg.signatureAlgorithm = hs.sigAlg
sigType := signatureFromSignatureScheme(hs.sigAlg)
sigHash, err := hashFromSignatureScheme(hs.sigAlg)
if sigType == 0 || err != nil {
return c.sendAlert(alertInternalError)
}
h := sigHash.New()
writeSignedMessage(h, serverSignatureContext, hs.transcript)
signOpts := crypto.SignerOpts(sigHash)
if sigType == signatureRSAPSS {
signOpts = &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash, Hash: sigHash}
}
sig, err := hs.cert.PrivateKey.(crypto.Signer).Sign(c.config.rand(), h.Sum(nil), signOpts)
if err != nil {
public := hs.cert.PrivateKey.(crypto.Signer).Public()
if rsaKey, ok := public.(*rsa.PublicKey); ok && sigType == signatureRSAPSS &&
rsaKey.N.BitLen()/8 < sigHash.Size()*2+2 { // key too small for RSA-PSS
c.sendAlert(alertHandshakeFailure)
} else {
c.sendAlert(alertInternalError)
}
return errors.New("tls: failed to sign handshake: " + err.Error())
}
certVerifyMsg.signature = sig
hs.transcript.Write(certVerifyMsg.marshal())
if _, err := c.writeRecord(recordTypeHandshake, certVerifyMsg.marshal()); err != nil {
return err
}
return nil
}
func (hs *serverHandshakeStateTLS13) sendServerFinished() error {
c := hs.c
finished := &finishedMsg{
verifyData: hs.suite.finishedHash(c.out.trafficSecret, hs.transcript),
}
hs.transcript.Write(finished.marshal())
if _, err := c.writeRecord(recordTypeHandshake, finished.marshal()); err != nil {
return err
}
// Derive secrets that take context through the server Finished.
hs.masterSecret = hs.suite.extract(nil,
hs.suite.deriveSecret(hs.handshakeSecret, "derived", nil))
hs.trafficSecret = hs.suite.deriveSecret(hs.masterSecret,
clientApplicationTrafficLabel, hs.transcript)
serverSecret := hs.suite.deriveSecret(hs.masterSecret,
serverApplicationTrafficLabel, hs.transcript)
c.out.exportKey(hs.suite, serverSecret)
c.out.setTrafficSecret(hs.suite, serverSecret)
err := c.config.writeKeyLog(keyLogLabelClientTraffic, hs.clientHello.random, hs.trafficSecret)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
err = c.config.writeKeyLog(keyLogLabelServerTraffic, hs.clientHello.random, serverSecret)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
c.ekm = hs.suite.exportKeyingMaterial(hs.masterSecret, hs.transcript)
// If we did not request client certificates, at this point we can
// precompute the client finished and roll the transcript forward to send
// session tickets in our first flight.
if !hs.requestClientCert() {
if err := hs.sendSessionTickets(); err != nil {
return err
}
}
return nil
}
func (hs *serverHandshakeStateTLS13) shouldSendSessionTickets() bool {
if hs.c.config.SessionTicketsDisabled {
return false
}
// Don't send tickets the client wouldn't use. See RFC 8446, Section 4.2.9.
for _, pskMode := range hs.clientHello.pskModes {
if pskMode == pskModeDHE {
return true
}
}
return false
}
func (hs *serverHandshakeStateTLS13) sendSessionTickets() error {
c := hs.c
hs.clientFinished = hs.suite.finishedHash(c.in.trafficSecret, hs.transcript)
finishedMsg := &finishedMsg{
verifyData: hs.clientFinished,
}
hs.transcript.Write(finishedMsg.marshal())
if !hs.shouldSendSessionTickets() {
return nil
}
resumptionSecret := hs.suite.deriveSecret(hs.masterSecret,
resumptionLabel, hs.transcript)
m := new(newSessionTicketMsgTLS13)
var certsFromClient [][]byte
for _, cert := range c.peerCertificates {
certsFromClient = append(certsFromClient, cert.Raw)
}
state := sessionStateTLS13{
cipherSuite: hs.suite.id,
createdAt: uint64(c.config.time().Unix()),
resumptionSecret: resumptionSecret,
certificate: Certificate{
Certificate: certsFromClient,
OCSPStaple: c.ocspResponse,
SignedCertificateTimestamps: c.scts,
},
}
var err error
m.label, err = c.encryptTicket(state.marshal())
if err != nil {
return err
}
m.lifetime = uint32(maxSessionTicketLifetime / time.Second)
if _, err := c.writeRecord(recordTypeHandshake, m.marshal()); err != nil {
return err
}
return nil
}
func (hs *serverHandshakeStateTLS13) readClientCertificate() error {
c := hs.c
if !hs.requestClientCert() {
return nil
}
// If we requested a client certificate, then the client must send a
// certificate message. If it's empty, no CertificateVerify is sent.
msg, err := c.readHandshake()
if err != nil {
return err
}
certMsg, ok := msg.(*certificateMsgTLS13)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(certMsg, msg)
}
hs.transcript.Write(certMsg.marshal())
if err := c.processCertsFromClient(certMsg.certificate); err != nil {
return err
}
if len(certMsg.certificate.Certificate) != 0 {
msg, err = c.readHandshake()
if err != nil {
return err
}
certVerify, ok := msg.(*certificateVerifyMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(certVerify, msg)
}
// See RFC 8446, Section 4.4.3.
if !isSupportedSignatureAlgorithm(certVerify.signatureAlgorithm, supportedSignatureAlgorithms) {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: invalid certificate signature algorithm")
}
sigType := signatureFromSignatureScheme(certVerify.signatureAlgorithm)
sigHash, err := hashFromSignatureScheme(certVerify.signatureAlgorithm)
if sigType == 0 || err != nil {
c.sendAlert(alertInternalError)
return err
}
if sigType == signaturePKCS1v15 || sigHash == crypto.SHA1 {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: invalid certificate signature algorithm")
}
h := sigHash.New()
writeSignedMessage(h, clientSignatureContext, hs.transcript)
if err := verifyHandshakeSignature(sigType, c.peerCertificates[0].PublicKey,
sigHash, h.Sum(nil), certVerify.signature); err != nil {
c.sendAlert(alertDecryptError)
return errors.New("tls: invalid certificate signature")
}
hs.transcript.Write(certVerify.marshal())
}
// If we waited until the client certificates to send session tickets, we
// are ready to do it now.
if err := hs.sendSessionTickets(); err != nil {
return err
}
return nil
}
func (hs *serverHandshakeStateTLS13) readClientFinished() error {
c := hs.c
msg, err := c.readHandshake()
if err != nil {
return err
}
finished, ok := msg.(*finishedMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(finished, msg)
}
if !hmac.Equal(hs.clientFinished, finished.verifyData) {
c.sendAlert(alertDecryptError)
return errors.New("tls: invalid client finished hash")
}
c.in.exportKey(hs.suite, hs.trafficSecret)
c.in.setTrafficSecret(hs.suite, hs.trafficSecret)
return nil
}

View file

@ -1,313 +0,0 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package qtls
import (
"crypto"
"crypto/md5"
"crypto/rsa"
"crypto/sha1"
"crypto/x509"
"errors"
"io"
)
var errClientKeyExchange = errors.New("tls: invalid ClientKeyExchange message")
var errServerKeyExchange = errors.New("tls: invalid ServerKeyExchange message")
// rsaKeyAgreement implements the standard TLS key agreement where the client
// encrypts the pre-master secret to the server's public key.
type rsaKeyAgreement struct{}
func (ka rsaKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
return nil, nil
}
func (ka rsaKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
if len(ckx.ciphertext) < 2 {
return nil, errClientKeyExchange
}
ciphertext := ckx.ciphertext
if version != VersionSSL30 {
ciphertextLen := int(ckx.ciphertext[0])<<8 | int(ckx.ciphertext[1])
if ciphertextLen != len(ckx.ciphertext)-2 {
return nil, errClientKeyExchange
}
ciphertext = ckx.ciphertext[2:]
}
priv, ok := cert.PrivateKey.(crypto.Decrypter)
if !ok {
return nil, errors.New("tls: certificate private key does not implement crypto.Decrypter")
}
// Perform constant time RSA PKCS#1 v1.5 decryption
preMasterSecret, err := priv.Decrypt(config.rand(), ciphertext, &rsa.PKCS1v15DecryptOptions{SessionKeyLen: 48})
if err != nil {
return nil, err
}
// We don't check the version number in the premaster secret. For one,
// by checking it, we would leak information about the validity of the
// encrypted pre-master secret. Secondly, it provides only a small
// benefit against a downgrade attack and some implementations send the
// wrong version anyway. See the discussion at the end of section
// 7.4.7.1 of RFC 4346.
return preMasterSecret, nil
}
func (ka rsaKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
return errors.New("tls: unexpected ServerKeyExchange")
}
func (ka rsaKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
preMasterSecret := make([]byte, 48)
preMasterSecret[0] = byte(clientHello.vers >> 8)
preMasterSecret[1] = byte(clientHello.vers)
_, err := io.ReadFull(config.rand(), preMasterSecret[2:])
if err != nil {
return nil, nil, err
}
encrypted, err := rsa.EncryptPKCS1v15(config.rand(), cert.PublicKey.(*rsa.PublicKey), preMasterSecret)
if err != nil {
return nil, nil, err
}
ckx := new(clientKeyExchangeMsg)
ckx.ciphertext = make([]byte, len(encrypted)+2)
ckx.ciphertext[0] = byte(len(encrypted) >> 8)
ckx.ciphertext[1] = byte(len(encrypted))
copy(ckx.ciphertext[2:], encrypted)
return preMasterSecret, ckx, nil
}
// sha1Hash calculates a SHA1 hash over the given byte slices.
func sha1Hash(slices [][]byte) []byte {
hsha1 := sha1.New()
for _, slice := range slices {
hsha1.Write(slice)
}
return hsha1.Sum(nil)
}
// md5SHA1Hash implements TLS 1.0's hybrid hash function which consists of the
// concatenation of an MD5 and SHA1 hash.
func md5SHA1Hash(slices [][]byte) []byte {
md5sha1 := make([]byte, md5.Size+sha1.Size)
hmd5 := md5.New()
for _, slice := range slices {
hmd5.Write(slice)
}
copy(md5sha1, hmd5.Sum(nil))
copy(md5sha1[md5.Size:], sha1Hash(slices))
return md5sha1
}
// hashForServerKeyExchange hashes the given slices and returns their digest
// using the given hash function (for >= TLS 1.2) or using a default based on
// the sigType (for earlier TLS versions).
func hashForServerKeyExchange(sigType uint8, hashFunc crypto.Hash, version uint16, slices ...[]byte) ([]byte, error) {
if version >= VersionTLS12 {
h := hashFunc.New()
for _, slice := range slices {
h.Write(slice)
}
digest := h.Sum(nil)
return digest, nil
}
if sigType == signatureECDSA {
return sha1Hash(slices), nil
}
return md5SHA1Hash(slices), nil
}
// ecdheKeyAgreement implements a TLS key agreement where the server
// generates an ephemeral EC public/private key pair and signs it. The
// pre-master secret is then calculated using ECDH. The signature may
// either be ECDSA or RSA.
type ecdheKeyAgreement struct {
version uint16
isRSA bool
params ecdheParameters
// ckx and preMasterSecret are generated in processServerKeyExchange
// and returned in generateClientKeyExchange.
ckx *clientKeyExchangeMsg
preMasterSecret []byte
}
func (ka *ecdheKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
preferredCurves := config.curvePreferences()
var curveID CurveID
NextCandidate:
for _, candidate := range preferredCurves {
for _, c := range clientHello.supportedCurves {
if candidate == c {
curveID = c
break NextCandidate
}
}
}
if curveID == 0 {
return nil, errors.New("tls: no supported elliptic curves offered")
}
if _, ok := curveForCurveID(curveID); curveID != X25519 && !ok {
return nil, errors.New("tls: CurvePreferences includes unsupported curve")
}
params, err := generateECDHEParameters(config.rand(), curveID)
if err != nil {
return nil, err
}
ka.params = params
// See RFC 4492, Section 5.4.
ecdhePublic := params.PublicKey()
serverECDHParams := make([]byte, 1+2+1+len(ecdhePublic))
serverECDHParams[0] = 3 // named curve
serverECDHParams[1] = byte(curveID >> 8)
serverECDHParams[2] = byte(curveID)
serverECDHParams[3] = byte(len(ecdhePublic))
copy(serverECDHParams[4:], ecdhePublic)
priv, ok := cert.PrivateKey.(crypto.Signer)
if !ok {
return nil, errors.New("tls: certificate private key does not implement crypto.Signer")
}
signatureAlgorithm, sigType, hashFunc, err := pickSignatureAlgorithm(priv.Public(), clientHello.supportedSignatureAlgorithms, supportedSignatureAlgorithmsTLS12, ka.version)
if err != nil {
return nil, err
}
if (sigType == signaturePKCS1v15 || sigType == signatureRSAPSS) != ka.isRSA {
return nil, errors.New("tls: certificate cannot be used with the selected cipher suite")
}
digest, err := hashForServerKeyExchange(sigType, hashFunc, ka.version, clientHello.random, hello.random, serverECDHParams)
if err != nil {
return nil, err
}
signOpts := crypto.SignerOpts(hashFunc)
if sigType == signatureRSAPSS {
signOpts = &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash, Hash: hashFunc}
}
sig, err := priv.Sign(config.rand(), digest, signOpts)
if err != nil {
return nil, errors.New("tls: failed to sign ECDHE parameters: " + err.Error())
}
skx := new(serverKeyExchangeMsg)
sigAndHashLen := 0
if ka.version >= VersionTLS12 {
sigAndHashLen = 2
}
skx.key = make([]byte, len(serverECDHParams)+sigAndHashLen+2+len(sig))
copy(skx.key, serverECDHParams)
k := skx.key[len(serverECDHParams):]
if ka.version >= VersionTLS12 {
k[0] = byte(signatureAlgorithm >> 8)
k[1] = byte(signatureAlgorithm)
k = k[2:]
}
k[0] = byte(len(sig) >> 8)
k[1] = byte(len(sig))
copy(k[2:], sig)
return skx, nil
}
func (ka *ecdheKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
if len(ckx.ciphertext) == 0 || int(ckx.ciphertext[0]) != len(ckx.ciphertext)-1 {
return nil, errClientKeyExchange
}
preMasterSecret := ka.params.SharedKey(ckx.ciphertext[1:])
if preMasterSecret == nil {
return nil, errClientKeyExchange
}
return preMasterSecret, nil
}
func (ka *ecdheKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
if len(skx.key) < 4 {
return errServerKeyExchange
}
if skx.key[0] != 3 { // named curve
return errors.New("tls: server selected unsupported curve")
}
curveID := CurveID(skx.key[1])<<8 | CurveID(skx.key[2])
publicLen := int(skx.key[3])
if publicLen+4 > len(skx.key) {
return errServerKeyExchange
}
serverECDHParams := skx.key[:4+publicLen]
publicKey := serverECDHParams[4:]
sig := skx.key[4+publicLen:]
if len(sig) < 2 {
return errServerKeyExchange
}
if _, ok := curveForCurveID(curveID); curveID != X25519 && !ok {
return errors.New("tls: server selected unsupported curve")
}
params, err := generateECDHEParameters(config.rand(), curveID)
if err != nil {
return err
}
ka.params = params
ka.preMasterSecret = params.SharedKey(publicKey)
if ka.preMasterSecret == nil {
return errServerKeyExchange
}
ourPublicKey := params.PublicKey()
ka.ckx = new(clientKeyExchangeMsg)
ka.ckx.ciphertext = make([]byte, 1+len(ourPublicKey))
ka.ckx.ciphertext[0] = byte(len(ourPublicKey))
copy(ka.ckx.ciphertext[1:], ourPublicKey)
var signatureAlgorithm SignatureScheme
if ka.version >= VersionTLS12 {
// handle SignatureAndHashAlgorithm
signatureAlgorithm = SignatureScheme(sig[0])<<8 | SignatureScheme(sig[1])
sig = sig[2:]
if len(sig) < 2 {
return errServerKeyExchange
}
}
_, sigType, hashFunc, err := pickSignatureAlgorithm(cert.PublicKey, []SignatureScheme{signatureAlgorithm}, clientHello.supportedSignatureAlgorithms, ka.version)
if err != nil {
return err
}
if (sigType == signaturePKCS1v15 || sigType == signatureRSAPSS) != ka.isRSA {
return errServerKeyExchange
}
sigLen := int(sig[0])<<8 | int(sig[1])
if sigLen+2 != len(sig) {
return errServerKeyExchange
}
sig = sig[2:]
digest, err := hashForServerKeyExchange(sigType, hashFunc, ka.version, clientHello.random, serverHello.random, serverECDHParams)
if err != nil {
return err
}
return verifyHandshakeSignature(sigType, cert.PublicKey, hashFunc, digest, sig)
}
func (ka *ecdheKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
if ka.ckx == nil {
return nil, nil, errors.New("tls: missing ServerKeyExchange message")
}
return ka.preMasterSecret, ka.ckx, nil
}

View file

@ -1,216 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package qtls
import (
"crypto"
"crypto/elliptic"
"crypto/hmac"
"errors"
"hash"
"io"
"math/big"
"golang.org/x/crypto/cryptobyte"
"golang.org/x/crypto/curve25519"
"golang.org/x/crypto/hkdf"
)
// This file contains the functions necessary to compute the TLS 1.3 key
// schedule. See RFC 8446, Section 7.
const (
resumptionBinderLabel = "res binder"
clientHandshakeTrafficLabel = "c hs traffic"
serverHandshakeTrafficLabel = "s hs traffic"
clientApplicationTrafficLabel = "c ap traffic"
serverApplicationTrafficLabel = "s ap traffic"
exporterLabel = "exp master"
resumptionLabel = "res master"
trafficUpdateLabel = "traffic upd"
)
// HkdfExtract generates a pseudorandom key for use with Expand from an input secret and an optional independent salt.
func HkdfExtract(hash crypto.Hash, newSecret, currentSecret []byte) []byte {
if newSecret == nil {
newSecret = make([]byte, hash.Size())
}
return hkdf.Extract(hash.New, newSecret, currentSecret)
}
// HkdfExpandLabel HKDF expands a label
func HkdfExpandLabel(hash crypto.Hash, secret, hashValue []byte, label string, L int) []byte {
return hkdfExpandLabel(hash, secret, hashValue, label, L)
}
func hkdfExpandLabel(hash crypto.Hash, secret, context []byte, label string, length int) []byte {
var hkdfLabel cryptobyte.Builder
hkdfLabel.AddUint16(uint16(length))
hkdfLabel.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes([]byte("tls13 "))
b.AddBytes([]byte(label))
})
hkdfLabel.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(context)
})
out := make([]byte, length)
n, err := hkdf.Expand(hash.New, secret, hkdfLabel.BytesOrPanic()).Read(out)
if err != nil || n != length {
panic("tls: HKDF-Expand-Label invocation failed unexpectedly")
}
return out
}
// expandLabel implements HKDF-Expand-Label from RFC 8446, Section 7.1.
func (c *cipherSuiteTLS13) expandLabel(secret []byte, label string, context []byte, length int) []byte {
return hkdfExpandLabel(c.hash, secret, context, label, length)
}
// deriveSecret implements Derive-Secret from RFC 8446, Section 7.1.
func (c *cipherSuiteTLS13) deriveSecret(secret []byte, label string, transcript hash.Hash) []byte {
if transcript == nil {
transcript = c.hash.New()
}
return c.expandLabel(secret, label, transcript.Sum(nil), c.hash.Size())
}
// extract implements HKDF-Extract with the cipher suite hash.
func (c *cipherSuiteTLS13) extract(newSecret, currentSecret []byte) []byte {
return HkdfExtract(c.hash, newSecret, currentSecret)
}
// nextTrafficSecret generates the next traffic secret, given the current one,
// according to RFC 8446, Section 7.2.
func (c *cipherSuiteTLS13) nextTrafficSecret(trafficSecret []byte) []byte {
return c.expandLabel(trafficSecret, trafficUpdateLabel, nil, c.hash.Size())
}
// trafficKey generates traffic keys according to RFC 8446, Section 7.3.
func (c *cipherSuiteTLS13) trafficKey(trafficSecret []byte) (key, iv []byte) {
key = c.expandLabel(trafficSecret, "key", nil, c.keyLen)
iv = c.expandLabel(trafficSecret, "iv", nil, aeadNonceLength)
return
}
// finishedHash generates the Finished verify_data or PskBinderEntry according
// to RFC 8446, Section 4.4.4. See sections 4.4 and 4.2.11.2 for the baseKey
// selection.
func (c *cipherSuiteTLS13) finishedHash(baseKey []byte, transcript hash.Hash) []byte {
finishedKey := c.expandLabel(baseKey, "finished", nil, c.hash.Size())
verifyData := hmac.New(c.hash.New, finishedKey)
verifyData.Write(transcript.Sum(nil))
return verifyData.Sum(nil)
}
// exportKeyingMaterial implements RFC5705 exporters for TLS 1.3 according to
// RFC 8446, Section 7.5.
func (c *cipherSuiteTLS13) exportKeyingMaterial(masterSecret []byte, transcript hash.Hash) func(string, []byte, int) ([]byte, error) {
expMasterSecret := c.deriveSecret(masterSecret, exporterLabel, transcript)
return func(label string, context []byte, length int) ([]byte, error) {
secret := c.deriveSecret(expMasterSecret, label, nil)
h := c.hash.New()
h.Write(context)
return c.expandLabel(secret, "exporter", h.Sum(nil), length), nil
}
}
// ecdheParameters implements Diffie-Hellman with either NIST curves or X25519,
// according to RFC 8446, Section 4.2.8.2.
type ecdheParameters interface {
CurveID() CurveID
PublicKey() []byte
SharedKey(peerPublicKey []byte) []byte
}
func generateECDHEParameters(rand io.Reader, curveID CurveID) (ecdheParameters, error) {
if curveID == X25519 {
p := &x25519Parameters{}
if _, err := io.ReadFull(rand, p.privateKey[:]); err != nil {
return nil, err
}
curve25519.ScalarBaseMult(&p.publicKey, &p.privateKey)
return p, nil
}
curve, ok := curveForCurveID(curveID)
if !ok {
return nil, errors.New("tls: internal error: unsupported curve")
}
p := &nistParameters{curveID: curveID}
var err error
p.privateKey, p.x, p.y, err = elliptic.GenerateKey(curve, rand)
if err != nil {
return nil, err
}
return p, nil
}
func curveForCurveID(id CurveID) (elliptic.Curve, bool) {
switch id {
case CurveP256:
return elliptic.P256(), true
case CurveP384:
return elliptic.P384(), true
case CurveP521:
return elliptic.P521(), true
default:
return nil, false
}
}
type nistParameters struct {
privateKey []byte
x, y *big.Int // public key
curveID CurveID
}
func (p *nistParameters) CurveID() CurveID {
return p.curveID
}
func (p *nistParameters) PublicKey() []byte {
curve, _ := curveForCurveID(p.curveID)
return elliptic.Marshal(curve, p.x, p.y)
}
func (p *nistParameters) SharedKey(peerPublicKey []byte) []byte {
curve, _ := curveForCurveID(p.curveID)
// Unmarshal also checks whether the given point is on the curve.
x, y := elliptic.Unmarshal(curve, peerPublicKey)
if x == nil {
return nil
}
xShared, _ := curve.ScalarMult(x, y, p.privateKey)
sharedKey := make([]byte, (curve.Params().BitSize+7)>>3)
xBytes := xShared.Bytes()
copy(sharedKey[len(sharedKey)-len(xBytes):], xBytes)
return sharedKey
}
type x25519Parameters struct {
privateKey [32]byte
publicKey [32]byte
}
func (p *x25519Parameters) CurveID() CurveID {
return X25519
}
func (p *x25519Parameters) PublicKey() []byte {
return p.publicKey[:]
}
func (p *x25519Parameters) SharedKey(peerPublicKey []byte) []byte {
if len(peerPublicKey) != 32 {
return nil
}
var theirPublicKey, sharedKey [32]byte
copy(theirPublicKey[:], peerPublicKey)
curve25519.ScalarMult(&sharedKey, &p.privateKey, &theirPublicKey)
return sharedKey[:]
}

View file

@ -1,385 +0,0 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package qtls
import (
"crypto"
"crypto/hmac"
"crypto/md5"
"crypto/sha1"
"crypto/sha256"
"crypto/sha512"
"errors"
"fmt"
"hash"
)
// Split a premaster secret in two as specified in RFC 4346, Section 5.
func splitPreMasterSecret(secret []byte) (s1, s2 []byte) {
s1 = secret[0 : (len(secret)+1)/2]
s2 = secret[len(secret)/2:]
return
}
// pHash implements the P_hash function, as defined in RFC 4346, Section 5.
func pHash(result, secret, seed []byte, hash func() hash.Hash) {
h := hmac.New(hash, secret)
h.Write(seed)
a := h.Sum(nil)
j := 0
for j < len(result) {
h.Reset()
h.Write(a)
h.Write(seed)
b := h.Sum(nil)
copy(result[j:], b)
j += len(b)
h.Reset()
h.Write(a)
a = h.Sum(nil)
}
}
// prf10 implements the TLS 1.0 pseudo-random function, as defined in RFC 2246, Section 5.
func prf10(result, secret, label, seed []byte) {
hashSHA1 := sha1.New
hashMD5 := md5.New
labelAndSeed := make([]byte, len(label)+len(seed))
copy(labelAndSeed, label)
copy(labelAndSeed[len(label):], seed)
s1, s2 := splitPreMasterSecret(secret)
pHash(result, s1, labelAndSeed, hashMD5)
result2 := make([]byte, len(result))
pHash(result2, s2, labelAndSeed, hashSHA1)
for i, b := range result2 {
result[i] ^= b
}
}
// prf12 implements the TLS 1.2 pseudo-random function, as defined in RFC 5246, Section 5.
func prf12(hashFunc func() hash.Hash) func(result, secret, label, seed []byte) {
return func(result, secret, label, seed []byte) {
labelAndSeed := make([]byte, len(label)+len(seed))
copy(labelAndSeed, label)
copy(labelAndSeed[len(label):], seed)
pHash(result, secret, labelAndSeed, hashFunc)
}
}
// prf30 implements the SSL 3.0 pseudo-random function, as defined in
// www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt section 6.
func prf30(result, secret, label, seed []byte) {
hashSHA1 := sha1.New()
hashMD5 := md5.New()
done := 0
i := 0
// RFC 5246 section 6.3 says that the largest PRF output needed is 128
// bytes. Since no more ciphersuites will be added to SSLv3, this will
// remain true. Each iteration gives us 16 bytes so 10 iterations will
// be sufficient.
var b [11]byte
for done < len(result) {
for j := 0; j <= i; j++ {
b[j] = 'A' + byte(i)
}
hashSHA1.Reset()
hashSHA1.Write(b[:i+1])
hashSHA1.Write(secret)
hashSHA1.Write(seed)
digest := hashSHA1.Sum(nil)
hashMD5.Reset()
hashMD5.Write(secret)
hashMD5.Write(digest)
done += copy(result[done:], hashMD5.Sum(nil))
i++
}
}
const (
masterSecretLength = 48 // Length of a master secret in TLS 1.1.
finishedVerifyLength = 12 // Length of verify_data in a Finished message.
)
var masterSecretLabel = []byte("master secret")
var keyExpansionLabel = []byte("key expansion")
var clientFinishedLabel = []byte("client finished")
var serverFinishedLabel = []byte("server finished")
func prfAndHashForVersion(version uint16, suite *cipherSuite) (func(result, secret, label, seed []byte), crypto.Hash) {
switch version {
case VersionSSL30:
return prf30, crypto.Hash(0)
case VersionTLS10, VersionTLS11:
return prf10, crypto.Hash(0)
case VersionTLS12:
if suite.flags&suiteSHA384 != 0 {
return prf12(sha512.New384), crypto.SHA384
}
return prf12(sha256.New), crypto.SHA256
default:
panic("unknown version")
}
}
func prfForVersion(version uint16, suite *cipherSuite) func(result, secret, label, seed []byte) {
prf, _ := prfAndHashForVersion(version, suite)
return prf
}
// masterFromPreMasterSecret generates the master secret from the pre-master
// secret. See RFC 5246, Section 8.1.
func masterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret, clientRandom, serverRandom []byte) []byte {
seed := make([]byte, 0, len(clientRandom)+len(serverRandom))
seed = append(seed, clientRandom...)
seed = append(seed, serverRandom...)
masterSecret := make([]byte, masterSecretLength)
prfForVersion(version, suite)(masterSecret, preMasterSecret, masterSecretLabel, seed)
return masterSecret
}
// keysFromMasterSecret generates the connection keys from the master
// secret, given the lengths of the MAC key, cipher key and IV, as defined in
// RFC 2246, Section 6.3.
func keysFromMasterSecret(version uint16, suite *cipherSuite, masterSecret, clientRandom, serverRandom []byte, macLen, keyLen, ivLen int) (clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV []byte) {
seed := make([]byte, 0, len(serverRandom)+len(clientRandom))
seed = append(seed, serverRandom...)
seed = append(seed, clientRandom...)
n := 2*macLen + 2*keyLen + 2*ivLen
keyMaterial := make([]byte, n)
prfForVersion(version, suite)(keyMaterial, masterSecret, keyExpansionLabel, seed)
clientMAC = keyMaterial[:macLen]
keyMaterial = keyMaterial[macLen:]
serverMAC = keyMaterial[:macLen]
keyMaterial = keyMaterial[macLen:]
clientKey = keyMaterial[:keyLen]
keyMaterial = keyMaterial[keyLen:]
serverKey = keyMaterial[:keyLen]
keyMaterial = keyMaterial[keyLen:]
clientIV = keyMaterial[:ivLen]
keyMaterial = keyMaterial[ivLen:]
serverIV = keyMaterial[:ivLen]
return
}
// hashFromSignatureScheme returns the corresponding crypto.Hash for a given
// hash from a TLS SignatureScheme.
func hashFromSignatureScheme(signatureAlgorithm SignatureScheme) (crypto.Hash, error) {
switch signatureAlgorithm {
case PKCS1WithSHA1, ECDSAWithSHA1:
return crypto.SHA1, nil
case PKCS1WithSHA256, PSSWithSHA256, ECDSAWithP256AndSHA256:
return crypto.SHA256, nil
case PKCS1WithSHA384, PSSWithSHA384, ECDSAWithP384AndSHA384:
return crypto.SHA384, nil
case PKCS1WithSHA512, PSSWithSHA512, ECDSAWithP521AndSHA512:
return crypto.SHA512, nil
default:
return 0, fmt.Errorf("tls: unsupported signature algorithm: %#04x", signatureAlgorithm)
}
}
func newFinishedHash(version uint16, cipherSuite *cipherSuite) finishedHash {
var buffer []byte
if version == VersionSSL30 || version >= VersionTLS12 {
buffer = []byte{}
}
prf, hash := prfAndHashForVersion(version, cipherSuite)
if hash != 0 {
return finishedHash{hash.New(), hash.New(), nil, nil, buffer, version, prf}
}
return finishedHash{sha1.New(), sha1.New(), md5.New(), md5.New(), buffer, version, prf}
}
// A finishedHash calculates the hash of a set of handshake messages suitable
// for including in a Finished message.
type finishedHash struct {
client hash.Hash
server hash.Hash
// Prior to TLS 1.2, an additional MD5 hash is required.
clientMD5 hash.Hash
serverMD5 hash.Hash
// In TLS 1.2, a full buffer is sadly required.
buffer []byte
version uint16
prf func(result, secret, label, seed []byte)
}
func (h *finishedHash) Write(msg []byte) (n int, err error) {
h.client.Write(msg)
h.server.Write(msg)
if h.version < VersionTLS12 {
h.clientMD5.Write(msg)
h.serverMD5.Write(msg)
}
if h.buffer != nil {
h.buffer = append(h.buffer, msg...)
}
return len(msg), nil
}
func (h finishedHash) Sum() []byte {
if h.version >= VersionTLS12 {
return h.client.Sum(nil)
}
out := make([]byte, 0, md5.Size+sha1.Size)
out = h.clientMD5.Sum(out)
return h.client.Sum(out)
}
// finishedSum30 calculates the contents of the verify_data member of a SSLv3
// Finished message given the MD5 and SHA1 hashes of a set of handshake
// messages.
func finishedSum30(md5, sha1 hash.Hash, masterSecret []byte, magic []byte) []byte {
md5.Write(magic)
md5.Write(masterSecret)
md5.Write(ssl30Pad1[:])
md5Digest := md5.Sum(nil)
md5.Reset()
md5.Write(masterSecret)
md5.Write(ssl30Pad2[:])
md5.Write(md5Digest)
md5Digest = md5.Sum(nil)
sha1.Write(magic)
sha1.Write(masterSecret)
sha1.Write(ssl30Pad1[:40])
sha1Digest := sha1.Sum(nil)
sha1.Reset()
sha1.Write(masterSecret)
sha1.Write(ssl30Pad2[:40])
sha1.Write(sha1Digest)
sha1Digest = sha1.Sum(nil)
ret := make([]byte, len(md5Digest)+len(sha1Digest))
copy(ret, md5Digest)
copy(ret[len(md5Digest):], sha1Digest)
return ret
}
var ssl3ClientFinishedMagic = [4]byte{0x43, 0x4c, 0x4e, 0x54}
var ssl3ServerFinishedMagic = [4]byte{0x53, 0x52, 0x56, 0x52}
// clientSum returns the contents of the verify_data member of a client's
// Finished message.
func (h finishedHash) clientSum(masterSecret []byte) []byte {
if h.version == VersionSSL30 {
return finishedSum30(h.clientMD5, h.client, masterSecret, ssl3ClientFinishedMagic[:])
}
out := make([]byte, finishedVerifyLength)
h.prf(out, masterSecret, clientFinishedLabel, h.Sum())
return out
}
// serverSum returns the contents of the verify_data member of a server's
// Finished message.
func (h finishedHash) serverSum(masterSecret []byte) []byte {
if h.version == VersionSSL30 {
return finishedSum30(h.serverMD5, h.server, masterSecret, ssl3ServerFinishedMagic[:])
}
out := make([]byte, finishedVerifyLength)
h.prf(out, masterSecret, serverFinishedLabel, h.Sum())
return out
}
// hashForClientCertificate returns a digest over the handshake messages so far,
// suitable for signing by a TLS client certificate.
func (h finishedHash) hashForClientCertificate(sigType uint8, hashAlg crypto.Hash, masterSecret []byte) ([]byte, error) {
if (h.version == VersionSSL30 || h.version >= VersionTLS12) && h.buffer == nil {
panic("a handshake hash for a client-certificate was requested after discarding the handshake buffer")
}
if h.version == VersionSSL30 {
if sigType != signaturePKCS1v15 {
return nil, errors.New("tls: unsupported signature type for client certificate")
}
md5Hash := md5.New()
md5Hash.Write(h.buffer)
sha1Hash := sha1.New()
sha1Hash.Write(h.buffer)
return finishedSum30(md5Hash, sha1Hash, masterSecret, nil), nil
}
if h.version >= VersionTLS12 {
hash := hashAlg.New()
hash.Write(h.buffer)
return hash.Sum(nil), nil
}
if sigType == signatureECDSA {
return h.server.Sum(nil), nil
}
return h.Sum(), nil
}
// discardHandshakeBuffer is called when there is no more need to
// buffer the entirety of the handshake messages.
func (h *finishedHash) discardHandshakeBuffer() {
h.buffer = nil
}
// noExportedKeyingMaterial is used as a value of
// ConnectionState.ekm when renegotation is enabled and thus
// we wish to fail all key-material export requests.
func noExportedKeyingMaterial(label string, context []byte, length int) ([]byte, error) {
return nil, errors.New("crypto/tls: ExportKeyingMaterial is unavailable when renegotiation is enabled")
}
// ekmFromMasterSecret generates exported keying material as defined in RFC 5705.
func ekmFromMasterSecret(version uint16, suite *cipherSuite, masterSecret, clientRandom, serverRandom []byte) func(string, []byte, int) ([]byte, error) {
return func(label string, context []byte, length int) ([]byte, error) {
switch label {
case "client finished", "server finished", "master secret", "key expansion":
// These values are reserved and may not be used.
return nil, fmt.Errorf("crypto/tls: reserved ExportKeyingMaterial label: %s", label)
}
seedLen := len(serverRandom) + len(clientRandom)
if context != nil {
seedLen += 2 + len(context)
}
seed := make([]byte, 0, seedLen)
seed = append(seed, clientRandom...)
seed = append(seed, serverRandom...)
if context != nil {
if len(context) >= 1<<16 {
return nil, fmt.Errorf("crypto/tls: ExportKeyingMaterial context too long")
}
seed = append(seed, byte(len(context)>>8), byte(len(context)))
seed = append(seed, context...)
}
keyMaterial := make([]byte, length)
prfForVersion(version, suite)(keyMaterial, masterSecret, []byte(label), seed)
return keyMaterial, nil
}
}

View file

@ -1,215 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package qtls
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"crypto/hmac"
"crypto/sha256"
"crypto/subtle"
"errors"
"io"
"golang.org/x/crypto/cryptobyte"
)
// sessionState contains the information that is serialized into a session
// ticket in order to later resume a connection.
type sessionState struct {
vers uint16
cipherSuite uint16
masterSecret []byte
certificates [][]byte
// usedOldKey is true if the ticket from which this session came from
// was encrypted with an older key and thus should be refreshed.
usedOldKey bool
}
func (s *sessionState) marshal() []byte {
length := 2 + 2 + 2 + len(s.masterSecret) + 2
for _, cert := range s.certificates {
length += 4 + len(cert)
}
ret := make([]byte, length)
x := ret
x[0] = byte(s.vers >> 8)
x[1] = byte(s.vers)
x[2] = byte(s.cipherSuite >> 8)
x[3] = byte(s.cipherSuite)
x[4] = byte(len(s.masterSecret) >> 8)
x[5] = byte(len(s.masterSecret))
x = x[6:]
copy(x, s.masterSecret)
x = x[len(s.masterSecret):]
x[0] = byte(len(s.certificates) >> 8)
x[1] = byte(len(s.certificates))
x = x[2:]
for _, cert := range s.certificates {
x[0] = byte(len(cert) >> 24)
x[1] = byte(len(cert) >> 16)
x[2] = byte(len(cert) >> 8)
x[3] = byte(len(cert))
copy(x[4:], cert)
x = x[4+len(cert):]
}
return ret
}
func (s *sessionState) unmarshal(data []byte) bool {
if len(data) < 8 {
return false
}
s.vers = uint16(data[0])<<8 | uint16(data[1])
s.cipherSuite = uint16(data[2])<<8 | uint16(data[3])
masterSecretLen := int(data[4])<<8 | int(data[5])
data = data[6:]
if len(data) < masterSecretLen {
return false
}
s.masterSecret = data[:masterSecretLen]
data = data[masterSecretLen:]
if len(data) < 2 {
return false
}
numCerts := int(data[0])<<8 | int(data[1])
data = data[2:]
s.certificates = make([][]byte, numCerts)
for i := range s.certificates {
if len(data) < 4 {
return false
}
certLen := int(data[0])<<24 | int(data[1])<<16 | int(data[2])<<8 | int(data[3])
data = data[4:]
if certLen < 0 {
return false
}
if len(data) < certLen {
return false
}
s.certificates[i] = data[:certLen]
data = data[certLen:]
}
return len(data) == 0
}
// sessionStateTLS13 is the content of a TLS 1.3 session ticket. Its first
// version (revision = 0) doesn't carry any of the information needed for 0-RTT
// validation and the nonce is always empty.
type sessionStateTLS13 struct {
// uint8 version = 0x0304;
// uint8 revision = 0;
cipherSuite uint16
createdAt uint64
resumptionSecret []byte // opaque resumption_master_secret<1..2^8-1>;
certificate Certificate // CertificateEntry certificate_list<0..2^24-1>;
}
func (m *sessionStateTLS13) marshal() []byte {
var b cryptobyte.Builder
b.AddUint16(VersionTLS13)
b.AddUint8(0) // revision
b.AddUint16(m.cipherSuite)
addUint64(&b, m.createdAt)
b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(m.resumptionSecret)
})
marshalCertificate(&b, m.certificate)
return b.BytesOrPanic()
}
func (m *sessionStateTLS13) unmarshal(data []byte) bool {
*m = sessionStateTLS13{}
s := cryptobyte.String(data)
var version uint16
var revision uint8
return s.ReadUint16(&version) &&
version == VersionTLS13 &&
s.ReadUint8(&revision) &&
revision == 0 &&
s.ReadUint16(&m.cipherSuite) &&
readUint64(&s, &m.createdAt) &&
readUint8LengthPrefixed(&s, &m.resumptionSecret) &&
len(m.resumptionSecret) != 0 &&
unmarshalCertificate(&s, &m.certificate) &&
s.Empty()
}
func (c *Conn) encryptTicket(state []byte) ([]byte, error) {
encrypted := make([]byte, ticketKeyNameLen+aes.BlockSize+len(state)+sha256.Size)
keyName := encrypted[:ticketKeyNameLen]
iv := encrypted[ticketKeyNameLen : ticketKeyNameLen+aes.BlockSize]
macBytes := encrypted[len(encrypted)-sha256.Size:]
if _, err := io.ReadFull(c.config.rand(), iv); err != nil {
return nil, err
}
key := c.config.ticketKeys()[0]
copy(keyName, key.keyName[:])
block, err := aes.NewCipher(key.aesKey[:])
if err != nil {
return nil, errors.New("tls: failed to create cipher while encrypting ticket: " + err.Error())
}
cipher.NewCTR(block, iv).XORKeyStream(encrypted[ticketKeyNameLen+aes.BlockSize:], state)
mac := hmac.New(sha256.New, key.hmacKey[:])
mac.Write(encrypted[:len(encrypted)-sha256.Size])
mac.Sum(macBytes[:0])
return encrypted, nil
}
func (c *Conn) decryptTicket(encrypted []byte) (plaintext []byte, usedOldKey bool) {
if len(encrypted) < ticketKeyNameLen+aes.BlockSize+sha256.Size {
return nil, false
}
keyName := encrypted[:ticketKeyNameLen]
iv := encrypted[ticketKeyNameLen : ticketKeyNameLen+aes.BlockSize]
macBytes := encrypted[len(encrypted)-sha256.Size:]
ciphertext := encrypted[ticketKeyNameLen+aes.BlockSize : len(encrypted)-sha256.Size]
keys := c.config.ticketKeys()
keyIndex := -1
for i, candidateKey := range keys {
if bytes.Equal(keyName, candidateKey.keyName[:]) {
keyIndex = i
break
}
}
if keyIndex == -1 {
return nil, false
}
key := &keys[keyIndex]
mac := hmac.New(sha256.New, key.hmacKey[:])
mac.Write(encrypted[:len(encrypted)-sha256.Size])
expected := mac.Sum(nil)
if subtle.ConstantTimeCompare(macBytes, expected) != 1 {
return nil, false
}
block, err := aes.NewCipher(key.aesKey[:])
if err != nil {
return nil, false
}
plaintext = make([]byte, len(ciphertext))
cipher.NewCTR(block, iv).XORKeyStream(plaintext, ciphertext)
return plaintext, keyIndex > 0
}

View file

@ -1,306 +0,0 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// package qtls partially implements TLS 1.2, as specified in RFC 5246,
// and TLS 1.3, as specified in RFC 8446.
//
// TLS 1.3 is available only on an opt-in basis in Go 1.12. To enable
// it, set the GODEBUG environment variable (comma-separated key=value
// options) such that it includes "tls13=1". To enable it from within
// the process, set the environment variable before any use of TLS:
//
// func init() {
// os.Setenv("GODEBUG", os.Getenv("GODEBUG")+",tls13=1")
// }
package qtls
// BUG(agl): The crypto/tls package only implements some countermeasures
// against Lucky13 attacks on CBC-mode encryption, and only on SHA1
// variants. See http://www.isg.rhul.ac.uk/tls/TLStiming.pdf and
// https://www.imperialviolet.org/2013/02/04/luckythirteen.html.
import (
"crypto"
"crypto/ecdsa"
"crypto/rsa"
"crypto/x509"
"encoding/pem"
"errors"
"fmt"
"io/ioutil"
"net"
"strings"
"time"
)
// Server returns a new TLS server side connection
// using conn as the underlying transport.
// The configuration config must be non-nil and must include
// at least one certificate or else set GetCertificate.
func Server(conn net.Conn, config *Config) *Conn {
return &Conn{conn: conn, config: config}
}
// Client returns a new TLS client side connection
// using conn as the underlying transport.
// The config cannot be nil: users must set either ServerName or
// InsecureSkipVerify in the config.
func Client(conn net.Conn, config *Config) *Conn {
return &Conn{conn: conn, config: config, isClient: true}
}
// A listener implements a network listener (net.Listener) for TLS connections.
type listener struct {
net.Listener
config *Config
}
// Accept waits for and returns the next incoming TLS connection.
// The returned connection is of type *Conn.
func (l *listener) Accept() (net.Conn, error) {
c, err := l.Listener.Accept()
if err != nil {
return nil, err
}
return Server(c, l.config), nil
}
// NewListener creates a Listener which accepts connections from an inner
// Listener and wraps each connection with Server.
// The configuration config must be non-nil and must include
// at least one certificate or else set GetCertificate.
func NewListener(inner net.Listener, config *Config) net.Listener {
l := new(listener)
l.Listener = inner
l.config = config
return l
}
// Listen creates a TLS listener accepting connections on the
// given network address using net.Listen.
// The configuration config must be non-nil and must include
// at least one certificate or else set GetCertificate.
func Listen(network, laddr string, config *Config) (net.Listener, error) {
if config == nil || (len(config.Certificates) == 0 && config.GetCertificate == nil) {
return nil, errors.New("tls: neither Certificates nor GetCertificate set in Config")
}
l, err := net.Listen(network, laddr)
if err != nil {
return nil, err
}
return NewListener(l, config), nil
}
type timeoutError struct{}
func (timeoutError) Error() string { return "tls: DialWithDialer timed out" }
func (timeoutError) Timeout() bool { return true }
func (timeoutError) Temporary() bool { return true }
// DialWithDialer connects to the given network address using dialer.Dial and
// then initiates a TLS handshake, returning the resulting TLS connection. Any
// timeout or deadline given in the dialer apply to connection and TLS
// handshake as a whole.
//
// DialWithDialer interprets a nil configuration as equivalent to the zero
// configuration; see the documentation of Config for the defaults.
func DialWithDialer(dialer *net.Dialer, network, addr string, config *Config) (*Conn, error) {
// We want the Timeout and Deadline values from dialer to cover the
// whole process: TCP connection and TLS handshake. This means that we
// also need to start our own timers now.
timeout := dialer.Timeout
if !dialer.Deadline.IsZero() {
deadlineTimeout := time.Until(dialer.Deadline)
if timeout == 0 || deadlineTimeout < timeout {
timeout = deadlineTimeout
}
}
var errChannel chan error
if timeout != 0 {
errChannel = make(chan error, 2)
time.AfterFunc(timeout, func() {
errChannel <- timeoutError{}
})
}
rawConn, err := dialer.Dial(network, addr)
if err != nil {
return nil, err
}
colonPos := strings.LastIndex(addr, ":")
if colonPos == -1 {
colonPos = len(addr)
}
hostname := addr[:colonPos]
if config == nil {
config = defaultConfig()
}
// If no ServerName is set, infer the ServerName
// from the hostname we're connecting to.
if config.ServerName == "" {
// Make a copy to avoid polluting argument or default.
c := config.Clone()
c.ServerName = hostname
config = c
}
conn := Client(rawConn, config)
if timeout == 0 {
err = conn.Handshake()
} else {
go func() {
errChannel <- conn.Handshake()
}()
err = <-errChannel
}
if err != nil {
rawConn.Close()
return nil, err
}
return conn, nil
}
// Dial connects to the given network address using net.Dial
// and then initiates a TLS handshake, returning the resulting
// TLS connection.
// Dial interprets a nil configuration as equivalent to
// the zero configuration; see the documentation of Config
// for the defaults.
func Dial(network, addr string, config *Config) (*Conn, error) {
return DialWithDialer(new(net.Dialer), network, addr, config)
}
// LoadX509KeyPair reads and parses a public/private key pair from a pair
// of files. The files must contain PEM encoded data. The certificate file
// may contain intermediate certificates following the leaf certificate to
// form a certificate chain. On successful return, Certificate.Leaf will
// be nil because the parsed form of the certificate is not retained.
func LoadX509KeyPair(certFile, keyFile string) (Certificate, error) {
certPEMBlock, err := ioutil.ReadFile(certFile)
if err != nil {
return Certificate{}, err
}
keyPEMBlock, err := ioutil.ReadFile(keyFile)
if err != nil {
return Certificate{}, err
}
return X509KeyPair(certPEMBlock, keyPEMBlock)
}
// X509KeyPair parses a public/private key pair from a pair of
// PEM encoded data. On successful return, Certificate.Leaf will be nil because
// the parsed form of the certificate is not retained.
func X509KeyPair(certPEMBlock, keyPEMBlock []byte) (Certificate, error) {
fail := func(err error) (Certificate, error) { return Certificate{}, err }
var cert Certificate
var skippedBlockTypes []string
for {
var certDERBlock *pem.Block
certDERBlock, certPEMBlock = pem.Decode(certPEMBlock)
if certDERBlock == nil {
break
}
if certDERBlock.Type == "CERTIFICATE" {
cert.Certificate = append(cert.Certificate, certDERBlock.Bytes)
} else {
skippedBlockTypes = append(skippedBlockTypes, certDERBlock.Type)
}
}
if len(cert.Certificate) == 0 {
if len(skippedBlockTypes) == 0 {
return fail(errors.New("tls: failed to find any PEM data in certificate input"))
}
if len(skippedBlockTypes) == 1 && strings.HasSuffix(skippedBlockTypes[0], "PRIVATE KEY") {
return fail(errors.New("tls: failed to find certificate PEM data in certificate input, but did find a private key; PEM inputs may have been switched"))
}
return fail(fmt.Errorf("tls: failed to find \"CERTIFICATE\" PEM block in certificate input after skipping PEM blocks of the following types: %v", skippedBlockTypes))
}
skippedBlockTypes = skippedBlockTypes[:0]
var keyDERBlock *pem.Block
for {
keyDERBlock, keyPEMBlock = pem.Decode(keyPEMBlock)
if keyDERBlock == nil {
if len(skippedBlockTypes) == 0 {
return fail(errors.New("tls: failed to find any PEM data in key input"))
}
if len(skippedBlockTypes) == 1 && skippedBlockTypes[0] == "CERTIFICATE" {
return fail(errors.New("tls: found a certificate rather than a key in the PEM for the private key"))
}
return fail(fmt.Errorf("tls: failed to find PEM block with type ending in \"PRIVATE KEY\" in key input after skipping PEM blocks of the following types: %v", skippedBlockTypes))
}
if keyDERBlock.Type == "PRIVATE KEY" || strings.HasSuffix(keyDERBlock.Type, " PRIVATE KEY") {
break
}
skippedBlockTypes = append(skippedBlockTypes, keyDERBlock.Type)
}
// We don't need to parse the public key for TLS, but we so do anyway
// to check that it looks sane and matches the private key.
x509Cert, err := x509.ParseCertificate(cert.Certificate[0])
if err != nil {
return fail(err)
}
cert.PrivateKey, err = parsePrivateKey(keyDERBlock.Bytes)
if err != nil {
return fail(err)
}
switch pub := x509Cert.PublicKey.(type) {
case *rsa.PublicKey:
priv, ok := cert.PrivateKey.(*rsa.PrivateKey)
if !ok {
return fail(errors.New("tls: private key type does not match public key type"))
}
if pub.N.Cmp(priv.N) != 0 {
return fail(errors.New("tls: private key does not match public key"))
}
case *ecdsa.PublicKey:
priv, ok := cert.PrivateKey.(*ecdsa.PrivateKey)
if !ok {
return fail(errors.New("tls: private key type does not match public key type"))
}
if pub.X.Cmp(priv.X) != 0 || pub.Y.Cmp(priv.Y) != 0 {
return fail(errors.New("tls: private key does not match public key"))
}
default:
return fail(errors.New("tls: unknown public key algorithm"))
}
return cert, nil
}
// Attempt to parse the given private key DER block. OpenSSL 0.9.8 generates
// PKCS#1 private keys by default, while OpenSSL 1.0.0 generates PKCS#8 keys.
// OpenSSL ecparam generates SEC1 EC private keys for ECDSA. We try all three.
func parsePrivateKey(der []byte) (crypto.PrivateKey, error) {
if key, err := x509.ParsePKCS1PrivateKey(der); err == nil {
return key, nil
}
if key, err := x509.ParsePKCS8PrivateKey(der); err == nil {
switch key := key.(type) {
case *rsa.PrivateKey, *ecdsa.PrivateKey:
return key, nil
default:
return nil, errors.New("tls: found unknown private key type in PKCS#8 wrapping")
}
}
if key, err := x509.ParseECPrivateKey(der); err == nil {
return key, nil
}
return nil, errors.New("tls: failed to parse private key")
}

27
vendor/golang.org/x/crypto/LICENSE generated vendored
View file

@ -1,27 +0,0 @@
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

22
vendor/golang.org/x/crypto/PATENTS generated vendored
View file

@ -1,22 +0,0 @@
Additional IP Rights Grant (Patents)
"This implementation" means the copyrightable works distributed by
Google as part of the Go project.
Google hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import,
transfer and otherwise run, modify and propagate the contents of this
implementation of Go, where such license applies only to those patent
claims, both currently owned or controlled by Google and acquired in
the future, licensable by Google that are necessarily infringed by this
implementation of Go. This grant does not include claims that would be
infringed only as a consequence of further modification of this
implementation. If you or your agent or exclusive licensee institute or
order or agree to the institution of patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging
that this implementation of Go or any code incorporated within this
implementation of Go constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any patent
rights granted to you under this License for this implementation of Go
shall terminate as of the date such litigation is filed.

View file

@ -1,101 +0,0 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package chacha20poly1305 implements the ChaCha20-Poly1305 AEAD as specified in RFC 7539,
// and its extended nonce variant XChaCha20-Poly1305.
package chacha20poly1305 // import "golang.org/x/crypto/chacha20poly1305"
import (
"crypto/cipher"
"encoding/binary"
"errors"
)
const (
// KeySize is the size of the key used by this AEAD, in bytes.
KeySize = 32
// NonceSize is the size of the nonce used with the standard variant of this
// AEAD, in bytes.
//
// Note that this is too short to be safely generated at random if the same
// key is reused more than 2³² times.
NonceSize = 12
// NonceSizeX is the size of the nonce used with the XChaCha20-Poly1305
// variant of this AEAD, in bytes.
NonceSizeX = 24
)
type chacha20poly1305 struct {
key [8]uint32
}
// New returns a ChaCha20-Poly1305 AEAD that uses the given 256-bit key.
func New(key []byte) (cipher.AEAD, error) {
if len(key) != KeySize {
return nil, errors.New("chacha20poly1305: bad key length")
}
ret := new(chacha20poly1305)
ret.key[0] = binary.LittleEndian.Uint32(key[0:4])
ret.key[1] = binary.LittleEndian.Uint32(key[4:8])
ret.key[2] = binary.LittleEndian.Uint32(key[8:12])
ret.key[3] = binary.LittleEndian.Uint32(key[12:16])
ret.key[4] = binary.LittleEndian.Uint32(key[16:20])
ret.key[5] = binary.LittleEndian.Uint32(key[20:24])
ret.key[6] = binary.LittleEndian.Uint32(key[24:28])
ret.key[7] = binary.LittleEndian.Uint32(key[28:32])
return ret, nil
}
func (c *chacha20poly1305) NonceSize() int {
return NonceSize
}
func (c *chacha20poly1305) Overhead() int {
return 16
}
func (c *chacha20poly1305) Seal(dst, nonce, plaintext, additionalData []byte) []byte {
if len(nonce) != NonceSize {
panic("chacha20poly1305: bad nonce length passed to Seal")
}
if uint64(len(plaintext)) > (1<<38)-64 {
panic("chacha20poly1305: plaintext too large")
}
return c.seal(dst, nonce, plaintext, additionalData)
}
var errOpen = errors.New("chacha20poly1305: message authentication failed")
func (c *chacha20poly1305) Open(dst, nonce, ciphertext, additionalData []byte) ([]byte, error) {
if len(nonce) != NonceSize {
panic("chacha20poly1305: bad nonce length passed to Open")
}
if len(ciphertext) < 16 {
return nil, errOpen
}
if uint64(len(ciphertext)) > (1<<38)-48 {
panic("chacha20poly1305: ciphertext too large")
}
return c.open(dst, nonce, ciphertext, additionalData)
}
// sliceForAppend takes a slice and a requested number of bytes. It returns a
// slice with the contents of the given slice followed by that many bytes and a
// second slice that aliases into it and contains only the extra bytes. If the
// original slice has sufficient capacity then no allocation is performed.
func sliceForAppend(in []byte, n int) (head, tail []byte) {
if total := len(in) + n; cap(in) >= total {
head = in[:total]
} else {
head = make([]byte, total)
copy(head, in)
}
tail = head[len(in):]
return
}

View file

@ -1,86 +0,0 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.7,amd64,!gccgo,!appengine
package chacha20poly1305
import (
"encoding/binary"
"golang.org/x/crypto/internal/subtle"
"golang.org/x/sys/cpu"
)
//go:noescape
func chacha20Poly1305Open(dst []byte, key []uint32, src, ad []byte) bool
//go:noescape
func chacha20Poly1305Seal(dst []byte, key []uint32, src, ad []byte)
var (
useAVX2 = cpu.X86.HasAVX2 && cpu.X86.HasBMI2
)
// setupState writes a ChaCha20 input matrix to state. See
// https://tools.ietf.org/html/rfc7539#section-2.3.
func setupState(state *[16]uint32, key *[8]uint32, nonce []byte) {
state[0] = 0x61707865
state[1] = 0x3320646e
state[2] = 0x79622d32
state[3] = 0x6b206574
state[4] = key[0]
state[5] = key[1]
state[6] = key[2]
state[7] = key[3]
state[8] = key[4]
state[9] = key[5]
state[10] = key[6]
state[11] = key[7]
state[12] = 0
state[13] = binary.LittleEndian.Uint32(nonce[:4])
state[14] = binary.LittleEndian.Uint32(nonce[4:8])
state[15] = binary.LittleEndian.Uint32(nonce[8:12])
}
func (c *chacha20poly1305) seal(dst, nonce, plaintext, additionalData []byte) []byte {
if !cpu.X86.HasSSSE3 {
return c.sealGeneric(dst, nonce, plaintext, additionalData)
}
var state [16]uint32
setupState(&state, &c.key, nonce)
ret, out := sliceForAppend(dst, len(plaintext)+16)
if subtle.InexactOverlap(out, plaintext) {
panic("chacha20poly1305: invalid buffer overlap")
}
chacha20Poly1305Seal(out[:], state[:], plaintext, additionalData)
return ret
}
func (c *chacha20poly1305) open(dst, nonce, ciphertext, additionalData []byte) ([]byte, error) {
if !cpu.X86.HasSSSE3 {
return c.openGeneric(dst, nonce, ciphertext, additionalData)
}
var state [16]uint32
setupState(&state, &c.key, nonce)
ciphertext = ciphertext[:len(ciphertext)-16]
ret, out := sliceForAppend(dst, len(ciphertext))
if subtle.InexactOverlap(out, ciphertext) {
panic("chacha20poly1305: invalid buffer overlap")
}
if !chacha20Poly1305Open(out, state[:], ciphertext, additionalData) {
for i := range out {
out[i] = 0
}
return nil, errOpen
}
return ret, nil
}

File diff suppressed because it is too large Load diff

View file

@ -1,81 +0,0 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package chacha20poly1305
import (
"encoding/binary"
"golang.org/x/crypto/internal/chacha20"
"golang.org/x/crypto/internal/subtle"
"golang.org/x/crypto/poly1305"
)
func roundTo16(n int) int {
return 16 * ((n + 15) / 16)
}
func (c *chacha20poly1305) sealGeneric(dst, nonce, plaintext, additionalData []byte) []byte {
ret, out := sliceForAppend(dst, len(plaintext)+poly1305.TagSize)
if subtle.InexactOverlap(out, plaintext) {
panic("chacha20poly1305: invalid buffer overlap")
}
var polyKey [32]byte
s := chacha20.New(c.key, [3]uint32{
binary.LittleEndian.Uint32(nonce[0:4]),
binary.LittleEndian.Uint32(nonce[4:8]),
binary.LittleEndian.Uint32(nonce[8:12]),
})
s.XORKeyStream(polyKey[:], polyKey[:])
s.Advance() // skip the next 32 bytes
s.XORKeyStream(out, plaintext)
polyInput := make([]byte, roundTo16(len(additionalData))+roundTo16(len(plaintext))+8+8)
copy(polyInput, additionalData)
copy(polyInput[roundTo16(len(additionalData)):], out[:len(plaintext)])
binary.LittleEndian.PutUint64(polyInput[len(polyInput)-16:], uint64(len(additionalData)))
binary.LittleEndian.PutUint64(polyInput[len(polyInput)-8:], uint64(len(plaintext)))
var tag [poly1305.TagSize]byte
poly1305.Sum(&tag, polyInput, &polyKey)
copy(out[len(plaintext):], tag[:])
return ret
}
func (c *chacha20poly1305) openGeneric(dst, nonce, ciphertext, additionalData []byte) ([]byte, error) {
var tag [poly1305.TagSize]byte
copy(tag[:], ciphertext[len(ciphertext)-16:])
ciphertext = ciphertext[:len(ciphertext)-16]
var polyKey [32]byte
s := chacha20.New(c.key, [3]uint32{
binary.LittleEndian.Uint32(nonce[0:4]),
binary.LittleEndian.Uint32(nonce[4:8]),
binary.LittleEndian.Uint32(nonce[8:12]),
})
s.XORKeyStream(polyKey[:], polyKey[:])
s.Advance() // skip the next 32 bytes
polyInput := make([]byte, roundTo16(len(additionalData))+roundTo16(len(ciphertext))+8+8)
copy(polyInput, additionalData)
copy(polyInput[roundTo16(len(additionalData)):], ciphertext)
binary.LittleEndian.PutUint64(polyInput[len(polyInput)-16:], uint64(len(additionalData)))
binary.LittleEndian.PutUint64(polyInput[len(polyInput)-8:], uint64(len(ciphertext)))
ret, out := sliceForAppend(dst, len(ciphertext))
if subtle.InexactOverlap(out, ciphertext) {
panic("chacha20poly1305: invalid buffer overlap")
}
if !poly1305.Verify(&tag, polyInput, &polyKey) {
for i := range out {
out[i] = 0
}
return nil, errOpen
}
s.XORKeyStream(out, ciphertext)
return ret, nil
}

View file

@ -1,15 +0,0 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !amd64 !go1.7 gccgo appengine
package chacha20poly1305
func (c *chacha20poly1305) seal(dst, nonce, plaintext, additionalData []byte) []byte {
return c.sealGeneric(dst, nonce, plaintext, additionalData)
}
func (c *chacha20poly1305) open(dst, nonce, ciphertext, additionalData []byte) ([]byte, error) {
return c.openGeneric(dst, nonce, ciphertext, additionalData)
}

View file

@ -1,104 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package chacha20poly1305
import (
"crypto/cipher"
"encoding/binary"
"errors"
"golang.org/x/crypto/internal/chacha20"
)
type xchacha20poly1305 struct {
key [8]uint32
}
// NewX returns a XChaCha20-Poly1305 AEAD that uses the given 256-bit key.
//
// XChaCha20-Poly1305 is a ChaCha20-Poly1305 variant that takes a longer nonce,
// suitable to be generated randomly without risk of collisions. It should be
// preferred when nonce uniqueness cannot be trivially ensured, or whenever
// nonces are randomly generated.
func NewX(key []byte) (cipher.AEAD, error) {
if len(key) != KeySize {
return nil, errors.New("chacha20poly1305: bad key length")
}
ret := new(xchacha20poly1305)
ret.key[0] = binary.LittleEndian.Uint32(key[0:4])
ret.key[1] = binary.LittleEndian.Uint32(key[4:8])
ret.key[2] = binary.LittleEndian.Uint32(key[8:12])
ret.key[3] = binary.LittleEndian.Uint32(key[12:16])
ret.key[4] = binary.LittleEndian.Uint32(key[16:20])
ret.key[5] = binary.LittleEndian.Uint32(key[20:24])
ret.key[6] = binary.LittleEndian.Uint32(key[24:28])
ret.key[7] = binary.LittleEndian.Uint32(key[28:32])
return ret, nil
}
func (*xchacha20poly1305) NonceSize() int {
return NonceSizeX
}
func (*xchacha20poly1305) Overhead() int {
return 16
}
func (x *xchacha20poly1305) Seal(dst, nonce, plaintext, additionalData []byte) []byte {
if len(nonce) != NonceSizeX {
panic("chacha20poly1305: bad nonce length passed to Seal")
}
// XChaCha20-Poly1305 technically supports a 64-bit counter, so there is no
// size limit. However, since we reuse the ChaCha20-Poly1305 implementation,
// the second half of the counter is not available. This is unlikely to be
// an issue because the cipher.AEAD API requires the entire message to be in
// memory, and the counter overflows at 256 GB.
if uint64(len(plaintext)) > (1<<38)-64 {
panic("chacha20poly1305: plaintext too large")
}
hNonce := [4]uint32{
binary.LittleEndian.Uint32(nonce[0:4]),
binary.LittleEndian.Uint32(nonce[4:8]),
binary.LittleEndian.Uint32(nonce[8:12]),
binary.LittleEndian.Uint32(nonce[12:16]),
}
c := &chacha20poly1305{
key: chacha20.HChaCha20(&x.key, &hNonce),
}
// The first 4 bytes of the final nonce are unused counter space.
cNonce := make([]byte, NonceSize)
copy(cNonce[4:12], nonce[16:24])
return c.seal(dst, cNonce[:], plaintext, additionalData)
}
func (x *xchacha20poly1305) Open(dst, nonce, ciphertext, additionalData []byte) ([]byte, error) {
if len(nonce) != NonceSizeX {
panic("chacha20poly1305: bad nonce length passed to Open")
}
if len(ciphertext) < 16 {
return nil, errOpen
}
if uint64(len(ciphertext)) > (1<<38)-48 {
panic("chacha20poly1305: ciphertext too large")
}
hNonce := [4]uint32{
binary.LittleEndian.Uint32(nonce[0:4]),
binary.LittleEndian.Uint32(nonce[4:8]),
binary.LittleEndian.Uint32(nonce[8:12]),
binary.LittleEndian.Uint32(nonce[12:16]),
}
c := &chacha20poly1305{
key: chacha20.HChaCha20(&x.key, &hNonce),
}
// The first 4 bytes of the final nonce are unused counter space.
cNonce := make([]byte, NonceSize)
copy(cNonce[4:12], nonce[16:24])
return c.open(dst, cNonce[:], ciphertext, additionalData)
}

View file

@ -1,751 +0,0 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cryptobyte
import (
encoding_asn1 "encoding/asn1"
"fmt"
"math/big"
"reflect"
"time"
"golang.org/x/crypto/cryptobyte/asn1"
)
// This file contains ASN.1-related methods for String and Builder.
// Builder
// AddASN1Int64 appends a DER-encoded ASN.1 INTEGER.
func (b *Builder) AddASN1Int64(v int64) {
b.addASN1Signed(asn1.INTEGER, v)
}
// AddASN1Int64WithTag appends a DER-encoded ASN.1 INTEGER with the
// given tag.
func (b *Builder) AddASN1Int64WithTag(v int64, tag asn1.Tag) {
b.addASN1Signed(tag, v)
}
// AddASN1Enum appends a DER-encoded ASN.1 ENUMERATION.
func (b *Builder) AddASN1Enum(v int64) {
b.addASN1Signed(asn1.ENUM, v)
}
func (b *Builder) addASN1Signed(tag asn1.Tag, v int64) {
b.AddASN1(tag, func(c *Builder) {
length := 1
for i := v; i >= 0x80 || i < -0x80; i >>= 8 {
length++
}
for ; length > 0; length-- {
i := v >> uint((length-1)*8) & 0xff
c.AddUint8(uint8(i))
}
})
}
// AddASN1Uint64 appends a DER-encoded ASN.1 INTEGER.
func (b *Builder) AddASN1Uint64(v uint64) {
b.AddASN1(asn1.INTEGER, func(c *Builder) {
length := 1
for i := v; i >= 0x80; i >>= 8 {
length++
}
for ; length > 0; length-- {
i := v >> uint((length-1)*8) & 0xff
c.AddUint8(uint8(i))
}
})
}
// AddASN1BigInt appends a DER-encoded ASN.1 INTEGER.
func (b *Builder) AddASN1BigInt(n *big.Int) {
if b.err != nil {
return
}
b.AddASN1(asn1.INTEGER, func(c *Builder) {
if n.Sign() < 0 {
// A negative number has to be converted to two's-complement form. So we
// invert and subtract 1. If the most-significant-bit isn't set then
// we'll need to pad the beginning with 0xff in order to keep the number
// negative.
nMinus1 := new(big.Int).Neg(n)
nMinus1.Sub(nMinus1, bigOne)
bytes := nMinus1.Bytes()
for i := range bytes {
bytes[i] ^= 0xff
}
if bytes[0]&0x80 == 0 {
c.add(0xff)
}
c.add(bytes...)
} else if n.Sign() == 0 {
c.add(0)
} else {
bytes := n.Bytes()
if bytes[0]&0x80 != 0 {
c.add(0)
}
c.add(bytes...)
}
})
}
// AddASN1OctetString appends a DER-encoded ASN.1 OCTET STRING.
func (b *Builder) AddASN1OctetString(bytes []byte) {
b.AddASN1(asn1.OCTET_STRING, func(c *Builder) {
c.AddBytes(bytes)
})
}
const generalizedTimeFormatStr = "20060102150405Z0700"
// AddASN1GeneralizedTime appends a DER-encoded ASN.1 GENERALIZEDTIME.
func (b *Builder) AddASN1GeneralizedTime(t time.Time) {
if t.Year() < 0 || t.Year() > 9999 {
b.err = fmt.Errorf("cryptobyte: cannot represent %v as a GeneralizedTime", t)
return
}
b.AddASN1(asn1.GeneralizedTime, func(c *Builder) {
c.AddBytes([]byte(t.Format(generalizedTimeFormatStr)))
})
}
// AddASN1BitString appends a DER-encoded ASN.1 BIT STRING. This does not
// support BIT STRINGs that are not a whole number of bytes.
func (b *Builder) AddASN1BitString(data []byte) {
b.AddASN1(asn1.BIT_STRING, func(b *Builder) {
b.AddUint8(0)
b.AddBytes(data)
})
}
func (b *Builder) addBase128Int(n int64) {
var length int
if n == 0 {
length = 1
} else {
for i := n; i > 0; i >>= 7 {
length++
}
}
for i := length - 1; i >= 0; i-- {
o := byte(n >> uint(i*7))
o &= 0x7f
if i != 0 {
o |= 0x80
}
b.add(o)
}
}
func isValidOID(oid encoding_asn1.ObjectIdentifier) bool {
if len(oid) < 2 {
return false
}
if oid[0] > 2 || (oid[0] <= 1 && oid[1] >= 40) {
return false
}
for _, v := range oid {
if v < 0 {
return false
}
}
return true
}
func (b *Builder) AddASN1ObjectIdentifier(oid encoding_asn1.ObjectIdentifier) {
b.AddASN1(asn1.OBJECT_IDENTIFIER, func(b *Builder) {
if !isValidOID(oid) {
b.err = fmt.Errorf("cryptobyte: invalid OID: %v", oid)
return
}
b.addBase128Int(int64(oid[0])*40 + int64(oid[1]))
for _, v := range oid[2:] {
b.addBase128Int(int64(v))
}
})
}
func (b *Builder) AddASN1Boolean(v bool) {
b.AddASN1(asn1.BOOLEAN, func(b *Builder) {
if v {
b.AddUint8(0xff)
} else {
b.AddUint8(0)
}
})
}
func (b *Builder) AddASN1NULL() {
b.add(uint8(asn1.NULL), 0)
}
// MarshalASN1 calls encoding_asn1.Marshal on its input and appends the result if
// successful or records an error if one occurred.
func (b *Builder) MarshalASN1(v interface{}) {
// NOTE(martinkr): This is somewhat of a hack to allow propagation of
// encoding_asn1.Marshal errors into Builder.err. N.B. if you call MarshalASN1 with a
// value embedded into a struct, its tag information is lost.
if b.err != nil {
return
}
bytes, err := encoding_asn1.Marshal(v)
if err != nil {
b.err = err
return
}
b.AddBytes(bytes)
}
// AddASN1 appends an ASN.1 object. The object is prefixed with the given tag.
// Tags greater than 30 are not supported and result in an error (i.e.
// low-tag-number form only). The child builder passed to the
// BuilderContinuation can be used to build the content of the ASN.1 object.
func (b *Builder) AddASN1(tag asn1.Tag, f BuilderContinuation) {
if b.err != nil {
return
}
// Identifiers with the low five bits set indicate high-tag-number format
// (two or more octets), which we don't support.
if tag&0x1f == 0x1f {
b.err = fmt.Errorf("cryptobyte: high-tag number identifier octects not supported: 0x%x", tag)
return
}
b.AddUint8(uint8(tag))
b.addLengthPrefixed(1, true, f)
}
// String
// ReadASN1Boolean decodes an ASN.1 INTEGER and converts it to a boolean
// representation into out and advances. It reports whether the read
// was successful.
func (s *String) ReadASN1Boolean(out *bool) bool {
var bytes String
if !s.ReadASN1(&bytes, asn1.INTEGER) || len(bytes) != 1 {
return false
}
switch bytes[0] {
case 0:
*out = false
case 0xff:
*out = true
default:
return false
}
return true
}
var bigIntType = reflect.TypeOf((*big.Int)(nil)).Elem()
// ReadASN1Integer decodes an ASN.1 INTEGER into out and advances. If out does
// not point to an integer or to a big.Int, it panics. It reports whether the
// read was successful.
func (s *String) ReadASN1Integer(out interface{}) bool {
if reflect.TypeOf(out).Kind() != reflect.Ptr {
panic("out is not a pointer")
}
switch reflect.ValueOf(out).Elem().Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
var i int64
if !s.readASN1Int64(&i) || reflect.ValueOf(out).Elem().OverflowInt(i) {
return false
}
reflect.ValueOf(out).Elem().SetInt(i)
return true
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
var u uint64
if !s.readASN1Uint64(&u) || reflect.ValueOf(out).Elem().OverflowUint(u) {
return false
}
reflect.ValueOf(out).Elem().SetUint(u)
return true
case reflect.Struct:
if reflect.TypeOf(out).Elem() == bigIntType {
return s.readASN1BigInt(out.(*big.Int))
}
}
panic("out does not point to an integer type")
}
func checkASN1Integer(bytes []byte) bool {
if len(bytes) == 0 {
// An INTEGER is encoded with at least one octet.
return false
}
if len(bytes) == 1 {
return true
}
if bytes[0] == 0 && bytes[1]&0x80 == 0 || bytes[0] == 0xff && bytes[1]&0x80 == 0x80 {
// Value is not minimally encoded.
return false
}
return true
}
var bigOne = big.NewInt(1)
func (s *String) readASN1BigInt(out *big.Int) bool {
var bytes String
if !s.ReadASN1(&bytes, asn1.INTEGER) || !checkASN1Integer(bytes) {
return false
}
if bytes[0]&0x80 == 0x80 {
// Negative number.
neg := make([]byte, len(bytes))
for i, b := range bytes {
neg[i] = ^b
}
out.SetBytes(neg)
out.Add(out, bigOne)
out.Neg(out)
} else {
out.SetBytes(bytes)
}
return true
}
func (s *String) readASN1Int64(out *int64) bool {
var bytes String
if !s.ReadASN1(&bytes, asn1.INTEGER) || !checkASN1Integer(bytes) || !asn1Signed(out, bytes) {
return false
}
return true
}
func asn1Signed(out *int64, n []byte) bool {
length := len(n)
if length > 8 {
return false
}
for i := 0; i < length; i++ {
*out <<= 8
*out |= int64(n[i])
}
// Shift up and down in order to sign extend the result.
*out <<= 64 - uint8(length)*8
*out >>= 64 - uint8(length)*8
return true
}
func (s *String) readASN1Uint64(out *uint64) bool {
var bytes String
if !s.ReadASN1(&bytes, asn1.INTEGER) || !checkASN1Integer(bytes) || !asn1Unsigned(out, bytes) {
return false
}
return true
}
func asn1Unsigned(out *uint64, n []byte) bool {
length := len(n)
if length > 9 || length == 9 && n[0] != 0 {
// Too large for uint64.
return false
}
if n[0]&0x80 != 0 {
// Negative number.
return false
}
for i := 0; i < length; i++ {
*out <<= 8
*out |= uint64(n[i])
}
return true
}
// ReadASN1Int64WithTag decodes an ASN.1 INTEGER with the given tag into out
// and advances. It reports whether the read was successful and resulted in a
// value that can be represented in an int64.
func (s *String) ReadASN1Int64WithTag(out *int64, tag asn1.Tag) bool {
var bytes String
return s.ReadASN1(&bytes, tag) && checkASN1Integer(bytes) && asn1Signed(out, bytes)
}
// ReadASN1Enum decodes an ASN.1 ENUMERATION into out and advances. It reports
// whether the read was successful.
func (s *String) ReadASN1Enum(out *int) bool {
var bytes String
var i int64
if !s.ReadASN1(&bytes, asn1.ENUM) || !checkASN1Integer(bytes) || !asn1Signed(&i, bytes) {
return false
}
if int64(int(i)) != i {
return false
}
*out = int(i)
return true
}
func (s *String) readBase128Int(out *int) bool {
ret := 0
for i := 0; len(*s) > 0; i++ {
if i == 4 {
return false
}
ret <<= 7
b := s.read(1)[0]
ret |= int(b & 0x7f)
if b&0x80 == 0 {
*out = ret
return true
}
}
return false // truncated
}
// ReadASN1ObjectIdentifier decodes an ASN.1 OBJECT IDENTIFIER into out and
// advances. It reports whether the read was successful.
func (s *String) ReadASN1ObjectIdentifier(out *encoding_asn1.ObjectIdentifier) bool {
var bytes String
if !s.ReadASN1(&bytes, asn1.OBJECT_IDENTIFIER) || len(bytes) == 0 {
return false
}
// In the worst case, we get two elements from the first byte (which is
// encoded differently) and then every varint is a single byte long.
components := make([]int, len(bytes)+1)
// The first varint is 40*value1 + value2:
// According to this packing, value1 can take the values 0, 1 and 2 only.
// When value1 = 0 or value1 = 1, then value2 is <= 39. When value1 = 2,
// then there are no restrictions on value2.
var v int
if !bytes.readBase128Int(&v) {
return false
}
if v < 80 {
components[0] = v / 40
components[1] = v % 40
} else {
components[0] = 2
components[1] = v - 80
}
i := 2
for ; len(bytes) > 0; i++ {
if !bytes.readBase128Int(&v) {
return false
}
components[i] = v
}
*out = components[:i]
return true
}
// ReadASN1GeneralizedTime decodes an ASN.1 GENERALIZEDTIME into out and
// advances. It reports whether the read was successful.
func (s *String) ReadASN1GeneralizedTime(out *time.Time) bool {
var bytes String
if !s.ReadASN1(&bytes, asn1.GeneralizedTime) {
return false
}
t := string(bytes)
res, err := time.Parse(generalizedTimeFormatStr, t)
if err != nil {
return false
}
if serialized := res.Format(generalizedTimeFormatStr); serialized != t {
return false
}
*out = res
return true
}
// ReadASN1BitString decodes an ASN.1 BIT STRING into out and advances.
// It reports whether the read was successful.
func (s *String) ReadASN1BitString(out *encoding_asn1.BitString) bool {
var bytes String
if !s.ReadASN1(&bytes, asn1.BIT_STRING) || len(bytes) == 0 {
return false
}
paddingBits := uint8(bytes[0])
bytes = bytes[1:]
if paddingBits > 7 ||
len(bytes) == 0 && paddingBits != 0 ||
len(bytes) > 0 && bytes[len(bytes)-1]&(1<<paddingBits-1) != 0 {
return false
}
out.BitLength = len(bytes)*8 - int(paddingBits)
out.Bytes = bytes
return true
}
// ReadASN1BitString decodes an ASN.1 BIT STRING into out and advances. It is
// an error if the BIT STRING is not a whole number of bytes. It reports
// whether the read was successful.
func (s *String) ReadASN1BitStringAsBytes(out *[]byte) bool {
var bytes String
if !s.ReadASN1(&bytes, asn1.BIT_STRING) || len(bytes) == 0 {
return false
}
paddingBits := uint8(bytes[0])
if paddingBits != 0 {
return false
}
*out = bytes[1:]
return true
}
// ReadASN1Bytes reads the contents of a DER-encoded ASN.1 element (not including
// tag and length bytes) into out, and advances. The element must match the
// given tag. It reports whether the read was successful.
func (s *String) ReadASN1Bytes(out *[]byte, tag asn1.Tag) bool {
return s.ReadASN1((*String)(out), tag)
}
// ReadASN1 reads the contents of a DER-encoded ASN.1 element (not including
// tag and length bytes) into out, and advances. The element must match the
// given tag. It reports whether the read was successful.
//
// Tags greater than 30 are not supported (i.e. low-tag-number format only).
func (s *String) ReadASN1(out *String, tag asn1.Tag) bool {
var t asn1.Tag
if !s.ReadAnyASN1(out, &t) || t != tag {
return false
}
return true
}
// ReadASN1Element reads the contents of a DER-encoded ASN.1 element (including
// tag and length bytes) into out, and advances. The element must match the
// given tag. It reports whether the read was successful.
//
// Tags greater than 30 are not supported (i.e. low-tag-number format only).
func (s *String) ReadASN1Element(out *String, tag asn1.Tag) bool {
var t asn1.Tag
if !s.ReadAnyASN1Element(out, &t) || t != tag {
return false
}
return true
}
// ReadAnyASN1 reads the contents of a DER-encoded ASN.1 element (not including
// tag and length bytes) into out, sets outTag to its tag, and advances.
// It reports whether the read was successful.
//
// Tags greater than 30 are not supported (i.e. low-tag-number format only).
func (s *String) ReadAnyASN1(out *String, outTag *asn1.Tag) bool {
return s.readASN1(out, outTag, true /* skip header */)
}
// ReadAnyASN1Element reads the contents of a DER-encoded ASN.1 element
// (including tag and length bytes) into out, sets outTag to is tag, and
// advances. It reports whether the read was successful.
//
// Tags greater than 30 are not supported (i.e. low-tag-number format only).
func (s *String) ReadAnyASN1Element(out *String, outTag *asn1.Tag) bool {
return s.readASN1(out, outTag, false /* include header */)
}
// PeekASN1Tag reports whether the next ASN.1 value on the string starts with
// the given tag.
func (s String) PeekASN1Tag(tag asn1.Tag) bool {
if len(s) == 0 {
return false
}
return asn1.Tag(s[0]) == tag
}
// SkipASN1 reads and discards an ASN.1 element with the given tag. It
// reports whether the operation was successful.
func (s *String) SkipASN1(tag asn1.Tag) bool {
var unused String
return s.ReadASN1(&unused, tag)
}
// ReadOptionalASN1 attempts to read the contents of a DER-encoded ASN.1
// element (not including tag and length bytes) tagged with the given tag into
// out. It stores whether an element with the tag was found in outPresent,
// unless outPresent is nil. It reports whether the read was successful.
func (s *String) ReadOptionalASN1(out *String, outPresent *bool, tag asn1.Tag) bool {
present := s.PeekASN1Tag(tag)
if outPresent != nil {
*outPresent = present
}
if present && !s.ReadASN1(out, tag) {
return false
}
return true
}
// SkipOptionalASN1 advances s over an ASN.1 element with the given tag, or
// else leaves s unchanged. It reports whether the operation was successful.
func (s *String) SkipOptionalASN1(tag asn1.Tag) bool {
if !s.PeekASN1Tag(tag) {
return true
}
var unused String
return s.ReadASN1(&unused, tag)
}
// ReadOptionalASN1Integer attempts to read an optional ASN.1 INTEGER
// explicitly tagged with tag into out and advances. If no element with a
// matching tag is present, it writes defaultValue into out instead. If out
// does not point to an integer or to a big.Int, it panics. It reports
// whether the read was successful.
func (s *String) ReadOptionalASN1Integer(out interface{}, tag asn1.Tag, defaultValue interface{}) bool {
if reflect.TypeOf(out).Kind() != reflect.Ptr {
panic("out is not a pointer")
}
var present bool
var i String
if !s.ReadOptionalASN1(&i, &present, tag) {
return false
}
if !present {
switch reflect.ValueOf(out).Elem().Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
reflect.ValueOf(out).Elem().Set(reflect.ValueOf(defaultValue))
case reflect.Struct:
if reflect.TypeOf(out).Elem() != bigIntType {
panic("invalid integer type")
}
if reflect.TypeOf(defaultValue).Kind() != reflect.Ptr ||
reflect.TypeOf(defaultValue).Elem() != bigIntType {
panic("out points to big.Int, but defaultValue does not")
}
out.(*big.Int).Set(defaultValue.(*big.Int))
default:
panic("invalid integer type")
}
return true
}
if !i.ReadASN1Integer(out) || !i.Empty() {
return false
}
return true
}
// ReadOptionalASN1OctetString attempts to read an optional ASN.1 OCTET STRING
// explicitly tagged with tag into out and advances. If no element with a
// matching tag is present, it sets "out" to nil instead. It reports
// whether the read was successful.
func (s *String) ReadOptionalASN1OctetString(out *[]byte, outPresent *bool, tag asn1.Tag) bool {
var present bool
var child String
if !s.ReadOptionalASN1(&child, &present, tag) {
return false
}
if outPresent != nil {
*outPresent = present
}
if present {
var oct String
if !child.ReadASN1(&oct, asn1.OCTET_STRING) || !child.Empty() {
return false
}
*out = oct
} else {
*out = nil
}
return true
}
// ReadOptionalASN1Boolean sets *out to the value of the next ASN.1 BOOLEAN or,
// if the next bytes are not an ASN.1 BOOLEAN, to the value of defaultValue.
// It reports whether the operation was successful.
func (s *String) ReadOptionalASN1Boolean(out *bool, defaultValue bool) bool {
var present bool
var child String
if !s.ReadOptionalASN1(&child, &present, asn1.BOOLEAN) {
return false
}
if !present {
*out = defaultValue
return true
}
return s.ReadASN1Boolean(out)
}
func (s *String) readASN1(out *String, outTag *asn1.Tag, skipHeader bool) bool {
if len(*s) < 2 {
return false
}
tag, lenByte := (*s)[0], (*s)[1]
if tag&0x1f == 0x1f {
// ITU-T X.690 section 8.1.2
//
// An identifier octet with a tag part of 0x1f indicates a high-tag-number
// form identifier with two or more octets. We only support tags less than
// 31 (i.e. low-tag-number form, single octet identifier).
return false
}
if outTag != nil {
*outTag = asn1.Tag(tag)
}
// ITU-T X.690 section 8.1.3
//
// Bit 8 of the first length byte indicates whether the length is short- or
// long-form.
var length, headerLen uint32 // length includes headerLen
if lenByte&0x80 == 0 {
// Short-form length (section 8.1.3.4), encoded in bits 1-7.
length = uint32(lenByte) + 2
headerLen = 2
} else {
// Long-form length (section 8.1.3.5). Bits 1-7 encode the number of octets
// used to encode the length.
lenLen := lenByte & 0x7f
var len32 uint32
if lenLen == 0 || lenLen > 4 || len(*s) < int(2+lenLen) {
return false
}
lenBytes := String((*s)[2 : 2+lenLen])
if !lenBytes.readUnsigned(&len32, int(lenLen)) {
return false
}
// ITU-T X.690 section 10.1 (DER length forms) requires encoding the length
// with the minimum number of octets.
if len32 < 128 {
// Length should have used short-form encoding.
return false
}
if len32>>((lenLen-1)*8) == 0 {
// Leading octet is 0. Length should have been at least one byte shorter.
return false
}
headerLen = 2 + uint32(lenLen)
if headerLen+len32 < len32 {
// Overflow.
return false
}
length = headerLen + len32
}
if uint32(int(length)) != length || !s.ReadBytes((*[]byte)(out), int(length)) {
return false
}
if skipHeader && !out.Skip(int(headerLen)) {
panic("cryptobyte: internal error")
}
return true
}

View file

@ -1,46 +0,0 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package asn1 contains supporting types for parsing and building ASN.1
// messages with the cryptobyte package.
package asn1 // import "golang.org/x/crypto/cryptobyte/asn1"
// Tag represents an ASN.1 identifier octet, consisting of a tag number
// (indicating a type) and class (such as context-specific or constructed).
//
// Methods in the cryptobyte package only support the low-tag-number form, i.e.
// a single identifier octet with bits 7-8 encoding the class and bits 1-6
// encoding the tag number.
type Tag uint8
const (
classConstructed = 0x20
classContextSpecific = 0x80
)
// Constructed returns t with the constructed class bit set.
func (t Tag) Constructed() Tag { return t | classConstructed }
// ContextSpecific returns t with the context-specific class bit set.
func (t Tag) ContextSpecific() Tag { return t | classContextSpecific }
// The following is a list of standard tag and class combinations.
const (
BOOLEAN = Tag(1)
INTEGER = Tag(2)
BIT_STRING = Tag(3)
OCTET_STRING = Tag(4)
NULL = Tag(5)
OBJECT_IDENTIFIER = Tag(6)
ENUM = Tag(10)
UTF8String = Tag(12)
SEQUENCE = Tag(16 | classConstructed)
SET = Tag(17 | classConstructed)
PrintableString = Tag(19)
T61String = Tag(20)
IA5String = Tag(22)
UTCTime = Tag(23)
GeneralizedTime = Tag(24)
GeneralString = Tag(27)
)

View file

@ -1,337 +0,0 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cryptobyte
import (
"errors"
"fmt"
)
// A Builder builds byte strings from fixed-length and length-prefixed values.
// Builders either allocate space as needed, or are ‘fixed’, which means that
// they write into a given buffer and produce an error if it's exhausted.
//
// The zero value is a usable Builder that allocates space as needed.
//
// Simple values are marshaled and appended to a Builder using methods on the
// Builder. Length-prefixed values are marshaled by providing a
// BuilderContinuation, which is a function that writes the inner contents of
// the value to a given Builder. See the documentation for BuilderContinuation
// for details.
type Builder struct {
err error
result []byte
fixedSize bool
child *Builder
offset int
pendingLenLen int
pendingIsASN1 bool
inContinuation *bool
}
// NewBuilder creates a Builder that appends its output to the given buffer.
// Like append(), the slice will be reallocated if its capacity is exceeded.
// Use Bytes to get the final buffer.
func NewBuilder(buffer []byte) *Builder {
return &Builder{
result: buffer,
}
}
// NewFixedBuilder creates a Builder that appends its output into the given
// buffer. This builder does not reallocate the output buffer. Writes that
// would exceed the buffer's capacity are treated as an error.
func NewFixedBuilder(buffer []byte) *Builder {
return &Builder{
result: buffer,
fixedSize: true,
}
}
// SetError sets the value to be returned as the error from Bytes. Writes
// performed after calling SetError are ignored.
func (b *Builder) SetError(err error) {
b.err = err
}
// Bytes returns the bytes written by the builder or an error if one has
// occurred during building.
func (b *Builder) Bytes() ([]byte, error) {
if b.err != nil {
return nil, b.err
}
return b.result[b.offset:], nil
}
// BytesOrPanic returns the bytes written by the builder or panics if an error
// has occurred during building.
func (b *Builder) BytesOrPanic() []byte {
if b.err != nil {
panic(b.err)
}
return b.result[b.offset:]
}
// AddUint8 appends an 8-bit value to the byte string.
func (b *Builder) AddUint8(v uint8) {
b.add(byte(v))
}
// AddUint16 appends a big-endian, 16-bit value to the byte string.
func (b *Builder) AddUint16(v uint16) {
b.add(byte(v>>8), byte(v))
}
// AddUint24 appends a big-endian, 24-bit value to the byte string. The highest
// byte of the 32-bit input value is silently truncated.
func (b *Builder) AddUint24(v uint32) {
b.add(byte(v>>16), byte(v>>8), byte(v))
}
// AddUint32 appends a big-endian, 32-bit value to the byte string.
func (b *Builder) AddUint32(v uint32) {
b.add(byte(v>>24), byte(v>>16), byte(v>>8), byte(v))
}
// AddBytes appends a sequence of bytes to the byte string.
func (b *Builder) AddBytes(v []byte) {
b.add(v...)
}
// BuilderContinuation is a continuation-passing interface for building
// length-prefixed byte sequences. Builder methods for length-prefixed
// sequences (AddUint8LengthPrefixed etc) will invoke the BuilderContinuation
// supplied to them. The child builder passed to the continuation can be used
// to build the content of the length-prefixed sequence. For example:
//
// parent := cryptobyte.NewBuilder()
// parent.AddUint8LengthPrefixed(func (child *Builder) {
// child.AddUint8(42)
// child.AddUint8LengthPrefixed(func (grandchild *Builder) {
// grandchild.AddUint8(5)
// })
// })
//
// It is an error to write more bytes to the child than allowed by the reserved
// length prefix. After the continuation returns, the child must be considered
// invalid, i.e. users must not store any copies or references of the child
// that outlive the continuation.
//
// If the continuation panics with a value of type BuildError then the inner
// error will be returned as the error from Bytes. If the child panics
// otherwise then Bytes will repanic with the same value.
type BuilderContinuation func(child *Builder)
// BuildError wraps an error. If a BuilderContinuation panics with this value,
// the panic will be recovered and the inner error will be returned from
// Builder.Bytes.
type BuildError struct {
Err error
}
// AddUint8LengthPrefixed adds a 8-bit length-prefixed byte sequence.
func (b *Builder) AddUint8LengthPrefixed(f BuilderContinuation) {
b.addLengthPrefixed(1, false, f)
}
// AddUint16LengthPrefixed adds a big-endian, 16-bit length-prefixed byte sequence.
func (b *Builder) AddUint16LengthPrefixed(f BuilderContinuation) {
b.addLengthPrefixed(2, false, f)
}
// AddUint24LengthPrefixed adds a big-endian, 24-bit length-prefixed byte sequence.
func (b *Builder) AddUint24LengthPrefixed(f BuilderContinuation) {
b.addLengthPrefixed(3, false, f)
}
// AddUint32LengthPrefixed adds a big-endian, 32-bit length-prefixed byte sequence.
func (b *Builder) AddUint32LengthPrefixed(f BuilderContinuation) {
b.addLengthPrefixed(4, false, f)
}
func (b *Builder) callContinuation(f BuilderContinuation, arg *Builder) {
if !*b.inContinuation {
*b.inContinuation = true
defer func() {
*b.inContinuation = false
r := recover()
if r == nil {
return
}
if buildError, ok := r.(BuildError); ok {
b.err = buildError.Err
} else {
panic(r)
}
}()
}
f(arg)
}
func (b *Builder) addLengthPrefixed(lenLen int, isASN1 bool, f BuilderContinuation) {
// Subsequent writes can be ignored if the builder has encountered an error.
if b.err != nil {
return
}
offset := len(b.result)
b.add(make([]byte, lenLen)...)
if b.inContinuation == nil {
b.inContinuation = new(bool)
}
b.child = &Builder{
result: b.result,
fixedSize: b.fixedSize,
offset: offset,
pendingLenLen: lenLen,
pendingIsASN1: isASN1,
inContinuation: b.inContinuation,
}
b.callContinuation(f, b.child)
b.flushChild()
if b.child != nil {
panic("cryptobyte: internal error")
}
}
func (b *Builder) flushChild() {
if b.child == nil {
return
}
b.child.flushChild()
child := b.child
b.child = nil
if child.err != nil {
b.err = child.err
return
}
length := len(child.result) - child.pendingLenLen - child.offset
if length < 0 {
panic("cryptobyte: internal error") // result unexpectedly shrunk
}
if child.pendingIsASN1 {
// For ASN.1, we reserved a single byte for the length. If that turned out
// to be incorrect, we have to move the contents along in order to make
// space.
if child.pendingLenLen != 1 {
panic("cryptobyte: internal error")
}
var lenLen, lenByte uint8
if int64(length) > 0xfffffffe {
b.err = errors.New("pending ASN.1 child too long")
return
} else if length > 0xffffff {
lenLen = 5
lenByte = 0x80 | 4
} else if length > 0xffff {
lenLen = 4
lenByte = 0x80 | 3
} else if length > 0xff {
lenLen = 3
lenByte = 0x80 | 2
} else if length > 0x7f {
lenLen = 2
lenByte = 0x80 | 1
} else {
lenLen = 1
lenByte = uint8(length)
length = 0
}
// Insert the initial length byte, make space for successive length bytes,
// and adjust the offset.
child.result[child.offset] = lenByte
extraBytes := int(lenLen - 1)
if extraBytes != 0 {
child.add(make([]byte, extraBytes)...)
childStart := child.offset + child.pendingLenLen
copy(child.result[childStart+extraBytes:], child.result[childStart:])
}
child.offset++
child.pendingLenLen = extraBytes
}
l := length
for i := child.pendingLenLen - 1; i >= 0; i-- {
child.result[child.offset+i] = uint8(l)
l >>= 8
}
if l != 0 {
b.err = fmt.Errorf("cryptobyte: pending child length %d exceeds %d-byte length prefix", length, child.pendingLenLen)
return
}
if b.fixedSize && &b.result[0] != &child.result[0] {
panic("cryptobyte: BuilderContinuation reallocated a fixed-size buffer")
}
b.result = child.result
}
func (b *Builder) add(bytes ...byte) {
if b.err != nil {
return
}
if b.child != nil {
panic("cryptobyte: attempted write while child is pending")
}
if len(b.result)+len(bytes) < len(bytes) {
b.err = errors.New("cryptobyte: length overflow")
}
if b.fixedSize && len(b.result)+len(bytes) > cap(b.result) {
b.err = errors.New("cryptobyte: Builder is exceeding its fixed-size buffer")
return
}
b.result = append(b.result, bytes...)
}
// Unwrite rolls back n bytes written directly to the Builder. An attempt by a
// child builder passed to a continuation to unwrite bytes from its parent will
// panic.
func (b *Builder) Unwrite(n int) {
if b.err != nil {
return
}
if b.child != nil {
panic("cryptobyte: attempted unwrite while child is pending")
}
length := len(b.result) - b.pendingLenLen - b.offset
if length < 0 {
panic("cryptobyte: internal error")
}
if n > length {
panic("cryptobyte: attempted to unwrite more than was written")
}
b.result = b.result[:len(b.result)-n]
}
// A MarshalingValue marshals itself into a Builder.
type MarshalingValue interface {
// Marshal is called by Builder.AddValue. It receives a pointer to a builder
// to marshal itself into. It may return an error that occurred during
// marshaling, such as unset or invalid values.
Marshal(b *Builder) error
}
// AddValue calls Marshal on v, passing a pointer to the builder to append to.
// If Marshal returns an error, it is set on the Builder so that subsequent
// appends don't have an effect.
func (b *Builder) AddValue(v MarshalingValue) {
err := v.Marshal(b)
if err != nil {
b.err = err
}
}

View file

@ -1,166 +0,0 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package cryptobyte contains types that help with parsing and constructing
// length-prefixed, binary messages, including ASN.1 DER. (The asn1 subpackage
// contains useful ASN.1 constants.)
//
// The String type is for parsing. It wraps a []byte slice and provides helper
// functions for consuming structures, value by value.
//
// The Builder type is for constructing messages. It providers helper functions
// for appending values and also for appending length-prefixed submessages –
// without having to worry about calculating the length prefix ahead of time.
//
// See the documentation and examples for the Builder and String types to get
// started.
package cryptobyte // import "golang.org/x/crypto/cryptobyte"
// String represents a string of bytes. It provides methods for parsing
// fixed-length and length-prefixed values from it.
type String []byte
// read advances a String by n bytes and returns them. If less than n bytes
// remain, it returns nil.
func (s *String) read(n int) []byte {
if len(*s) < n {
return nil
}
v := (*s)[:n]
*s = (*s)[n:]
return v
}
// Skip advances the String by n byte and reports whether it was successful.
func (s *String) Skip(n int) bool {
return s.read(n) != nil
}
// ReadUint8 decodes an 8-bit value into out and advances over it.
// It reports whether the read was successful.
func (s *String) ReadUint8(out *uint8) bool {
v := s.read(1)
if v == nil {
return false
}
*out = uint8(v[0])
return true
}
// ReadUint16 decodes a big-endian, 16-bit value into out and advances over it.
// It reports whether the read was successful.
func (s *String) ReadUint16(out *uint16) bool {
v := s.read(2)
if v == nil {
return false
}
*out = uint16(v[0])<<8 | uint16(v[1])
return true
}
// ReadUint24 decodes a big-endian, 24-bit value into out and advances over it.
// It reports whether the read was successful.
func (s *String) ReadUint24(out *uint32) bool {
v := s.read(3)
if v == nil {
return false
}
*out = uint32(v[0])<<16 | uint32(v[1])<<8 | uint32(v[2])
return true
}
// ReadUint32 decodes a big-endian, 32-bit value into out and advances over it.
// It reports whether the read was successful.
func (s *String) ReadUint32(out *uint32) bool {
v := s.read(4)
if v == nil {
return false
}
*out = uint32(v[0])<<24 | uint32(v[1])<<16 | uint32(v[2])<<8 | uint32(v[3])
return true
}
func (s *String) readUnsigned(out *uint32, length int) bool {
v := s.read(length)
if v == nil {
return false
}
var result uint32
for i := 0; i < length; i++ {
result <<= 8
result |= uint32(v[i])
}
*out = result
return true
}
func (s *String) readLengthPrefixed(lenLen int, outChild *String) bool {
lenBytes := s.read(lenLen)
if lenBytes == nil {
return false
}
var length uint32
for _, b := range lenBytes {
length = length << 8
length = length | uint32(b)
}
if int(length) < 0 {
// This currently cannot overflow because we read uint24 at most, but check
// anyway in case that changes in the future.
return false
}
v := s.read(int(length))
if v == nil {
return false
}
*outChild = v
return true
}
// ReadUint8LengthPrefixed reads the content of an 8-bit length-prefixed value
// into out and advances over it. It reports whether the read was successful.
func (s *String) ReadUint8LengthPrefixed(out *String) bool {
return s.readLengthPrefixed(1, out)
}
// ReadUint16LengthPrefixed reads the content of a big-endian, 16-bit
// length-prefixed value into out and advances over it. It reports whether the
// read was successful.
func (s *String) ReadUint16LengthPrefixed(out *String) bool {
return s.readLengthPrefixed(2, out)
}
// ReadUint24LengthPrefixed reads the content of a big-endian, 24-bit
// length-prefixed value into out and advances over it. It reports whether
// the read was successful.
func (s *String) ReadUint24LengthPrefixed(out *String) bool {
return s.readLengthPrefixed(3, out)
}
// ReadBytes reads n bytes into out and advances over them. It reports
// whether the read was successful.
func (s *String) ReadBytes(out *[]byte, n int) bool {
v := s.read(n)
if v == nil {
return false
}
*out = v
return true
}
// CopyBytes copies len(out) bytes into out and advances over them. It reports
// whether the copy operation was successful
func (s *String) CopyBytes(out []byte) bool {
n := len(out)
v := s.read(n)
if v == nil {
return false
}
return copy(out, v) == n
}
// Empty reports whether the string does not contain any bytes.
func (s String) Empty() bool {
return len(s) == 0
}

View file

@ -1,8 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This code was translated into a form compatible with 6a from the public
// domain sources in SUPERCOP: https://bench.cr.yp.to/supercop.html
#define REDMASK51 0x0007FFFFFFFFFFFF

View file

@ -1,20 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This code was translated into a form compatible with 6a from the public
// domain sources in SUPERCOP: https://bench.cr.yp.to/supercop.html
// +build amd64,!gccgo,!appengine
// These constants cannot be encoded in non-MOVQ immediates.
// We access them directly from memory instead.
DATA ·_121666_213(SB)/8, $996687872
GLOBL ·_121666_213(SB), 8, $8
DATA ·_2P0(SB)/8, $0xFFFFFFFFFFFDA
GLOBL ·_2P0(SB), 8, $8
DATA ·_2P1234(SB)/8, $0xFFFFFFFFFFFFE
GLOBL ·_2P1234(SB), 8, $8

View file

@ -1,65 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build amd64,!gccgo,!appengine
// func cswap(inout *[4][5]uint64, v uint64)
TEXT ·cswap(SB),7,$0
MOVQ inout+0(FP),DI
MOVQ v+8(FP),SI
SUBQ $1, SI
NOTQ SI
MOVQ SI, X15
PSHUFD $0x44, X15, X15
MOVOU 0(DI), X0
MOVOU 16(DI), X2
MOVOU 32(DI), X4
MOVOU 48(DI), X6
MOVOU 64(DI), X8
MOVOU 80(DI), X1
MOVOU 96(DI), X3
MOVOU 112(DI), X5
MOVOU 128(DI), X7
MOVOU 144(DI), X9
MOVO X1, X10
MOVO X3, X11
MOVO X5, X12
MOVO X7, X13
MOVO X9, X14
PXOR X0, X10
PXOR X2, X11
PXOR X4, X12
PXOR X6, X13
PXOR X8, X14
PAND X15, X10
PAND X15, X11
PAND X15, X12
PAND X15, X13
PAND X15, X14
PXOR X10, X0
PXOR X10, X1
PXOR X11, X2
PXOR X11, X3
PXOR X12, X4
PXOR X12, X5
PXOR X13, X6
PXOR X13, X7
PXOR X14, X8
PXOR X14, X9
MOVOU X0, 0(DI)
MOVOU X2, 16(DI)
MOVOU X4, 32(DI)
MOVOU X6, 48(DI)
MOVOU X8, 64(DI)
MOVOU X1, 80(DI)
MOVOU X3, 96(DI)
MOVOU X5, 112(DI)
MOVOU X7, 128(DI)
MOVOU X9, 144(DI)
RET

View file

@ -1,834 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// We have an implementation in amd64 assembly so this code is only run on
// non-amd64 platforms. The amd64 assembly does not support gccgo.
// +build !amd64 gccgo appengine
package curve25519
import (
"encoding/binary"
)
// This code is a port of the public domain, "ref10" implementation of
// curve25519 from SUPERCOP 20130419 by D. J. Bernstein.
// fieldElement represents an element of the field GF(2^255 - 19). An element
// t, entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77
// t[3]+2^102 t[4]+...+2^230 t[9]. Bounds on each t[i] vary depending on
// context.
type fieldElement [10]int32
func feZero(fe *fieldElement) {
for i := range fe {
fe[i] = 0
}
}
func feOne(fe *fieldElement) {
feZero(fe)
fe[0] = 1
}
func feAdd(dst, a, b *fieldElement) {
for i := range dst {
dst[i] = a[i] + b[i]
}
}
func feSub(dst, a, b *fieldElement) {
for i := range dst {
dst[i] = a[i] - b[i]
}
}
func feCopy(dst, src *fieldElement) {
for i := range dst {
dst[i] = src[i]
}
}
// feCSwap replaces (f,g) with (g,f) if b == 1; replaces (f,g) with (f,g) if b == 0.
//
// Preconditions: b in {0,1}.
func feCSwap(f, g *fieldElement, b int32) {
b = -b
for i := range f {
t := b & (f[i] ^ g[i])
f[i] ^= t
g[i] ^= t
}
}
// load3 reads a 24-bit, little-endian value from in.
func load3(in []byte) int64 {
var r int64
r = int64(in[0])
r |= int64(in[1]) << 8
r |= int64(in[2]) << 16
return r
}
// load4 reads a 32-bit, little-endian value from in.
func load4(in []byte) int64 {
return int64(binary.LittleEndian.Uint32(in))
}
func feFromBytes(dst *fieldElement, src *[32]byte) {
h0 := load4(src[:])
h1 := load3(src[4:]) << 6
h2 := load3(src[7:]) << 5
h3 := load3(src[10:]) << 3
h4 := load3(src[13:]) << 2
h5 := load4(src[16:])
h6 := load3(src[20:]) << 7
h7 := load3(src[23:]) << 5
h8 := load3(src[26:]) << 4
h9 := (load3(src[29:]) & 0x7fffff) << 2
var carry [10]int64
carry[9] = (h9 + 1<<24) >> 25
h0 += carry[9] * 19
h9 -= carry[9] << 25
carry[1] = (h1 + 1<<24) >> 25
h2 += carry[1]
h1 -= carry[1] << 25
carry[3] = (h3 + 1<<24) >> 25
h4 += carry[3]
h3 -= carry[3] << 25
carry[5] = (h5 + 1<<24) >> 25
h6 += carry[5]
h5 -= carry[5] << 25
carry[7] = (h7 + 1<<24) >> 25
h8 += carry[7]
h7 -= carry[7] << 25
carry[0] = (h0 + 1<<25) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
carry[2] = (h2 + 1<<25) >> 26
h3 += carry[2]
h2 -= carry[2] << 26
carry[4] = (h4 + 1<<25) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[6] = (h6 + 1<<25) >> 26
h7 += carry[6]
h6 -= carry[6] << 26
carry[8] = (h8 + 1<<25) >> 26
h9 += carry[8]
h8 -= carry[8] << 26
dst[0] = int32(h0)
dst[1] = int32(h1)
dst[2] = int32(h2)
dst[3] = int32(h3)
dst[4] = int32(h4)
dst[5] = int32(h5)
dst[6] = int32(h6)
dst[7] = int32(h7)
dst[8] = int32(h8)
dst[9] = int32(h9)
}
// feToBytes marshals h to s.
// Preconditions:
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
//
// Write p=2^255-19; q=floor(h/p).
// Basic claim: q = floor(2^(-255)(h + 19 2^(-25)h9 + 2^(-1))).
//
// Proof:
// Have |h|<=p so |q|<=1 so |19^2 2^(-255) q|<1/4.
// Also have |h-2^230 h9|<2^230 so |19 2^(-255)(h-2^230 h9)|<1/4.
//
// Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9).
// Then 0<y<1.
//
// Write r=h-pq.
// Have 0<=r<=p-1=2^255-20.
// Thus 0<=r+19(2^-255)r<r+19(2^-255)2^255<=2^255-1.
//
// Write x=r+19(2^-255)r+y.
// Then 0<x<2^255 so floor(2^(-255)x) = 0 so floor(q+2^(-255)x) = q.
//
// Have q+2^(-255)x = 2^(-255)(h + 19 2^(-25) h9 + 2^(-1))
// so floor(2^(-255)(h + 19 2^(-25) h9 + 2^(-1))) = q.
func feToBytes(s *[32]byte, h *fieldElement) {
var carry [10]int32
q := (19*h[9] + (1 << 24)) >> 25
q = (h[0] + q) >> 26
q = (h[1] + q) >> 25
q = (h[2] + q) >> 26
q = (h[3] + q) >> 25
q = (h[4] + q) >> 26
q = (h[5] + q) >> 25
q = (h[6] + q) >> 26
q = (h[7] + q) >> 25
q = (h[8] + q) >> 26
q = (h[9] + q) >> 25
// Goal: Output h-(2^255-19)q, which is between 0 and 2^255-20.
h[0] += 19 * q
// Goal: Output h-2^255 q, which is between 0 and 2^255-20.
carry[0] = h[0] >> 26
h[1] += carry[0]
h[0] -= carry[0] << 26
carry[1] = h[1] >> 25
h[2] += carry[1]
h[1] -= carry[1] << 25
carry[2] = h[2] >> 26
h[3] += carry[2]
h[2] -= carry[2] << 26
carry[3] = h[3] >> 25
h[4] += carry[3]
h[3] -= carry[3] << 25
carry[4] = h[4] >> 26
h[5] += carry[4]
h[4] -= carry[4] << 26
carry[5] = h[5] >> 25
h[6] += carry[5]
h[5] -= carry[5] << 25
carry[6] = h[6] >> 26
h[7] += carry[6]
h[6] -= carry[6] << 26
carry[7] = h[7] >> 25
h[8] += carry[7]
h[7] -= carry[7] << 25
carry[8] = h[8] >> 26
h[9] += carry[8]
h[8] -= carry[8] << 26
carry[9] = h[9] >> 25
h[9] -= carry[9] << 25
// h10 = carry9
// Goal: Output h[0]+...+2^255 h10-2^255 q, which is between 0 and 2^255-20.
// Have h[0]+...+2^230 h[9] between 0 and 2^255-1;
// evidently 2^255 h10-2^255 q = 0.
// Goal: Output h[0]+...+2^230 h[9].
s[0] = byte(h[0] >> 0)
s[1] = byte(h[0] >> 8)
s[2] = byte(h[0] >> 16)
s[3] = byte((h[0] >> 24) | (h[1] << 2))
s[4] = byte(h[1] >> 6)
s[5] = byte(h[1] >> 14)
s[6] = byte((h[1] >> 22) | (h[2] << 3))
s[7] = byte(h[2] >> 5)
s[8] = byte(h[2] >> 13)
s[9] = byte((h[2] >> 21) | (h[3] << 5))
s[10] = byte(h[3] >> 3)
s[11] = byte(h[3] >> 11)
s[12] = byte((h[3] >> 19) | (h[4] << 6))
s[13] = byte(h[4] >> 2)
s[14] = byte(h[4] >> 10)
s[15] = byte(h[4] >> 18)
s[16] = byte(h[5] >> 0)
s[17] = byte(h[5] >> 8)
s[18] = byte(h[5] >> 16)
s[19] = byte((h[5] >> 24) | (h[6] << 1))
s[20] = byte(h[6] >> 7)
s[21] = byte(h[6] >> 15)
s[22] = byte((h[6] >> 23) | (h[7] << 3))
s[23] = byte(h[7] >> 5)
s[24] = byte(h[7] >> 13)
s[25] = byte((h[7] >> 21) | (h[8] << 4))
s[26] = byte(h[8] >> 4)
s[27] = byte(h[8] >> 12)
s[28] = byte((h[8] >> 20) | (h[9] << 6))
s[29] = byte(h[9] >> 2)
s[30] = byte(h[9] >> 10)
s[31] = byte(h[9] >> 18)
}
// feMul calculates h = f * g
// Can overlap h with f or g.
//
// Preconditions:
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
// |g| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
//
// Postconditions:
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
//
// Notes on implementation strategy:
//
// Using schoolbook multiplication.
// Karatsuba would save a little in some cost models.
//
// Most multiplications by 2 and 19 are 32-bit precomputations;
// cheaper than 64-bit postcomputations.
//
// There is one remaining multiplication by 19 in the carry chain;
// one *19 precomputation can be merged into this,
// but the resulting data flow is considerably less clean.
//
// There are 12 carries below.
// 10 of them are 2-way parallelizable and vectorizable.
// Can get away with 11 carries, but then data flow is much deeper.
//
// With tighter constraints on inputs can squeeze carries into int32.
func feMul(h, f, g *fieldElement) {
f0 := f[0]
f1 := f[1]
f2 := f[2]
f3 := f[3]
f4 := f[4]
f5 := f[5]
f6 := f[6]
f7 := f[7]
f8 := f[8]
f9 := f[9]
g0 := g[0]
g1 := g[1]
g2 := g[2]
g3 := g[3]
g4 := g[4]
g5 := g[5]
g6 := g[6]
g7 := g[7]
g8 := g[8]
g9 := g[9]
g1_19 := 19 * g1 // 1.4*2^29
g2_19 := 19 * g2 // 1.4*2^30; still ok
g3_19 := 19 * g3
g4_19 := 19 * g4
g5_19 := 19 * g5
g6_19 := 19 * g6
g7_19 := 19 * g7
g8_19 := 19 * g8
g9_19 := 19 * g9
f1_2 := 2 * f1
f3_2 := 2 * f3
f5_2 := 2 * f5
f7_2 := 2 * f7
f9_2 := 2 * f9
f0g0 := int64(f0) * int64(g0)
f0g1 := int64(f0) * int64(g1)
f0g2 := int64(f0) * int64(g2)
f0g3 := int64(f0) * int64(g3)
f0g4 := int64(f0) * int64(g4)
f0g5 := int64(f0) * int64(g5)
f0g6 := int64(f0) * int64(g6)
f0g7 := int64(f0) * int64(g7)
f0g8 := int64(f0) * int64(g8)
f0g9 := int64(f0) * int64(g9)
f1g0 := int64(f1) * int64(g0)
f1g1_2 := int64(f1_2) * int64(g1)
f1g2 := int64(f1) * int64(g2)
f1g3_2 := int64(f1_2) * int64(g3)
f1g4 := int64(f1) * int64(g4)
f1g5_2 := int64(f1_2) * int64(g5)
f1g6 := int64(f1) * int64(g6)
f1g7_2 := int64(f1_2) * int64(g7)
f1g8 := int64(f1) * int64(g8)
f1g9_38 := int64(f1_2) * int64(g9_19)
f2g0 := int64(f2) * int64(g0)
f2g1 := int64(f2) * int64(g1)
f2g2 := int64(f2) * int64(g2)
f2g3 := int64(f2) * int64(g3)
f2g4 := int64(f2) * int64(g4)
f2g5 := int64(f2) * int64(g5)
f2g6 := int64(f2) * int64(g6)
f2g7 := int64(f2) * int64(g7)
f2g8_19 := int64(f2) * int64(g8_19)
f2g9_19 := int64(f2) * int64(g9_19)
f3g0 := int64(f3) * int64(g0)
f3g1_2 := int64(f3_2) * int64(g1)
f3g2 := int64(f3) * int64(g2)
f3g3_2 := int64(f3_2) * int64(g3)
f3g4 := int64(f3) * int64(g4)
f3g5_2 := int64(f3_2) * int64(g5)
f3g6 := int64(f3) * int64(g6)
f3g7_38 := int64(f3_2) * int64(g7_19)
f3g8_19 := int64(f3) * int64(g8_19)
f3g9_38 := int64(f3_2) * int64(g9_19)
f4g0 := int64(f4) * int64(g0)
f4g1 := int64(f4) * int64(g1)
f4g2 := int64(f4) * int64(g2)
f4g3 := int64(f4) * int64(g3)
f4g4 := int64(f4) * int64(g4)
f4g5 := int64(f4) * int64(g5)
f4g6_19 := int64(f4) * int64(g6_19)
f4g7_19 := int64(f4) * int64(g7_19)
f4g8_19 := int64(f4) * int64(g8_19)
f4g9_19 := int64(f4) * int64(g9_19)
f5g0 := int64(f5) * int64(g0)
f5g1_2 := int64(f5_2) * int64(g1)
f5g2 := int64(f5) * int64(g2)
f5g3_2 := int64(f5_2) * int64(g3)
f5g4 := int64(f5) * int64(g4)
f5g5_38 := int64(f5_2) * int64(g5_19)
f5g6_19 := int64(f5) * int64(g6_19)
f5g7_38 := int64(f5_2) * int64(g7_19)
f5g8_19 := int64(f5) * int64(g8_19)
f5g9_38 := int64(f5_2) * int64(g9_19)
f6g0 := int64(f6) * int64(g0)
f6g1 := int64(f6) * int64(g1)
f6g2 := int64(f6) * int64(g2)
f6g3 := int64(f6) * int64(g3)
f6g4_19 := int64(f6) * int64(g4_19)
f6g5_19 := int64(f6) * int64(g5_19)
f6g6_19 := int64(f6) * int64(g6_19)
f6g7_19 := int64(f6) * int64(g7_19)
f6g8_19 := int64(f6) * int64(g8_19)
f6g9_19 := int64(f6) * int64(g9_19)
f7g0 := int64(f7) * int64(g0)
f7g1_2 := int64(f7_2) * int64(g1)
f7g2 := int64(f7) * int64(g2)
f7g3_38 := int64(f7_2) * int64(g3_19)
f7g4_19 := int64(f7) * int64(g4_19)
f7g5_38 := int64(f7_2) * int64(g5_19)
f7g6_19 := int64(f7) * int64(g6_19)
f7g7_38 := int64(f7_2) * int64(g7_19)
f7g8_19 := int64(f7) * int64(g8_19)
f7g9_38 := int64(f7_2) * int64(g9_19)
f8g0 := int64(f8) * int64(g0)
f8g1 := int64(f8) * int64(g1)
f8g2_19 := int64(f8) * int64(g2_19)
f8g3_19 := int64(f8) * int64(g3_19)
f8g4_19 := int64(f8) * int64(g4_19)
f8g5_19 := int64(f8) * int64(g5_19)
f8g6_19 := int64(f8) * int64(g6_19)
f8g7_19 := int64(f8) * int64(g7_19)
f8g8_19 := int64(f8) * int64(g8_19)
f8g9_19 := int64(f8) * int64(g9_19)
f9g0 := int64(f9) * int64(g0)
f9g1_38 := int64(f9_2) * int64(g1_19)
f9g2_19 := int64(f9) * int64(g2_19)
f9g3_38 := int64(f9_2) * int64(g3_19)
f9g4_19 := int64(f9) * int64(g4_19)
f9g5_38 := int64(f9_2) * int64(g5_19)
f9g6_19 := int64(f9) * int64(g6_19)
f9g7_38 := int64(f9_2) * int64(g7_19)
f9g8_19 := int64(f9) * int64(g8_19)
f9g9_38 := int64(f9_2) * int64(g9_19)
h0 := f0g0 + f1g9_38 + f2g8_19 + f3g7_38 + f4g6_19 + f5g5_38 + f6g4_19 + f7g3_38 + f8g2_19 + f9g1_38
h1 := f0g1 + f1g0 + f2g9_19 + f3g8_19 + f4g7_19 + f5g6_19 + f6g5_19 + f7g4_19 + f8g3_19 + f9g2_19
h2 := f0g2 + f1g1_2 + f2g0 + f3g9_38 + f4g8_19 + f5g7_38 + f6g6_19 + f7g5_38 + f8g4_19 + f9g3_38
h3 := f0g3 + f1g2 + f2g1 + f3g0 + f4g9_19 + f5g8_19 + f6g7_19 + f7g6_19 + f8g5_19 + f9g4_19
h4 := f0g4 + f1g3_2 + f2g2 + f3g1_2 + f4g0 + f5g9_38 + f6g8_19 + f7g7_38 + f8g6_19 + f9g5_38
h5 := f0g5 + f1g4 + f2g3 + f3g2 + f4g1 + f5g0 + f6g9_19 + f7g8_19 + f8g7_19 + f9g6_19
h6 := f0g6 + f1g5_2 + f2g4 + f3g3_2 + f4g2 + f5g1_2 + f6g0 + f7g9_38 + f8g8_19 + f9g7_38
h7 := f0g7 + f1g6 + f2g5 + f3g4 + f4g3 + f5g2 + f6g1 + f7g0 + f8g9_19 + f9g8_19
h8 := f0g8 + f1g7_2 + f2g6 + f3g5_2 + f4g4 + f5g3_2 + f6g2 + f7g1_2 + f8g0 + f9g9_38
h9 := f0g9 + f1g8 + f2g7 + f3g6 + f4g5 + f5g4 + f6g3 + f7g2 + f8g1 + f9g0
var carry [10]int64
// |h0| <= (1.1*1.1*2^52*(1+19+19+19+19)+1.1*1.1*2^50*(38+38+38+38+38))
// i.e. |h0| <= 1.2*2^59; narrower ranges for h2, h4, h6, h8
// |h1| <= (1.1*1.1*2^51*(1+1+19+19+19+19+19+19+19+19))
// i.e. |h1| <= 1.5*2^58; narrower ranges for h3, h5, h7, h9
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
// |h0| <= 2^25
// |h4| <= 2^25
// |h1| <= 1.51*2^58
// |h5| <= 1.51*2^58
carry[1] = (h1 + (1 << 24)) >> 25
h2 += carry[1]
h1 -= carry[1] << 25
carry[5] = (h5 + (1 << 24)) >> 25
h6 += carry[5]
h5 -= carry[5] << 25
// |h1| <= 2^24; from now on fits into int32
// |h5| <= 2^24; from now on fits into int32
// |h2| <= 1.21*2^59
// |h6| <= 1.21*2^59
carry[2] = (h2 + (1 << 25)) >> 26
h3 += carry[2]
h2 -= carry[2] << 26
carry[6] = (h6 + (1 << 25)) >> 26
h7 += carry[6]
h6 -= carry[6] << 26
// |h2| <= 2^25; from now on fits into int32 unchanged
// |h6| <= 2^25; from now on fits into int32 unchanged
// |h3| <= 1.51*2^58
// |h7| <= 1.51*2^58
carry[3] = (h3 + (1 << 24)) >> 25
h4 += carry[3]
h3 -= carry[3] << 25
carry[7] = (h7 + (1 << 24)) >> 25
h8 += carry[7]
h7 -= carry[7] << 25
// |h3| <= 2^24; from now on fits into int32 unchanged
// |h7| <= 2^24; from now on fits into int32 unchanged
// |h4| <= 1.52*2^33
// |h8| <= 1.52*2^33
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[8] = (h8 + (1 << 25)) >> 26
h9 += carry[8]
h8 -= carry[8] << 26
// |h4| <= 2^25; from now on fits into int32 unchanged
// |h8| <= 2^25; from now on fits into int32 unchanged
// |h5| <= 1.01*2^24
// |h9| <= 1.51*2^58
carry[9] = (h9 + (1 << 24)) >> 25
h0 += carry[9] * 19
h9 -= carry[9] << 25
// |h9| <= 2^24; from now on fits into int32 unchanged
// |h0| <= 1.8*2^37
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
// |h0| <= 2^25; from now on fits into int32 unchanged
// |h1| <= 1.01*2^24
h[0] = int32(h0)
h[1] = int32(h1)
h[2] = int32(h2)
h[3] = int32(h3)
h[4] = int32(h4)
h[5] = int32(h5)
h[6] = int32(h6)
h[7] = int32(h7)
h[8] = int32(h8)
h[9] = int32(h9)
}
// feSquare calculates h = f*f. Can overlap h with f.
//
// Preconditions:
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
//
// Postconditions:
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
func feSquare(h, f *fieldElement) {
f0 := f[0]
f1 := f[1]
f2 := f[2]
f3 := f[3]
f4 := f[4]
f5 := f[5]
f6 := f[6]
f7 := f[7]
f8 := f[8]
f9 := f[9]
f0_2 := 2 * f0
f1_2 := 2 * f1
f2_2 := 2 * f2
f3_2 := 2 * f3
f4_2 := 2 * f4
f5_2 := 2 * f5
f6_2 := 2 * f6
f7_2 := 2 * f7
f5_38 := 38 * f5 // 1.31*2^30
f6_19 := 19 * f6 // 1.31*2^30
f7_38 := 38 * f7 // 1.31*2^30
f8_19 := 19 * f8 // 1.31*2^30
f9_38 := 38 * f9 // 1.31*2^30
f0f0 := int64(f0) * int64(f0)
f0f1_2 := int64(f0_2) * int64(f1)
f0f2_2 := int64(f0_2) * int64(f2)
f0f3_2 := int64(f0_2) * int64(f3)
f0f4_2 := int64(f0_2) * int64(f4)
f0f5_2 := int64(f0_2) * int64(f5)
f0f6_2 := int64(f0_2) * int64(f6)
f0f7_2 := int64(f0_2) * int64(f7)
f0f8_2 := int64(f0_2) * int64(f8)
f0f9_2 := int64(f0_2) * int64(f9)
f1f1_2 := int64(f1_2) * int64(f1)
f1f2_2 := int64(f1_2) * int64(f2)
f1f3_4 := int64(f1_2) * int64(f3_2)
f1f4_2 := int64(f1_2) * int64(f4)
f1f5_4 := int64(f1_2) * int64(f5_2)
f1f6_2 := int64(f1_2) * int64(f6)
f1f7_4 := int64(f1_2) * int64(f7_2)
f1f8_2 := int64(f1_2) * int64(f8)
f1f9_76 := int64(f1_2) * int64(f9_38)
f2f2 := int64(f2) * int64(f2)
f2f3_2 := int64(f2_2) * int64(f3)
f2f4_2 := int64(f2_2) * int64(f4)
f2f5_2 := int64(f2_2) * int64(f5)
f2f6_2 := int64(f2_2) * int64(f6)
f2f7_2 := int64(f2_2) * int64(f7)
f2f8_38 := int64(f2_2) * int64(f8_19)
f2f9_38 := int64(f2) * int64(f9_38)
f3f3_2 := int64(f3_2) * int64(f3)
f3f4_2 := int64(f3_2) * int64(f4)
f3f5_4 := int64(f3_2) * int64(f5_2)
f3f6_2 := int64(f3_2) * int64(f6)
f3f7_76 := int64(f3_2) * int64(f7_38)
f3f8_38 := int64(f3_2) * int64(f8_19)
f3f9_76 := int64(f3_2) * int64(f9_38)
f4f4 := int64(f4) * int64(f4)
f4f5_2 := int64(f4_2) * int64(f5)
f4f6_38 := int64(f4_2) * int64(f6_19)
f4f7_38 := int64(f4) * int64(f7_38)
f4f8_38 := int64(f4_2) * int64(f8_19)
f4f9_38 := int64(f4) * int64(f9_38)
f5f5_38 := int64(f5) * int64(f5_38)
f5f6_38 := int64(f5_2) * int64(f6_19)
f5f7_76 := int64(f5_2) * int64(f7_38)
f5f8_38 := int64(f5_2) * int64(f8_19)
f5f9_76 := int64(f5_2) * int64(f9_38)
f6f6_19 := int64(f6) * int64(f6_19)
f6f7_38 := int64(f6) * int64(f7_38)
f6f8_38 := int64(f6_2) * int64(f8_19)
f6f9_38 := int64(f6) * int64(f9_38)
f7f7_38 := int64(f7) * int64(f7_38)
f7f8_38 := int64(f7_2) * int64(f8_19)
f7f9_76 := int64(f7_2) * int64(f9_38)
f8f8_19 := int64(f8) * int64(f8_19)
f8f9_38 := int64(f8) * int64(f9_38)
f9f9_38 := int64(f9) * int64(f9_38)
h0 := f0f0 + f1f9_76 + f2f8_38 + f3f7_76 + f4f6_38 + f5f5_38
h1 := f0f1_2 + f2f9_38 + f3f8_38 + f4f7_38 + f5f6_38
h2 := f0f2_2 + f1f1_2 + f3f9_76 + f4f8_38 + f5f7_76 + f6f6_19
h3 := f0f3_2 + f1f2_2 + f4f9_38 + f5f8_38 + f6f7_38
h4 := f0f4_2 + f1f3_4 + f2f2 + f5f9_76 + f6f8_38 + f7f7_38
h5 := f0f5_2 + f1f4_2 + f2f3_2 + f6f9_38 + f7f8_38
h6 := f0f6_2 + f1f5_4 + f2f4_2 + f3f3_2 + f7f9_76 + f8f8_19
h7 := f0f7_2 + f1f6_2 + f2f5_2 + f3f4_2 + f8f9_38
h8 := f0f8_2 + f1f7_4 + f2f6_2 + f3f5_4 + f4f4 + f9f9_38
h9 := f0f9_2 + f1f8_2 + f2f7_2 + f3f6_2 + f4f5_2
var carry [10]int64
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[1] = (h1 + (1 << 24)) >> 25
h2 += carry[1]
h1 -= carry[1] << 25
carry[5] = (h5 + (1 << 24)) >> 25
h6 += carry[5]
h5 -= carry[5] << 25
carry[2] = (h2 + (1 << 25)) >> 26
h3 += carry[2]
h2 -= carry[2] << 26
carry[6] = (h6 + (1 << 25)) >> 26
h7 += carry[6]
h6 -= carry[6] << 26
carry[3] = (h3 + (1 << 24)) >> 25
h4 += carry[3]
h3 -= carry[3] << 25
carry[7] = (h7 + (1 << 24)) >> 25
h8 += carry[7]
h7 -= carry[7] << 25
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[8] = (h8 + (1 << 25)) >> 26
h9 += carry[8]
h8 -= carry[8] << 26
carry[9] = (h9 + (1 << 24)) >> 25
h0 += carry[9] * 19
h9 -= carry[9] << 25
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
h[0] = int32(h0)
h[1] = int32(h1)
h[2] = int32(h2)
h[3] = int32(h3)
h[4] = int32(h4)
h[5] = int32(h5)
h[6] = int32(h6)
h[7] = int32(h7)
h[8] = int32(h8)
h[9] = int32(h9)
}
// feMul121666 calculates h = f * 121666. Can overlap h with f.
//
// Preconditions:
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
//
// Postconditions:
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
func feMul121666(h, f *fieldElement) {
h0 := int64(f[0]) * 121666
h1 := int64(f[1]) * 121666
h2 := int64(f[2]) * 121666
h3 := int64(f[3]) * 121666
h4 := int64(f[4]) * 121666
h5 := int64(f[5]) * 121666
h6 := int64(f[6]) * 121666
h7 := int64(f[7]) * 121666
h8 := int64(f[8]) * 121666
h9 := int64(f[9]) * 121666
var carry [10]int64
carry[9] = (h9 + (1 << 24)) >> 25
h0 += carry[9] * 19
h9 -= carry[9] << 25
carry[1] = (h1 + (1 << 24)) >> 25
h2 += carry[1]
h1 -= carry[1] << 25
carry[3] = (h3 + (1 << 24)) >> 25
h4 += carry[3]
h3 -= carry[3] << 25
carry[5] = (h5 + (1 << 24)) >> 25
h6 += carry[5]
h5 -= carry[5] << 25
carry[7] = (h7 + (1 << 24)) >> 25
h8 += carry[7]
h7 -= carry[7] << 25
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
carry[2] = (h2 + (1 << 25)) >> 26
h3 += carry[2]
h2 -= carry[2] << 26
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[6] = (h6 + (1 << 25)) >> 26
h7 += carry[6]
h6 -= carry[6] << 26
carry[8] = (h8 + (1 << 25)) >> 26
h9 += carry[8]
h8 -= carry[8] << 26
h[0] = int32(h0)
h[1] = int32(h1)
h[2] = int32(h2)
h[3] = int32(h3)
h[4] = int32(h4)
h[5] = int32(h5)
h[6] = int32(h6)
h[7] = int32(h7)
h[8] = int32(h8)
h[9] = int32(h9)
}
// feInvert sets out = z^-1.
func feInvert(out, z *fieldElement) {
var t0, t1, t2, t3 fieldElement
var i int
feSquare(&t0, z)
for i = 1; i < 1; i++ {
feSquare(&t0, &t0)
}
feSquare(&t1, &t0)
for i = 1; i < 2; i++ {
feSquare(&t1, &t1)
}
feMul(&t1, z, &t1)
feMul(&t0, &t0, &t1)
feSquare(&t2, &t0)
for i = 1; i < 1; i++ {
feSquare(&t2, &t2)
}
feMul(&t1, &t1, &t2)
feSquare(&t2, &t1)
for i = 1; i < 5; i++ {
feSquare(&t2, &t2)
}
feMul(&t1, &t2, &t1)
feSquare(&t2, &t1)
for i = 1; i < 10; i++ {
feSquare(&t2, &t2)
}
feMul(&t2, &t2, &t1)
feSquare(&t3, &t2)
for i = 1; i < 20; i++ {
feSquare(&t3, &t3)
}
feMul(&t2, &t3, &t2)
feSquare(&t2, &t2)
for i = 1; i < 10; i++ {
feSquare(&t2, &t2)
}
feMul(&t1, &t2, &t1)
feSquare(&t2, &t1)
for i = 1; i < 50; i++ {
feSquare(&t2, &t2)
}
feMul(&t2, &t2, &t1)
feSquare(&t3, &t2)
for i = 1; i < 100; i++ {
feSquare(&t3, &t3)
}
feMul(&t2, &t3, &t2)
feSquare(&t2, &t2)
for i = 1; i < 50; i++ {
feSquare(&t2, &t2)
}
feMul(&t1, &t2, &t1)
feSquare(&t1, &t1)
for i = 1; i < 5; i++ {
feSquare(&t1, &t1)
}
feMul(out, &t1, &t0)
}
func scalarMult(out, in, base *[32]byte) {
var e [32]byte
copy(e[:], in[:])
e[0] &= 248
e[31] &= 127
e[31] |= 64
var x1, x2, z2, x3, z3, tmp0, tmp1 fieldElement
feFromBytes(&x1, base)
feOne(&x2)
feCopy(&x3, &x1)
feOne(&z3)
swap := int32(0)
for pos := 254; pos >= 0; pos-- {
b := e[pos/8] >> uint(pos&7)
b &= 1
swap ^= int32(b)
feCSwap(&x2, &x3, swap)
feCSwap(&z2, &z3, swap)
swap = int32(b)
feSub(&tmp0, &x3, &z3)
feSub(&tmp1, &x2, &z2)
feAdd(&x2, &x2, &z2)
feAdd(&z2, &x3, &z3)
feMul(&z3, &tmp0, &x2)
feMul(&z2, &z2, &tmp1)
feSquare(&tmp0, &tmp1)
feSquare(&tmp1, &x2)
feAdd(&x3, &z3, &z2)
feSub(&z2, &z3, &z2)
feMul(&x2, &tmp1, &tmp0)
feSub(&tmp1, &tmp1, &tmp0)
feSquare(&z2, &z2)
feMul121666(&z3, &tmp1)
feSquare(&x3, &x3)
feAdd(&tmp0, &tmp0, &z3)
feMul(&z3, &x1, &z2)
feMul(&z2, &tmp1, &tmp0)
}
feCSwap(&x2, &x3, swap)
feCSwap(&z2, &z3, swap)
feInvert(&z2, &z2)
feMul(&x2, &x2, &z2)
feToBytes(out, &x2)
}

View file

@ -1,23 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package curve25519 provides an implementation of scalar multiplication on
// the elliptic curve known as curve25519. See https://cr.yp.to/ecdh.html
package curve25519 // import "golang.org/x/crypto/curve25519"
// basePoint is the x coordinate of the generator of the curve.
var basePoint = [32]byte{9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
// ScalarMult sets dst to the product in*base where dst and base are the x
// coordinates of group points and all values are in little-endian form.
func ScalarMult(dst, in, base *[32]byte) {
scalarMult(dst, in, base)
}
// ScalarBaseMult sets dst to the product in*base where dst and base are the x
// coordinates of group points, base is the standard generator and all values
// are in little-endian form.
func ScalarBaseMult(dst, in *[32]byte) {
ScalarMult(dst, in, &basePoint)
}

View file

@ -1,73 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This code was translated into a form compatible with 6a from the public
// domain sources in SUPERCOP: https://bench.cr.yp.to/supercop.html
// +build amd64,!gccgo,!appengine
#include "const_amd64.h"
// func freeze(inout *[5]uint64)
TEXT ·freeze(SB),7,$0-8
MOVQ inout+0(FP), DI
MOVQ 0(DI),SI
MOVQ 8(DI),DX
MOVQ 16(DI),CX
MOVQ 24(DI),R8
MOVQ 32(DI),R9
MOVQ $REDMASK51,AX
MOVQ AX,R10
SUBQ $18,R10
MOVQ $3,R11
REDUCELOOP:
MOVQ SI,R12
SHRQ $51,R12
ANDQ AX,SI
ADDQ R12,DX
MOVQ DX,R12
SHRQ $51,R12
ANDQ AX,DX
ADDQ R12,CX
MOVQ CX,R12
SHRQ $51,R12
ANDQ AX,CX
ADDQ R12,R8
MOVQ R8,R12
SHRQ $51,R12
ANDQ AX,R8
ADDQ R12,R9
MOVQ R9,R12
SHRQ $51,R12
ANDQ AX,R9
IMUL3Q $19,R12,R12
ADDQ R12,SI
SUBQ $1,R11
JA REDUCELOOP
MOVQ $1,R12
CMPQ R10,SI
CMOVQLT R11,R12
CMPQ AX,DX
CMOVQNE R11,R12
CMPQ AX,CX
CMOVQNE R11,R12
CMPQ AX,R8
CMOVQNE R11,R12
CMPQ AX,R9
CMOVQNE R11,R12
NEGQ R12
ANDQ R12,AX
ANDQ R12,R10
SUBQ R10,SI
SUBQ AX,DX
SUBQ AX,CX
SUBQ AX,R8
SUBQ AX,R9
MOVQ SI,0(DI)
MOVQ DX,8(DI)
MOVQ CX,16(DI)
MOVQ R8,24(DI)
MOVQ R9,32(DI)
RET

File diff suppressed because it is too large Load diff

View file

@ -1,240 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build amd64,!gccgo,!appengine
package curve25519
// These functions are implemented in the .s files. The names of the functions
// in the rest of the file are also taken from the SUPERCOP sources to help
// people following along.
//go:noescape
func cswap(inout *[5]uint64, v uint64)
//go:noescape
func ladderstep(inout *[5][5]uint64)
//go:noescape
func freeze(inout *[5]uint64)
//go:noescape
func mul(dest, a, b *[5]uint64)
//go:noescape
func square(out, in *[5]uint64)
// mladder uses a Montgomery ladder to calculate (xr/zr) *= s.
func mladder(xr, zr *[5]uint64, s *[32]byte) {
var work [5][5]uint64
work[0] = *xr
setint(&work[1], 1)
setint(&work[2], 0)
work[3] = *xr
setint(&work[4], 1)
j := uint(6)
var prevbit byte
for i := 31; i >= 0; i-- {
for j < 8 {
bit := ((*s)[i] >> j) & 1
swap := bit ^ prevbit
prevbit = bit
cswap(&work[1], uint64(swap))
ladderstep(&work)
j--
}
j = 7
}
*xr = work[1]
*zr = work[2]
}
func scalarMult(out, in, base *[32]byte) {
var e [32]byte
copy(e[:], (*in)[:])
e[0] &= 248
e[31] &= 127
e[31] |= 64
var t, z [5]uint64
unpack(&t, base)
mladder(&t, &z, &e)
invert(&z, &z)
mul(&t, &t, &z)
pack(out, &t)
}
func setint(r *[5]uint64, v uint64) {
r[0] = v
r[1] = 0
r[2] = 0
r[3] = 0
r[4] = 0
}
// unpack sets r = x where r consists of 5, 51-bit limbs in little-endian
// order.
func unpack(r *[5]uint64, x *[32]byte) {
r[0] = uint64(x[0]) |
uint64(x[1])<<8 |
uint64(x[2])<<16 |
uint64(x[3])<<24 |
uint64(x[4])<<32 |
uint64(x[5])<<40 |
uint64(x[6]&7)<<48
r[1] = uint64(x[6])>>3 |
uint64(x[7])<<5 |
uint64(x[8])<<13 |
uint64(x[9])<<21 |
uint64(x[10])<<29 |
uint64(x[11])<<37 |
uint64(x[12]&63)<<45
r[2] = uint64(x[12])>>6 |
uint64(x[13])<<2 |
uint64(x[14])<<10 |
uint64(x[15])<<18 |
uint64(x[16])<<26 |
uint64(x[17])<<34 |
uint64(x[18])<<42 |
uint64(x[19]&1)<<50
r[3] = uint64(x[19])>>1 |
uint64(x[20])<<7 |
uint64(x[21])<<15 |
uint64(x[22])<<23 |
uint64(x[23])<<31 |
uint64(x[24])<<39 |
uint64(x[25]&15)<<47
r[4] = uint64(x[25])>>4 |
uint64(x[26])<<4 |
uint64(x[27])<<12 |
uint64(x[28])<<20 |
uint64(x[29])<<28 |
uint64(x[30])<<36 |
uint64(x[31]&127)<<44
}
// pack sets out = x where out is the usual, little-endian form of the 5,
// 51-bit limbs in x.
func pack(out *[32]byte, x *[5]uint64) {
t := *x
freeze(&t)
out[0] = byte(t[0])
out[1] = byte(t[0] >> 8)
out[2] = byte(t[0] >> 16)
out[3] = byte(t[0] >> 24)
out[4] = byte(t[0] >> 32)
out[5] = byte(t[0] >> 40)
out[6] = byte(t[0] >> 48)
out[6] ^= byte(t[1]<<3) & 0xf8
out[7] = byte(t[1] >> 5)
out[8] = byte(t[1] >> 13)
out[9] = byte(t[1] >> 21)
out[10] = byte(t[1] >> 29)
out[11] = byte(t[1] >> 37)
out[12] = byte(t[1] >> 45)
out[12] ^= byte(t[2]<<6) & 0xc0
out[13] = byte(t[2] >> 2)
out[14] = byte(t[2] >> 10)
out[15] = byte(t[2] >> 18)
out[16] = byte(t[2] >> 26)
out[17] = byte(t[2] >> 34)
out[18] = byte(t[2] >> 42)
out[19] = byte(t[2] >> 50)
out[19] ^= byte(t[3]<<1) & 0xfe
out[20] = byte(t[3] >> 7)
out[21] = byte(t[3] >> 15)
out[22] = byte(t[3] >> 23)
out[23] = byte(t[3] >> 31)
out[24] = byte(t[3] >> 39)
out[25] = byte(t[3] >> 47)
out[25] ^= byte(t[4]<<4) & 0xf0
out[26] = byte(t[4] >> 4)
out[27] = byte(t[4] >> 12)
out[28] = byte(t[4] >> 20)
out[29] = byte(t[4] >> 28)
out[30] = byte(t[4] >> 36)
out[31] = byte(t[4] >> 44)
}
// invert calculates r = x^-1 mod p using Fermat's little theorem.
func invert(r *[5]uint64, x *[5]uint64) {
var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t [5]uint64
square(&z2, x) /* 2 */
square(&t, &z2) /* 4 */
square(&t, &t) /* 8 */
mul(&z9, &t, x) /* 9 */
mul(&z11, &z9, &z2) /* 11 */
square(&t, &z11) /* 22 */
mul(&z2_5_0, &t, &z9) /* 2^5 - 2^0 = 31 */
square(&t, &z2_5_0) /* 2^6 - 2^1 */
for i := 1; i < 5; i++ { /* 2^20 - 2^10 */
square(&t, &t)
}
mul(&z2_10_0, &t, &z2_5_0) /* 2^10 - 2^0 */
square(&t, &z2_10_0) /* 2^11 - 2^1 */
for i := 1; i < 10; i++ { /* 2^20 - 2^10 */
square(&t, &t)
}
mul(&z2_20_0, &t, &z2_10_0) /* 2^20 - 2^0 */
square(&t, &z2_20_0) /* 2^21 - 2^1 */
for i := 1; i < 20; i++ { /* 2^40 - 2^20 */
square(&t, &t)
}
mul(&t, &t, &z2_20_0) /* 2^40 - 2^0 */
square(&t, &t) /* 2^41 - 2^1 */
for i := 1; i < 10; i++ { /* 2^50 - 2^10 */
square(&t, &t)
}
mul(&z2_50_0, &t, &z2_10_0) /* 2^50 - 2^0 */
square(&t, &z2_50_0) /* 2^51 - 2^1 */
for i := 1; i < 50; i++ { /* 2^100 - 2^50 */
square(&t, &t)
}
mul(&z2_100_0, &t, &z2_50_0) /* 2^100 - 2^0 */
square(&t, &z2_100_0) /* 2^101 - 2^1 */
for i := 1; i < 100; i++ { /* 2^200 - 2^100 */
square(&t, &t)
}
mul(&t, &t, &z2_100_0) /* 2^200 - 2^0 */
square(&t, &t) /* 2^201 - 2^1 */
for i := 1; i < 50; i++ { /* 2^250 - 2^50 */
square(&t, &t)
}
mul(&t, &t, &z2_50_0) /* 2^250 - 2^0 */
square(&t, &t) /* 2^251 - 2^1 */
square(&t, &t) /* 2^252 - 2^2 */
square(&t, &t) /* 2^253 - 2^3 */
square(&t, &t) /* 2^254 - 2^4 */
square(&t, &t) /* 2^255 - 2^5 */
mul(r, &t, &z11) /* 2^255 - 21 */
}

View file

@ -1,169 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This code was translated into a form compatible with 6a from the public
// domain sources in SUPERCOP: https://bench.cr.yp.to/supercop.html
// +build amd64,!gccgo,!appengine
#include "const_amd64.h"
// func mul(dest, a, b *[5]uint64)
TEXT ·mul(SB),0,$16-24
MOVQ dest+0(FP), DI
MOVQ a+8(FP), SI
MOVQ b+16(FP), DX
MOVQ DX,CX
MOVQ 24(SI),DX
IMUL3Q $19,DX,AX
MOVQ AX,0(SP)
MULQ 16(CX)
MOVQ AX,R8
MOVQ DX,R9
MOVQ 32(SI),DX
IMUL3Q $19,DX,AX
MOVQ AX,8(SP)
MULQ 8(CX)
ADDQ AX,R8
ADCQ DX,R9
MOVQ 0(SI),AX
MULQ 0(CX)
ADDQ AX,R8
ADCQ DX,R9
MOVQ 0(SI),AX
MULQ 8(CX)
MOVQ AX,R10
MOVQ DX,R11
MOVQ 0(SI),AX
MULQ 16(CX)
MOVQ AX,R12
MOVQ DX,R13
MOVQ 0(SI),AX
MULQ 24(CX)
MOVQ AX,R14
MOVQ DX,R15
MOVQ 0(SI),AX
MULQ 32(CX)
MOVQ AX,BX
MOVQ DX,BP
MOVQ 8(SI),AX
MULQ 0(CX)
ADDQ AX,R10
ADCQ DX,R11
MOVQ 8(SI),AX
MULQ 8(CX)
ADDQ AX,R12
ADCQ DX,R13
MOVQ 8(SI),AX
MULQ 16(CX)
ADDQ AX,R14
ADCQ DX,R15
MOVQ 8(SI),AX
MULQ 24(CX)
ADDQ AX,BX
ADCQ DX,BP
MOVQ 8(SI),DX
IMUL3Q $19,DX,AX
MULQ 32(CX)
ADDQ AX,R8
ADCQ DX,R9
MOVQ 16(SI),AX
MULQ 0(CX)
ADDQ AX,R12
ADCQ DX,R13
MOVQ 16(SI),AX
MULQ 8(CX)
ADDQ AX,R14
ADCQ DX,R15
MOVQ 16(SI),AX
MULQ 16(CX)
ADDQ AX,BX
ADCQ DX,BP
MOVQ 16(SI),DX
IMUL3Q $19,DX,AX
MULQ 24(CX)
ADDQ AX,R8
ADCQ DX,R9
MOVQ 16(SI),DX
IMUL3Q $19,DX,AX
MULQ 32(CX)
ADDQ AX,R10
ADCQ DX,R11
MOVQ 24(SI),AX
MULQ 0(CX)
ADDQ AX,R14
ADCQ DX,R15
MOVQ 24(SI),AX
MULQ 8(CX)
ADDQ AX,BX
ADCQ DX,BP
MOVQ 0(SP),AX
MULQ 24(CX)
ADDQ AX,R10
ADCQ DX,R11
MOVQ 0(SP),AX
MULQ 32(CX)
ADDQ AX,R12
ADCQ DX,R13
MOVQ 32(SI),AX
MULQ 0(CX)
ADDQ AX,BX
ADCQ DX,BP
MOVQ 8(SP),AX
MULQ 16(CX)
ADDQ AX,R10
ADCQ DX,R11
MOVQ 8(SP),AX
MULQ 24(CX)
ADDQ AX,R12
ADCQ DX,R13
MOVQ 8(SP),AX
MULQ 32(CX)
ADDQ AX,R14
ADCQ DX,R15
MOVQ $REDMASK51,SI
SHLQ $13,R9:R8
ANDQ SI,R8
SHLQ $13,R11:R10
ANDQ SI,R10
ADDQ R9,R10
SHLQ $13,R13:R12
ANDQ SI,R12
ADDQ R11,R12
SHLQ $13,R15:R14
ANDQ SI,R14
ADDQ R13,R14
SHLQ $13,BP:BX
ANDQ SI,BX
ADDQ R15,BX
IMUL3Q $19,BP,DX
ADDQ DX,R8
MOVQ R8,DX
SHRQ $51,DX
ADDQ R10,DX
MOVQ DX,CX
SHRQ $51,DX
ANDQ SI,R8
ADDQ R12,DX
MOVQ DX,R9
SHRQ $51,DX
ANDQ SI,CX
ADDQ R14,DX
MOVQ DX,AX
SHRQ $51,DX
ANDQ SI,R9
ADDQ BX,DX
MOVQ DX,R10
SHRQ $51,DX
ANDQ SI,AX
IMUL3Q $19,DX,DX
ADDQ DX,R8
ANDQ SI,R10
MOVQ R8,0(DI)
MOVQ CX,8(DI)
MOVQ R9,16(DI)
MOVQ AX,24(DI)
MOVQ R10,32(DI)
RET

View file

@ -1,132 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This code was translated into a form compatible with 6a from the public
// domain sources in SUPERCOP: https://bench.cr.yp.to/supercop.html
// +build amd64,!gccgo,!appengine
#include "const_amd64.h"
// func square(out, in *[5]uint64)
TEXT ·square(SB),7,$0-16
MOVQ out+0(FP), DI
MOVQ in+8(FP), SI
MOVQ 0(SI),AX
MULQ 0(SI)
MOVQ AX,CX
MOVQ DX,R8
MOVQ 0(SI),AX
SHLQ $1,AX
MULQ 8(SI)
MOVQ AX,R9
MOVQ DX,R10
MOVQ 0(SI),AX
SHLQ $1,AX
MULQ 16(SI)
MOVQ AX,R11
MOVQ DX,R12
MOVQ 0(SI),AX
SHLQ $1,AX
MULQ 24(SI)
MOVQ AX,R13
MOVQ DX,R14
MOVQ 0(SI),AX
SHLQ $1,AX
MULQ 32(SI)
MOVQ AX,R15
MOVQ DX,BX
MOVQ 8(SI),AX
MULQ 8(SI)
ADDQ AX,R11
ADCQ DX,R12
MOVQ 8(SI),AX
SHLQ $1,AX
MULQ 16(SI)
ADDQ AX,R13
ADCQ DX,R14
MOVQ 8(SI),AX
SHLQ $1,AX
MULQ 24(SI)
ADDQ AX,R15
ADCQ DX,BX
MOVQ 8(SI),DX
IMUL3Q $38,DX,AX
MULQ 32(SI)
ADDQ AX,CX
ADCQ DX,R8
MOVQ 16(SI),AX
MULQ 16(SI)
ADDQ AX,R15
ADCQ DX,BX
MOVQ 16(SI),DX
IMUL3Q $38,DX,AX
MULQ 24(SI)
ADDQ AX,CX
ADCQ DX,R8
MOVQ 16(SI),DX
IMUL3Q $38,DX,AX
MULQ 32(SI)
ADDQ AX,R9
ADCQ DX,R10
MOVQ 24(SI),DX
IMUL3Q $19,DX,AX
MULQ 24(SI)
ADDQ AX,R9
ADCQ DX,R10
MOVQ 24(SI),DX
IMUL3Q $38,DX,AX
MULQ 32(SI)
ADDQ AX,R11
ADCQ DX,R12
MOVQ 32(SI),DX
IMUL3Q $19,DX,AX
MULQ 32(SI)
ADDQ AX,R13
ADCQ DX,R14
MOVQ $REDMASK51,SI
SHLQ $13,R8:CX
ANDQ SI,CX
SHLQ $13,R10:R9
ANDQ SI,R9
ADDQ R8,R9
SHLQ $13,R12:R11
ANDQ SI,R11
ADDQ R10,R11
SHLQ $13,R14:R13
ANDQ SI,R13
ADDQ R12,R13
SHLQ $13,BX:R15
ANDQ SI,R15
ADDQ R14,R15
IMUL3Q $19,BX,DX
ADDQ DX,CX
MOVQ CX,DX
SHRQ $51,DX
ADDQ R9,DX
ANDQ SI,CX
MOVQ DX,R8
SHRQ $51,DX
ADDQ R11,DX
ANDQ SI,R8
MOVQ DX,R9
SHRQ $51,DX
ADDQ R13,DX
ANDQ SI,R9
MOVQ DX,AX
SHRQ $51,DX
ADDQ R15,DX
ANDQ SI,AX
MOVQ DX,R10
SHRQ $51,DX
IMUL3Q $19,DX,DX
ADDQ DX,CX
ANDQ SI,R10
MOVQ CX,0(DI)
MOVQ R8,8(DI)
MOVQ R9,16(DI)
MOVQ AX,24(DI)
MOVQ R10,32(DI)
RET

View file

@ -1,93 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package hkdf implements the HMAC-based Extract-and-Expand Key Derivation
// Function (HKDF) as defined in RFC 5869.
//
// HKDF is a cryptographic key derivation function (KDF) with the goal of
// expanding limited input keying material into one or more cryptographically
// strong secret keys.
package hkdf // import "golang.org/x/crypto/hkdf"
import (
"crypto/hmac"
"errors"
"hash"
"io"
)
// Extract generates a pseudorandom key for use with Expand from an input secret
// and an optional independent salt.
//
// Only use this function if you need to reuse the extracted key with multiple
// Expand invocations and different context values. Most common scenarios,
// including the generation of multiple keys, should use New instead.
func Extract(hash func() hash.Hash, secret, salt []byte) []byte {
if salt == nil {
salt = make([]byte, hash().Size())
}
extractor := hmac.New(hash, salt)
extractor.Write(secret)
return extractor.Sum(nil)
}
type hkdf struct {
expander hash.Hash
size int
info []byte
counter byte
prev []byte
buf []byte
}
func (f *hkdf) Read(p []byte) (int, error) {
// Check whether enough data can be generated
need := len(p)
remains := len(f.buf) + int(255-f.counter+1)*f.size
if remains < need {
return 0, errors.New("hkdf: entropy limit reached")
}
// Read any leftover from the buffer
n := copy(p, f.buf)
p = p[n:]
// Fill the rest of the buffer
for len(p) > 0 {
f.expander.Reset()
f.expander.Write(f.prev)
f.expander.Write(f.info)
f.expander.Write([]byte{f.counter})
f.prev = f.expander.Sum(f.prev[:0])
f.counter++
// Copy the new batch into p
f.buf = f.prev
n = copy(p, f.buf)
p = p[n:]
}
// Save leftovers for next run
f.buf = f.buf[n:]
return need, nil
}
// Expand returns a Reader, from which keys can be read, using the given
// pseudorandom key and optional context info, skipping the extraction step.
//
// The pseudorandomKey should have been generated by Extract, or be a uniformly
// random or pseudorandom cryptographically strong key. See RFC 5869, Section
// 3.3. Most common scenarios will want to use New instead.
func Expand(hash func() hash.Hash, pseudorandomKey, info []byte) io.Reader {
expander := hmac.New(hash, pseudorandomKey)
return &hkdf{expander, expander.Size(), info, 1, nil, nil}
}
// New returns a Reader, from which keys can be read, using the given hash,
// secret, salt and context info. Salt and info can be nil.
func New(hash func() hash.Hash, secret, salt, info []byte) io.Reader {
prk := Extract(hash, secret, salt)
return Expand(hash, prk, info)
}

View file

@ -1,308 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.11
// +build !gccgo,!appengine
#include "textflag.h"
#define NUM_ROUNDS 10
// func xorKeyStreamVX(dst, src []byte, key *[8]uint32, nonce *[3]uint32, counter *uint32)
TEXT ·xorKeyStreamVX(SB), NOSPLIT, $0
MOVD dst+0(FP), R1
MOVD src+24(FP), R2
MOVD src_len+32(FP), R3
MOVD key+48(FP), R4
MOVD nonce+56(FP), R6
MOVD counter+64(FP), R7
MOVD $·constants(SB), R10
MOVD $·incRotMatrix(SB), R11
MOVW (R7), R20
AND $~255, R3, R13
ADD R2, R13, R12 // R12 for block end
AND $255, R3, R13
loop:
MOVD $NUM_ROUNDS, R21
VLD1 (R11), [V30.S4, V31.S4]
// load contants
// VLD4R (R10), [V0.S4, V1.S4, V2.S4, V3.S4]
WORD $0x4D60E940
// load keys
// VLD4R 16(R4), [V4.S4, V5.S4, V6.S4, V7.S4]
WORD $0x4DFFE884
// VLD4R 16(R4), [V8.S4, V9.S4, V10.S4, V11.S4]
WORD $0x4DFFE888
SUB $32, R4
// load counter + nonce
// VLD1R (R7), [V12.S4]
WORD $0x4D40C8EC
// VLD3R (R6), [V13.S4, V14.S4, V15.S4]
WORD $0x4D40E8CD
// update counter
VADD V30.S4, V12.S4, V12.S4
chacha:
// V0..V3 += V4..V7
// V12..V15 <<<= ((V12..V15 XOR V0..V3), 16)
VADD V0.S4, V4.S4, V0.S4
VADD V1.S4, V5.S4, V1.S4
VADD V2.S4, V6.S4, V2.S4
VADD V3.S4, V7.S4, V3.S4
VEOR V12.B16, V0.B16, V12.B16
VEOR V13.B16, V1.B16, V13.B16
VEOR V14.B16, V2.B16, V14.B16
VEOR V15.B16, V3.B16, V15.B16
VREV32 V12.H8, V12.H8
VREV32 V13.H8, V13.H8
VREV32 V14.H8, V14.H8
VREV32 V15.H8, V15.H8
// V8..V11 += V12..V15
// V4..V7 <<<= ((V4..V7 XOR V8..V11), 12)
VADD V8.S4, V12.S4, V8.S4
VADD V9.S4, V13.S4, V9.S4
VADD V10.S4, V14.S4, V10.S4
VADD V11.S4, V15.S4, V11.S4
VEOR V8.B16, V4.B16, V16.B16
VEOR V9.B16, V5.B16, V17.B16
VEOR V10.B16, V6.B16, V18.B16
VEOR V11.B16, V7.B16, V19.B16
VSHL $12, V16.S4, V4.S4
VSHL $12, V17.S4, V5.S4
VSHL $12, V18.S4, V6.S4
VSHL $12, V19.S4, V7.S4
VSRI $20, V16.S4, V4.S4
VSRI $20, V17.S4, V5.S4
VSRI $20, V18.S4, V6.S4
VSRI $20, V19.S4, V7.S4
// V0..V3 += V4..V7
// V12..V15 <<<= ((V12..V15 XOR V0..V3), 8)
VADD V0.S4, V4.S4, V0.S4
VADD V1.S4, V5.S4, V1.S4
VADD V2.S4, V6.S4, V2.S4
VADD V3.S4, V7.S4, V3.S4
VEOR V12.B16, V0.B16, V12.B16
VEOR V13.B16, V1.B16, V13.B16
VEOR V14.B16, V2.B16, V14.B16
VEOR V15.B16, V3.B16, V15.B16
VTBL V31.B16, [V12.B16], V12.B16
VTBL V31.B16, [V13.B16], V13.B16
VTBL V31.B16, [V14.B16], V14.B16
VTBL V31.B16, [V15.B16], V15.B16
// V8..V11 += V12..V15
// V4..V7 <<<= ((V4..V7 XOR V8..V11), 7)
VADD V12.S4, V8.S4, V8.S4
VADD V13.S4, V9.S4, V9.S4
VADD V14.S4, V10.S4, V10.S4
VADD V15.S4, V11.S4, V11.S4
VEOR V8.B16, V4.B16, V16.B16
VEOR V9.B16, V5.B16, V17.B16
VEOR V10.B16, V6.B16, V18.B16
VEOR V11.B16, V7.B16, V19.B16
VSHL $7, V16.S4, V4.S4
VSHL $7, V17.S4, V5.S4
VSHL $7, V18.S4, V6.S4
VSHL $7, V19.S4, V7.S4
VSRI $25, V16.S4, V4.S4
VSRI $25, V17.S4, V5.S4
VSRI $25, V18.S4, V6.S4
VSRI $25, V19.S4, V7.S4
// V0..V3 += V5..V7, V4
// V15,V12-V14 <<<= ((V15,V12-V14 XOR V0..V3), 16)
VADD V0.S4, V5.S4, V0.S4
VADD V1.S4, V6.S4, V1.S4
VADD V2.S4, V7.S4, V2.S4
VADD V3.S4, V4.S4, V3.S4
VEOR V15.B16, V0.B16, V15.B16
VEOR V12.B16, V1.B16, V12.B16
VEOR V13.B16, V2.B16, V13.B16
VEOR V14.B16, V3.B16, V14.B16
VREV32 V12.H8, V12.H8
VREV32 V13.H8, V13.H8
VREV32 V14.H8, V14.H8
VREV32 V15.H8, V15.H8
// V10 += V15; V5 <<<= ((V10 XOR V5), 12)
// ...
VADD V15.S4, V10.S4, V10.S4
VADD V12.S4, V11.S4, V11.S4
VADD V13.S4, V8.S4, V8.S4
VADD V14.S4, V9.S4, V9.S4
VEOR V10.B16, V5.B16, V16.B16
VEOR V11.B16, V6.B16, V17.B16
VEOR V8.B16, V7.B16, V18.B16
VEOR V9.B16, V4.B16, V19.B16
VSHL $12, V16.S4, V5.S4
VSHL $12, V17.S4, V6.S4
VSHL $12, V18.S4, V7.S4
VSHL $12, V19.S4, V4.S4
VSRI $20, V16.S4, V5.S4
VSRI $20, V17.S4, V6.S4
VSRI $20, V18.S4, V7.S4
VSRI $20, V19.S4, V4.S4
// V0 += V5; V15 <<<= ((V0 XOR V15), 8)
// ...
VADD V5.S4, V0.S4, V0.S4
VADD V6.S4, V1.S4, V1.S4
VADD V7.S4, V2.S4, V2.S4
VADD V4.S4, V3.S4, V3.S4
VEOR V0.B16, V15.B16, V15.B16
VEOR V1.B16, V12.B16, V12.B16
VEOR V2.B16, V13.B16, V13.B16
VEOR V3.B16, V14.B16, V14.B16
VTBL V31.B16, [V12.B16], V12.B16
VTBL V31.B16, [V13.B16], V13.B16
VTBL V31.B16, [V14.B16], V14.B16
VTBL V31.B16, [V15.B16], V15.B16
// V10 += V15; V5 <<<= ((V10 XOR V5), 7)
// ...
VADD V15.S4, V10.S4, V10.S4
VADD V12.S4, V11.S4, V11.S4
VADD V13.S4, V8.S4, V8.S4
VADD V14.S4, V9.S4, V9.S4
VEOR V10.B16, V5.B16, V16.B16
VEOR V11.B16, V6.B16, V17.B16
VEOR V8.B16, V7.B16, V18.B16
VEOR V9.B16, V4.B16, V19.B16
VSHL $7, V16.S4, V5.S4
VSHL $7, V17.S4, V6.S4
VSHL $7, V18.S4, V7.S4
VSHL $7, V19.S4, V4.S4
VSRI $25, V16.S4, V5.S4
VSRI $25, V17.S4, V6.S4
VSRI $25, V18.S4, V7.S4
VSRI $25, V19.S4, V4.S4
SUB $1, R21
CBNZ R21, chacha
// VLD4R (R10), [V16.S4, V17.S4, V18.S4, V19.S4]
WORD $0x4D60E950
// VLD4R 16(R4), [V20.S4, V21.S4, V22.S4, V23.S4]
WORD $0x4DFFE894
VADD V30.S4, V12.S4, V12.S4
VADD V16.S4, V0.S4, V0.S4
VADD V17.S4, V1.S4, V1.S4
VADD V18.S4, V2.S4, V2.S4
VADD V19.S4, V3.S4, V3.S4
// VLD4R 16(R4), [V24.S4, V25.S4, V26.S4, V27.S4]
WORD $0x4DFFE898
// restore R4
SUB $32, R4
// load counter + nonce
// VLD1R (R7), [V28.S4]
WORD $0x4D40C8FC
// VLD3R (R6), [V29.S4, V30.S4, V31.S4]
WORD $0x4D40E8DD
VADD V20.S4, V4.S4, V4.S4
VADD V21.S4, V5.S4, V5.S4
VADD V22.S4, V6.S4, V6.S4
VADD V23.S4, V7.S4, V7.S4
VADD V24.S4, V8.S4, V8.S4
VADD V25.S4, V9.S4, V9.S4
VADD V26.S4, V10.S4, V10.S4
VADD V27.S4, V11.S4, V11.S4
VADD V28.S4, V12.S4, V12.S4
VADD V29.S4, V13.S4, V13.S4
VADD V30.S4, V14.S4, V14.S4
VADD V31.S4, V15.S4, V15.S4
VZIP1 V1.S4, V0.S4, V16.S4
VZIP2 V1.S4, V0.S4, V17.S4
VZIP1 V3.S4, V2.S4, V18.S4
VZIP2 V3.S4, V2.S4, V19.S4
VZIP1 V5.S4, V4.S4, V20.S4
VZIP2 V5.S4, V4.S4, V21.S4
VZIP1 V7.S4, V6.S4, V22.S4
VZIP2 V7.S4, V6.S4, V23.S4
VZIP1 V9.S4, V8.S4, V24.S4
VZIP2 V9.S4, V8.S4, V25.S4
VZIP1 V11.S4, V10.S4, V26.S4
VZIP2 V11.S4, V10.S4, V27.S4
VZIP1 V13.S4, V12.S4, V28.S4
VZIP2 V13.S4, V12.S4, V29.S4
VZIP1 V15.S4, V14.S4, V30.S4
VZIP2 V15.S4, V14.S4, V31.S4
VZIP1 V18.D2, V16.D2, V0.D2
VZIP2 V18.D2, V16.D2, V4.D2
VZIP1 V19.D2, V17.D2, V8.D2
VZIP2 V19.D2, V17.D2, V12.D2
VLD1.P 64(R2), [V16.B16, V17.B16, V18.B16, V19.B16]
VZIP1 V22.D2, V20.D2, V1.D2
VZIP2 V22.D2, V20.D2, V5.D2
VZIP1 V23.D2, V21.D2, V9.D2
VZIP2 V23.D2, V21.D2, V13.D2
VLD1.P 64(R2), [V20.B16, V21.B16, V22.B16, V23.B16]
VZIP1 V26.D2, V24.D2, V2.D2
VZIP2 V26.D2, V24.D2, V6.D2
VZIP1 V27.D2, V25.D2, V10.D2
VZIP2 V27.D2, V25.D2, V14.D2
VLD1.P 64(R2), [V24.B16, V25.B16, V26.B16, V27.B16]
VZIP1 V30.D2, V28.D2, V3.D2
VZIP2 V30.D2, V28.D2, V7.D2
VZIP1 V31.D2, V29.D2, V11.D2
VZIP2 V31.D2, V29.D2, V15.D2
VLD1.P 64(R2), [V28.B16, V29.B16, V30.B16, V31.B16]
VEOR V0.B16, V16.B16, V16.B16
VEOR V1.B16, V17.B16, V17.B16
VEOR V2.B16, V18.B16, V18.B16
VEOR V3.B16, V19.B16, V19.B16
VST1.P [V16.B16, V17.B16, V18.B16, V19.B16], 64(R1)
VEOR V4.B16, V20.B16, V20.B16
VEOR V5.B16, V21.B16, V21.B16
VEOR V6.B16, V22.B16, V22.B16
VEOR V7.B16, V23.B16, V23.B16
VST1.P [V20.B16, V21.B16, V22.B16, V23.B16], 64(R1)
VEOR V8.B16, V24.B16, V24.B16
VEOR V9.B16, V25.B16, V25.B16
VEOR V10.B16, V26.B16, V26.B16
VEOR V11.B16, V27.B16, V27.B16
VST1.P [V24.B16, V25.B16, V26.B16, V27.B16], 64(R1)
VEOR V12.B16, V28.B16, V28.B16
VEOR V13.B16, V29.B16, V29.B16
VEOR V14.B16, V30.B16, V30.B16
VEOR V15.B16, V31.B16, V31.B16
VST1.P [V28.B16, V29.B16, V30.B16, V31.B16], 64(R1)
ADD $4, R20
MOVW R20, (R7) // update counter
CMP R2, R12
BGT loop
RET
DATA ·constants+0x00(SB)/4, $0x61707865
DATA ·constants+0x04(SB)/4, $0x3320646e
DATA ·constants+0x08(SB)/4, $0x79622d32
DATA ·constants+0x0c(SB)/4, $0x6b206574
GLOBL ·constants(SB), NOPTR|RODATA, $32
DATA ·incRotMatrix+0x00(SB)/4, $0x00000000
DATA ·incRotMatrix+0x04(SB)/4, $0x00000001
DATA ·incRotMatrix+0x08(SB)/4, $0x00000002
DATA ·incRotMatrix+0x0c(SB)/4, $0x00000003
DATA ·incRotMatrix+0x10(SB)/4, $0x02010003
DATA ·incRotMatrix+0x14(SB)/4, $0x06050407
DATA ·incRotMatrix+0x18(SB)/4, $0x0A09080B
DATA ·incRotMatrix+0x1c(SB)/4, $0x0E0D0C0F
GLOBL ·incRotMatrix(SB), NOPTR|RODATA, $32

View file

@ -1,31 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.11
// +build !gccgo
package chacha20
const (
haveAsm = true
bufSize = 256
)
//go:noescape
func xorKeyStreamVX(dst, src []byte, key *[8]uint32, nonce *[3]uint32, counter *uint32)
func (c *Cipher) xorKeyStreamAsm(dst, src []byte) {
if len(src) >= bufSize {
xorKeyStreamVX(dst, src, &c.key, &c.nonce, &c.counter)
}
if len(src)%bufSize != 0 {
i := len(src) - len(src)%bufSize
c.buf = [bufSize]byte{}
copy(c.buf[:], src[i:])
xorKeyStreamVX(c.buf[:], c.buf[:], &c.key, &c.nonce, &c.counter)
c.len = bufSize - copy(dst[i:], c.buf[:len(src)%bufSize])
}
}

View file

@ -1,264 +0,0 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package ChaCha20 implements the core ChaCha20 function as specified
// in https://tools.ietf.org/html/rfc7539#section-2.3.
package chacha20
import (
"crypto/cipher"
"encoding/binary"
"golang.org/x/crypto/internal/subtle"
)
// assert that *Cipher implements cipher.Stream
var _ cipher.Stream = (*Cipher)(nil)
// Cipher is a stateful instance of ChaCha20 using a particular key
// and nonce. A *Cipher implements the cipher.Stream interface.
type Cipher struct {
key [8]uint32
counter uint32 // incremented after each block
nonce [3]uint32
buf [bufSize]byte // buffer for unused keystream bytes
len int // number of unused keystream bytes at end of buf
}
// New creates a new ChaCha20 stream cipher with the given key and nonce.
// The initial counter value is set to 0.
func New(key [8]uint32, nonce [3]uint32) *Cipher {
return &Cipher{key: key, nonce: nonce}
}
// ChaCha20 constants spelling "expand 32-byte k"
const (
j0 uint32 = 0x61707865
j1 uint32 = 0x3320646e
j2 uint32 = 0x79622d32
j3 uint32 = 0x6b206574
)
func quarterRound(a, b, c, d uint32) (uint32, uint32, uint32, uint32) {
a += b
d ^= a
d = (d << 16) | (d >> 16)
c += d
b ^= c
b = (b << 12) | (b >> 20)
a += b
d ^= a
d = (d << 8) | (d >> 24)
c += d
b ^= c
b = (b << 7) | (b >> 25)
return a, b, c, d
}
// XORKeyStream XORs each byte in the given slice with a byte from the
// cipher's key stream. Dst and src must overlap entirely or not at all.
//
// If len(dst) < len(src), XORKeyStream will panic. It is acceptable
// to pass a dst bigger than src, and in that case, XORKeyStream will
// only update dst[:len(src)] and will not touch the rest of dst.
//
// Multiple calls to XORKeyStream behave as if the concatenation of
// the src buffers was passed in a single run. That is, Cipher
// maintains state and does not reset at each XORKeyStream call.
func (s *Cipher) XORKeyStream(dst, src []byte) {
if len(dst) < len(src) {
panic("chacha20: output smaller than input")
}
if subtle.InexactOverlap(dst[:len(src)], src) {
panic("chacha20: invalid buffer overlap")
}
// xor src with buffered keystream first
if s.len != 0 {
buf := s.buf[len(s.buf)-s.len:]
if len(src) < len(buf) {
buf = buf[:len(src)]
}
td, ts := dst[:len(buf)], src[:len(buf)] // BCE hint
for i, b := range buf {
td[i] = ts[i] ^ b
}
s.len -= len(buf)
if s.len != 0 {
return
}
s.buf = [len(s.buf)]byte{} // zero the empty buffer
src = src[len(buf):]
dst = dst[len(buf):]
}
if len(src) == 0 {
return
}
if haveAsm {
if uint64(len(src))+uint64(s.counter)*64 > (1<<38)-64 {
panic("chacha20: counter overflow")
}
s.xorKeyStreamAsm(dst, src)
return
}
// set up a 64-byte buffer to pad out the final block if needed
// (hoisted out of the main loop to avoid spills)
rem := len(src) % 64 // length of final block
fin := len(src) - rem // index of final block
if rem > 0 {
copy(s.buf[len(s.buf)-64:], src[fin:])
}
// pre-calculate most of the first round
s1, s5, s9, s13 := quarterRound(j1, s.key[1], s.key[5], s.nonce[0])
s2, s6, s10, s14 := quarterRound(j2, s.key[2], s.key[6], s.nonce[1])
s3, s7, s11, s15 := quarterRound(j3, s.key[3], s.key[7], s.nonce[2])
n := len(src)
src, dst = src[:n:n], dst[:n:n] // BCE hint
for i := 0; i < n; i += 64 {
// calculate the remainder of the first round
s0, s4, s8, s12 := quarterRound(j0, s.key[0], s.key[4], s.counter)
// execute the second round
x0, x5, x10, x15 := quarterRound(s0, s5, s10, s15)
x1, x6, x11, x12 := quarterRound(s1, s6, s11, s12)
x2, x7, x8, x13 := quarterRound(s2, s7, s8, s13)
x3, x4, x9, x14 := quarterRound(s3, s4, s9, s14)
// execute the remaining 18 rounds
for i := 0; i < 9; i++ {
x0, x4, x8, x12 = quarterRound(x0, x4, x8, x12)
x1, x5, x9, x13 = quarterRound(x1, x5, x9, x13)
x2, x6, x10, x14 = quarterRound(x2, x6, x10, x14)
x3, x7, x11, x15 = quarterRound(x3, x7, x11, x15)
x0, x5, x10, x15 = quarterRound(x0, x5, x10, x15)
x1, x6, x11, x12 = quarterRound(x1, x6, x11, x12)
x2, x7, x8, x13 = quarterRound(x2, x7, x8, x13)
x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14)
}
x0 += j0
x1 += j1
x2 += j2
x3 += j3
x4 += s.key[0]
x5 += s.key[1]
x6 += s.key[2]
x7 += s.key[3]
x8 += s.key[4]
x9 += s.key[5]
x10 += s.key[6]
x11 += s.key[7]
x12 += s.counter
x13 += s.nonce[0]
x14 += s.nonce[1]
x15 += s.nonce[2]
// increment the counter
s.counter += 1
if s.counter == 0 {
panic("chacha20: counter overflow")
}
// pad to 64 bytes if needed
in, out := src[i:], dst[i:]
if i == fin {
// src[fin:] has already been copied into s.buf before
// the main loop
in, out = s.buf[len(s.buf)-64:], s.buf[len(s.buf)-64:]
}
in, out = in[:64], out[:64] // BCE hint
// XOR the key stream with the source and write out the result
xor(out[0:], in[0:], x0)
xor(out[4:], in[4:], x1)
xor(out[8:], in[8:], x2)
xor(out[12:], in[12:], x3)
xor(out[16:], in[16:], x4)
xor(out[20:], in[20:], x5)
xor(out[24:], in[24:], x6)
xor(out[28:], in[28:], x7)
xor(out[32:], in[32:], x8)
xor(out[36:], in[36:], x9)
xor(out[40:], in[40:], x10)
xor(out[44:], in[44:], x11)
xor(out[48:], in[48:], x12)
xor(out[52:], in[52:], x13)
xor(out[56:], in[56:], x14)
xor(out[60:], in[60:], x15)
}
// copy any trailing bytes out of the buffer and into dst
if rem != 0 {
s.len = 64 - rem
copy(dst[fin:], s.buf[len(s.buf)-64:])
}
}
// Advance discards bytes in the key stream until the next 64 byte block
// boundary is reached and updates the counter accordingly. If the key
// stream is already at a block boundary no bytes will be discarded and
// the counter will be unchanged.
func (s *Cipher) Advance() {
s.len -= s.len % 64
if s.len == 0 {
s.buf = [len(s.buf)]byte{}
}
}
// XORKeyStream crypts bytes from in to out using the given key and counters.
// In and out must overlap entirely or not at all. Counter contains the raw
// ChaCha20 counter bytes (i.e. block counter followed by nonce).
func XORKeyStream(out, in []byte, counter *[16]byte, key *[32]byte) {
s := Cipher{
key: [8]uint32{
binary.LittleEndian.Uint32(key[0:4]),
binary.LittleEndian.Uint32(key[4:8]),
binary.LittleEndian.Uint32(key[8:12]),
binary.LittleEndian.Uint32(key[12:16]),
binary.LittleEndian.Uint32(key[16:20]),
binary.LittleEndian.Uint32(key[20:24]),
binary.LittleEndian.Uint32(key[24:28]),
binary.LittleEndian.Uint32(key[28:32]),
},
nonce: [3]uint32{
binary.LittleEndian.Uint32(counter[4:8]),
binary.LittleEndian.Uint32(counter[8:12]),
binary.LittleEndian.Uint32(counter[12:16]),
},
counter: binary.LittleEndian.Uint32(counter[0:4]),
}
s.XORKeyStream(out, in)
}
// HChaCha20 uses the ChaCha20 core to generate a derived key from a key and a
// nonce. It should only be used as part of the XChaCha20 construction.
func HChaCha20(key *[8]uint32, nonce *[4]uint32) [8]uint32 {
x0, x1, x2, x3 := j0, j1, j2, j3
x4, x5, x6, x7 := key[0], key[1], key[2], key[3]
x8, x9, x10, x11 := key[4], key[5], key[6], key[7]
x12, x13, x14, x15 := nonce[0], nonce[1], nonce[2], nonce[3]
for i := 0; i < 10; i++ {
x0, x4, x8, x12 = quarterRound(x0, x4, x8, x12)
x1, x5, x9, x13 = quarterRound(x1, x5, x9, x13)
x2, x6, x10, x14 = quarterRound(x2, x6, x10, x14)
x3, x7, x11, x15 = quarterRound(x3, x7, x11, x15)
x0, x5, x10, x15 = quarterRound(x0, x5, x10, x15)
x1, x6, x11, x12 = quarterRound(x1, x6, x11, x12)
x2, x7, x8, x13 = quarterRound(x2, x7, x8, x13)
x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14)
}
var out [8]uint32
out[0], out[1], out[2], out[3] = x0, x1, x2, x3
out[4], out[5], out[6], out[7] = x12, x13, x14, x15
return out
}

View file

@ -1,16 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !arm64,!s390x arm64,!go1.11 gccgo appengine
package chacha20
const (
bufSize = 64
haveAsm = false
)
func (*Cipher) xorKeyStreamAsm(dst, src []byte) {
panic("not implemented")
}

View file

@ -1,30 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build s390x,!gccgo,!appengine
package chacha20
var haveAsm = hasVectorFacility()
const bufSize = 256
// hasVectorFacility reports whether the machine supports the vector
// facility (vx).
// Implementation in asm_s390x.s.
func hasVectorFacility() bool
// xorKeyStreamVX is an assembly implementation of XORKeyStream. It must only
// be called when the vector facility is available.
// Implementation in asm_s390x.s.
//go:noescape
func xorKeyStreamVX(dst, src []byte, key *[8]uint32, nonce *[3]uint32, counter *uint32, buf *[256]byte, len *int)
func (c *Cipher) xorKeyStreamAsm(dst, src []byte) {
xorKeyStreamVX(dst, src, &c.key, &c.nonce, &c.counter, &c.buf, &c.len)
}
// EXRL targets, DO NOT CALL!
func mvcSrcToBuf()
func mvcBufToDst()

View file

@ -1,283 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build s390x,!gccgo,!appengine
#include "go_asm.h"
#include "textflag.h"
// This is an implementation of the ChaCha20 encryption algorithm as
// specified in RFC 7539. It uses vector instructions to compute
// 4 keystream blocks in parallel (256 bytes) which are then XORed
// with the bytes in the input slice.
GLOBL ·constants<>(SB), RODATA|NOPTR, $32
// BSWAP: swap bytes in each 4-byte element
DATA ·constants<>+0x00(SB)/4, $0x03020100
DATA ·constants<>+0x04(SB)/4, $0x07060504
DATA ·constants<>+0x08(SB)/4, $0x0b0a0908
DATA ·constants<>+0x0c(SB)/4, $0x0f0e0d0c
// J0: [j0, j1, j2, j3]
DATA ·constants<>+0x10(SB)/4, $0x61707865
DATA ·constants<>+0x14(SB)/4, $0x3320646e
DATA ·constants<>+0x18(SB)/4, $0x79622d32
DATA ·constants<>+0x1c(SB)/4, $0x6b206574
// EXRL targets:
TEXT ·mvcSrcToBuf(SB), NOFRAME|NOSPLIT, $0
MVC $1, (R1), (R8)
RET
TEXT ·mvcBufToDst(SB), NOFRAME|NOSPLIT, $0
MVC $1, (R8), (R9)
RET
#define BSWAP V5
#define J0 V6
#define KEY0 V7
#define KEY1 V8
#define NONCE V9
#define CTR V10
#define M0 V11
#define M1 V12
#define M2 V13
#define M3 V14
#define INC V15
#define X0 V16
#define X1 V17
#define X2 V18
#define X3 V19
#define X4 V20
#define X5 V21
#define X6 V22
#define X7 V23
#define X8 V24
#define X9 V25
#define X10 V26
#define X11 V27
#define X12 V28
#define X13 V29
#define X14 V30
#define X15 V31
#define NUM_ROUNDS 20
#define ROUND4(a0, a1, a2, a3, b0, b1, b2, b3, c0, c1, c2, c3, d0, d1, d2, d3) \
VAF a1, a0, a0 \
VAF b1, b0, b0 \
VAF c1, c0, c0 \
VAF d1, d0, d0 \
VX a0, a2, a2 \
VX b0, b2, b2 \
VX c0, c2, c2 \
VX d0, d2, d2 \
VERLLF $16, a2, a2 \
VERLLF $16, b2, b2 \
VERLLF $16, c2, c2 \
VERLLF $16, d2, d2 \
VAF a2, a3, a3 \
VAF b2, b3, b3 \
VAF c2, c3, c3 \
VAF d2, d3, d3 \
VX a3, a1, a1 \
VX b3, b1, b1 \
VX c3, c1, c1 \
VX d3, d1, d1 \
VERLLF $12, a1, a1 \
VERLLF $12, b1, b1 \
VERLLF $12, c1, c1 \
VERLLF $12, d1, d1 \
VAF a1, a0, a0 \
VAF b1, b0, b0 \
VAF c1, c0, c0 \
VAF d1, d0, d0 \
VX a0, a2, a2 \
VX b0, b2, b2 \
VX c0, c2, c2 \
VX d0, d2, d2 \
VERLLF $8, a2, a2 \
VERLLF $8, b2, b2 \
VERLLF $8, c2, c2 \
VERLLF $8, d2, d2 \
VAF a2, a3, a3 \
VAF b2, b3, b3 \
VAF c2, c3, c3 \
VAF d2, d3, d3 \
VX a3, a1, a1 \
VX b3, b1, b1 \
VX c3, c1, c1 \
VX d3, d1, d1 \
VERLLF $7, a1, a1 \
VERLLF $7, b1, b1 \
VERLLF $7, c1, c1 \
VERLLF $7, d1, d1
#define PERMUTE(mask, v0, v1, v2, v3) \
VPERM v0, v0, mask, v0 \
VPERM v1, v1, mask, v1 \
VPERM v2, v2, mask, v2 \
VPERM v3, v3, mask, v3
#define ADDV(x, v0, v1, v2, v3) \
VAF x, v0, v0 \
VAF x, v1, v1 \
VAF x, v2, v2 \
VAF x, v3, v3
#define XORV(off, dst, src, v0, v1, v2, v3) \
VLM off(src), M0, M3 \
PERMUTE(BSWAP, v0, v1, v2, v3) \
VX v0, M0, M0 \
VX v1, M1, M1 \
VX v2, M2, M2 \
VX v3, M3, M3 \
VSTM M0, M3, off(dst)
#define SHUFFLE(a, b, c, d, t, u, v, w) \
VMRHF a, c, t \ // t = {a[0], c[0], a[1], c[1]}
VMRHF b, d, u \ // u = {b[0], d[0], b[1], d[1]}
VMRLF a, c, v \ // v = {a[2], c[2], a[3], c[3]}
VMRLF b, d, w \ // w = {b[2], d[2], b[3], d[3]}
VMRHF t, u, a \ // a = {a[0], b[0], c[0], d[0]}
VMRLF t, u, b \ // b = {a[1], b[1], c[1], d[1]}
VMRHF v, w, c \ // c = {a[2], b[2], c[2], d[2]}
VMRLF v, w, d // d = {a[3], b[3], c[3], d[3]}
// func xorKeyStreamVX(dst, src []byte, key *[8]uint32, nonce *[3]uint32, counter *uint32, buf *[256]byte, len *int)
TEXT ·xorKeyStreamVX(SB), NOSPLIT, $0
MOVD $·constants<>(SB), R1
MOVD dst+0(FP), R2 // R2=&dst[0]
LMG src+24(FP), R3, R4 // R3=&src[0] R4=len(src)
MOVD key+48(FP), R5 // R5=key
MOVD nonce+56(FP), R6 // R6=nonce
MOVD counter+64(FP), R7 // R7=counter
MOVD buf+72(FP), R8 // R8=buf
MOVD len+80(FP), R9 // R9=len
// load BSWAP and J0
VLM (R1), BSWAP, J0
// set up tail buffer
ADD $-1, R4, R12
MOVBZ R12, R12
CMPUBEQ R12, $255, aligned
MOVD R4, R1
AND $~255, R1
MOVD $(R3)(R1*1), R1
EXRL $·mvcSrcToBuf(SB), R12
MOVD $255, R0
SUB R12, R0
MOVD R0, (R9) // update len
aligned:
// setup
MOVD $95, R0
VLM (R5), KEY0, KEY1
VLL R0, (R6), NONCE
VZERO M0
VLEIB $7, $32, M0
VSRLB M0, NONCE, NONCE
// initialize counter values
VLREPF (R7), CTR
VZERO INC
VLEIF $1, $1, INC
VLEIF $2, $2, INC
VLEIF $3, $3, INC
VAF INC, CTR, CTR
VREPIF $4, INC
chacha:
VREPF $0, J0, X0
VREPF $1, J0, X1
VREPF $2, J0, X2
VREPF $3, J0, X3
VREPF $0, KEY0, X4
VREPF $1, KEY0, X5
VREPF $2, KEY0, X6
VREPF $3, KEY0, X7
VREPF $0, KEY1, X8
VREPF $1, KEY1, X9
VREPF $2, KEY1, X10
VREPF $3, KEY1, X11
VLR CTR, X12
VREPF $1, NONCE, X13
VREPF $2, NONCE, X14
VREPF $3, NONCE, X15
MOVD $(NUM_ROUNDS/2), R1
loop:
ROUND4(X0, X4, X12, X8, X1, X5, X13, X9, X2, X6, X14, X10, X3, X7, X15, X11)
ROUND4(X0, X5, X15, X10, X1, X6, X12, X11, X2, X7, X13, X8, X3, X4, X14, X9)
ADD $-1, R1
BNE loop
// decrement length
ADD $-256, R4
BLT tail
continue:
// rearrange vectors
SHUFFLE(X0, X1, X2, X3, M0, M1, M2, M3)
ADDV(J0, X0, X1, X2, X3)
SHUFFLE(X4, X5, X6, X7, M0, M1, M2, M3)
ADDV(KEY0, X4, X5, X6, X7)
SHUFFLE(X8, X9, X10, X11, M0, M1, M2, M3)
ADDV(KEY1, X8, X9, X10, X11)
VAF CTR, X12, X12
SHUFFLE(X12, X13, X14, X15, M0, M1, M2, M3)
ADDV(NONCE, X12, X13, X14, X15)
// increment counters
VAF INC, CTR, CTR
// xor keystream with plaintext
XORV(0*64, R2, R3, X0, X4, X8, X12)
XORV(1*64, R2, R3, X1, X5, X9, X13)
XORV(2*64, R2, R3, X2, X6, X10, X14)
XORV(3*64, R2, R3, X3, X7, X11, X15)
// increment pointers
MOVD $256(R2), R2
MOVD $256(R3), R3
CMPBNE R4, $0, chacha
CMPUBEQ R12, $255, return
EXRL $·mvcBufToDst(SB), R12 // len was updated during setup
return:
VSTEF $0, CTR, (R7)
RET
tail:
MOVD R2, R9
MOVD R8, R2
MOVD R8, R3
MOVD $0, R4
JMP continue
// func hasVectorFacility() bool
TEXT ·hasVectorFacility(SB), NOSPLIT, $24-1
MOVD $x-24(SP), R1
XC $24, 0(R1), 0(R1) // clear the storage
MOVD $2, R0 // R0 is the number of double words stored -1
WORD $0xB2B01000 // STFLE 0(R1)
XOR R0, R0 // reset the value of R0
MOVBZ z-8(SP), R1
AND $0x40, R1
BEQ novector
vectorinstalled:
// check if the vector instruction has been enabled
VLEIB $0, $0xF, V16
VLGVB $0, V16, R1
CMPBNE R1, $0xF, novector
MOVB $1, ret+0(FP) // have vx
RET
novector:
MOVB $0, ret+0(FP) // no vx
RET

View file

@ -1,43 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found src the LICENSE file.
package chacha20
import (
"runtime"
)
// Platforms that have fast unaligned 32-bit little endian accesses.
const unaligned = runtime.GOARCH == "386" ||
runtime.GOARCH == "amd64" ||
runtime.GOARCH == "arm64" ||
runtime.GOARCH == "ppc64le" ||
runtime.GOARCH == "s390x"
// xor reads a little endian uint32 from src, XORs it with u and
// places the result in little endian byte order in dst.
func xor(dst, src []byte, u uint32) {
_, _ = src[3], dst[3] // eliminate bounds checks
if unaligned {
// The compiler should optimize this code into
// 32-bit unaligned little endian loads and stores.
// TODO: delete once the compiler does a reliably
// good job with the generic code below.
// See issue #25111 for more details.
v := uint32(src[0])
v |= uint32(src[1]) << 8
v |= uint32(src[2]) << 16
v |= uint32(src[3]) << 24
v ^= u
dst[0] = byte(v)
dst[1] = byte(v >> 8)
dst[2] = byte(v >> 16)
dst[3] = byte(v >> 24)
} else {
dst[0] = src[0] ^ byte(u)
dst[1] = src[1] ^ byte(u>>8)
dst[2] = src[2] ^ byte(u>>16)
dst[3] = src[3] ^ byte(u>>24)
}
}

View file

@ -1,32 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !appengine
// Package subtle implements functions that are often useful in cryptographic
// code but require careful thought to use correctly.
package subtle // import "golang.org/x/crypto/internal/subtle"
import "unsafe"
// AnyOverlap reports whether x and y share memory at any (not necessarily
// corresponding) index. The memory beyond the slice length is ignored.
func AnyOverlap(x, y []byte) bool {
return len(x) > 0 && len(y) > 0 &&
uintptr(unsafe.Pointer(&x[0])) <= uintptr(unsafe.Pointer(&y[len(y)-1])) &&
uintptr(unsafe.Pointer(&y[0])) <= uintptr(unsafe.Pointer(&x[len(x)-1]))
}
// InexactOverlap reports whether x and y share memory at any non-corresponding
// index. The memory beyond the slice length is ignored. Note that x and y can
// have different lengths and still not have any inexact overlap.
//
// InexactOverlap can be used to implement the requirements of the crypto/cipher
// AEAD, Block, BlockMode and Stream interfaces.
func InexactOverlap(x, y []byte) bool {
if len(x) == 0 || len(y) == 0 || &x[0] == &y[0] {
return false
}
return AnyOverlap(x, y)
}

View file

@ -1,35 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build appengine
// Package subtle implements functions that are often useful in cryptographic
// code but require careful thought to use correctly.
package subtle // import "golang.org/x/crypto/internal/subtle"
// This is the Google App Engine standard variant based on reflect
// because the unsafe package and cgo are disallowed.
import "reflect"
// AnyOverlap reports whether x and y share memory at any (not necessarily
// corresponding) index. The memory beyond the slice length is ignored.
func AnyOverlap(x, y []byte) bool {
return len(x) > 0 && len(y) > 0 &&
reflect.ValueOf(&x[0]).Pointer() <= reflect.ValueOf(&y[len(y)-1]).Pointer() &&
reflect.ValueOf(&y[0]).Pointer() <= reflect.ValueOf(&x[len(x)-1]).Pointer()
}
// InexactOverlap reports whether x and y share memory at any non-corresponding
// index. The memory beyond the slice length is ignored. Note that x and y can
// have different lengths and still not have any inexact overlap.
//
// InexactOverlap can be used to implement the requirements of the crypto/cipher
// AEAD, Block, BlockMode and Stream interfaces.
func InexactOverlap(x, y []byte) bool {
if len(x) == 0 || len(y) == 0 || &x[0] == &y[0] {
return false
}
return AnyOverlap(x, y)
}

View file

@ -1,33 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package poly1305 implements Poly1305 one-time message authentication code as
specified in https://cr.yp.to/mac/poly1305-20050329.pdf.
Poly1305 is a fast, one-time authentication function. It is infeasible for an
attacker to generate an authenticator for a message without the key. However, a
key must only be used for a single message. Authenticating two different
messages with the same key allows an attacker to forge authenticators for other
messages with the same key.
Poly1305 was originally coupled with AES in order to make Poly1305-AES. AES was
used with a fixed key in order to generate one-time keys from an nonce.
However, in this package AES isn't used and the one-time key is specified
directly.
*/
package poly1305 // import "golang.org/x/crypto/poly1305"
import "crypto/subtle"
// TagSize is the size, in bytes, of a poly1305 authenticator.
const TagSize = 16
// Verify returns true if mac is a valid authenticator for m with the given
// key.
func Verify(mac *[16]byte, m []byte, key *[32]byte) bool {
var tmp [16]byte
Sum(&tmp, m, key)
return subtle.ConstantTimeCompare(tmp[:], mac[:]) == 1
}

View file

@ -1,22 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build amd64,!gccgo,!appengine
package poly1305
// This function is implemented in sum_amd64.s
//go:noescape
func poly1305(out *[16]byte, m *byte, mlen uint64, key *[32]byte)
// Sum generates an authenticator for m using a one-time key and puts the
// 16-byte result into out. Authenticating two different messages with the same
// key allows an attacker to forge messages at will.
func Sum(out *[16]byte, m []byte, key *[32]byte) {
var mPtr *byte
if len(m) > 0 {
mPtr = &m[0]
}
poly1305(out, mPtr, uint64(len(m)), key)
}

View file

@ -1,125 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build amd64,!gccgo,!appengine
#include "textflag.h"
#define POLY1305_ADD(msg, h0, h1, h2) \
ADDQ 0(msg), h0; \
ADCQ 8(msg), h1; \
ADCQ $1, h2; \
LEAQ 16(msg), msg
#define POLY1305_MUL(h0, h1, h2, r0, r1, t0, t1, t2, t3) \
MOVQ r0, AX; \
MULQ h0; \
MOVQ AX, t0; \
MOVQ DX, t1; \
MOVQ r0, AX; \
MULQ h1; \
ADDQ AX, t1; \
ADCQ $0, DX; \
MOVQ r0, t2; \
IMULQ h2, t2; \
ADDQ DX, t2; \
\
MOVQ r1, AX; \
MULQ h0; \
ADDQ AX, t1; \
ADCQ $0, DX; \
MOVQ DX, h0; \
MOVQ r1, t3; \
IMULQ h2, t3; \
MOVQ r1, AX; \
MULQ h1; \
ADDQ AX, t2; \
ADCQ DX, t3; \
ADDQ h0, t2; \
ADCQ $0, t3; \
\
MOVQ t0, h0; \
MOVQ t1, h1; \
MOVQ t2, h2; \
ANDQ $3, h2; \
MOVQ t2, t0; \
ANDQ $0xFFFFFFFFFFFFFFFC, t0; \
ADDQ t0, h0; \
ADCQ t3, h1; \
ADCQ $0, h2; \
SHRQ $2, t3, t2; \
SHRQ $2, t3; \
ADDQ t2, h0; \
ADCQ t3, h1; \
ADCQ $0, h2
DATA ·poly1305Mask<>+0x00(SB)/8, $0x0FFFFFFC0FFFFFFF
DATA ·poly1305Mask<>+0x08(SB)/8, $0x0FFFFFFC0FFFFFFC
GLOBL ·poly1305Mask<>(SB), RODATA, $16
// func poly1305(out *[16]byte, m *byte, mlen uint64, key *[32]key)
TEXT ·poly1305(SB), $0-32
MOVQ out+0(FP), DI
MOVQ m+8(FP), SI
MOVQ mlen+16(FP), R15
MOVQ key+24(FP), AX
MOVQ 0(AX), R11
MOVQ 8(AX), R12
ANDQ ·poly1305Mask<>(SB), R11 // r0
ANDQ ·poly1305Mask<>+8(SB), R12 // r1
XORQ R8, R8 // h0
XORQ R9, R9 // h1
XORQ R10, R10 // h2
CMPQ R15, $16
JB bytes_between_0_and_15
loop:
POLY1305_ADD(SI, R8, R9, R10)
multiply:
POLY1305_MUL(R8, R9, R10, R11, R12, BX, CX, R13, R14)
SUBQ $16, R15
CMPQ R15, $16
JAE loop
bytes_between_0_and_15:
TESTQ R15, R15
JZ done
MOVQ $1, BX
XORQ CX, CX
XORQ R13, R13
ADDQ R15, SI
flush_buffer:
SHLQ $8, BX, CX
SHLQ $8, BX
MOVB -1(SI), R13
XORQ R13, BX
DECQ SI
DECQ R15
JNZ flush_buffer
ADDQ BX, R8
ADCQ CX, R9
ADCQ $0, R10
MOVQ $16, R15
JMP multiply
done:
MOVQ R8, AX
MOVQ R9, BX
SUBQ $0xFFFFFFFFFFFFFFFB, AX
SBBQ $0xFFFFFFFFFFFFFFFF, BX
SBBQ $3, R10
CMOVQCS R8, AX
CMOVQCS R9, BX
MOVQ key+24(FP), R8
ADDQ 16(R8), AX
ADCQ 24(R8), BX
MOVQ AX, 0(DI)
MOVQ BX, 8(DI)
RET

View file

@ -1,22 +0,0 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build arm,!gccgo,!appengine,!nacl
package poly1305
// This function is implemented in sum_arm.s
//go:noescape
func poly1305_auth_armv6(out *[16]byte, m *byte, mlen uint32, key *[32]byte)
// Sum generates an authenticator for m using a one-time key and puts the
// 16-byte result into out. Authenticating two different messages with the same
// key allows an attacker to forge messages at will.
func Sum(out *[16]byte, m []byte, key *[32]byte) {
var mPtr *byte
if len(m) > 0 {
mPtr = &m[0]
}
poly1305_auth_armv6(out, mPtr, uint32(len(m)), key)
}

View file

@ -1,427 +0,0 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build arm,!gccgo,!appengine,!nacl
#include "textflag.h"
// This code was translated into a form compatible with 5a from the public
// domain source by Andrew Moon: github.com/floodyberry/poly1305-opt/blob/master/app/extensions/poly1305.
DATA ·poly1305_init_constants_armv6<>+0x00(SB)/4, $0x3ffffff
DATA ·poly1305_init_constants_armv6<>+0x04(SB)/4, $0x3ffff03
DATA ·poly1305_init_constants_armv6<>+0x08(SB)/4, $0x3ffc0ff
DATA ·poly1305_init_constants_armv6<>+0x0c(SB)/4, $0x3f03fff
DATA ·poly1305_init_constants_armv6<>+0x10(SB)/4, $0x00fffff
GLOBL ·poly1305_init_constants_armv6<>(SB), 8, $20
// Warning: the linker may use R11 to synthesize certain instructions. Please
// take care and verify that no synthetic instructions use it.
TEXT poly1305_init_ext_armv6<>(SB), NOSPLIT, $0
// Needs 16 bytes of stack and 64 bytes of space pointed to by R0. (It
// might look like it's only 60 bytes of space but the final four bytes
// will be written by another function.) We need to skip over four
// bytes of stack because that's saving the value of 'g'.
ADD $4, R13, R8
MOVM.IB [R4-R7], (R8)
MOVM.IA.W (R1), [R2-R5]
MOVW $·poly1305_init_constants_armv6<>(SB), R7
MOVW R2, R8
MOVW R2>>26, R9
MOVW R3>>20, g
MOVW R4>>14, R11
MOVW R5>>8, R12
ORR R3<<6, R9, R9
ORR R4<<12, g, g
ORR R5<<18, R11, R11
MOVM.IA (R7), [R2-R6]
AND R8, R2, R2
AND R9, R3, R3
AND g, R4, R4
AND R11, R5, R5
AND R12, R6, R6
MOVM.IA.W [R2-R6], (R0)
EOR R2, R2, R2
EOR R3, R3, R3
EOR R4, R4, R4
EOR R5, R5, R5
EOR R6, R6, R6
MOVM.IA.W [R2-R6], (R0)
MOVM.IA.W (R1), [R2-R5]
MOVM.IA [R2-R6], (R0)
ADD $20, R13, R0
MOVM.DA (R0), [R4-R7]
RET
#define MOVW_UNALIGNED(Rsrc, Rdst, Rtmp, offset) \
MOVBU (offset+0)(Rsrc), Rtmp; \
MOVBU Rtmp, (offset+0)(Rdst); \
MOVBU (offset+1)(Rsrc), Rtmp; \
MOVBU Rtmp, (offset+1)(Rdst); \
MOVBU (offset+2)(Rsrc), Rtmp; \
MOVBU Rtmp, (offset+2)(Rdst); \
MOVBU (offset+3)(Rsrc), Rtmp; \
MOVBU Rtmp, (offset+3)(Rdst)
TEXT poly1305_blocks_armv6<>(SB), NOSPLIT, $0
// Needs 24 bytes of stack for saved registers and then 88 bytes of
// scratch space after that. We assume that 24 bytes at (R13) have
// already been used: four bytes for the link register saved in the
// prelude of poly1305_auth_armv6, four bytes for saving the value of g
// in that function and 16 bytes of scratch space used around
// poly1305_finish_ext_armv6_skip1.
ADD $24, R13, R12
MOVM.IB [R4-R8, R14], (R12)
MOVW R0, 88(R13)
MOVW R1, 92(R13)
MOVW R2, 96(R13)
MOVW R1, R14
MOVW R2, R12
MOVW 56(R0), R8
WORD $0xe1180008 // TST R8, R8 not working see issue 5921
EOR R6, R6, R6
MOVW.EQ $(1<<24), R6
MOVW R6, 84(R13)
ADD $116, R13, g
MOVM.IA (R0), [R0-R9]
MOVM.IA [R0-R4], (g)
CMP $16, R12
BLO poly1305_blocks_armv6_done
poly1305_blocks_armv6_mainloop:
WORD $0xe31e0003 // TST R14, #3 not working see issue 5921
BEQ poly1305_blocks_armv6_mainloop_aligned
ADD $100, R13, g
MOVW_UNALIGNED(R14, g, R0, 0)
MOVW_UNALIGNED(R14, g, R0, 4)
MOVW_UNALIGNED(R14, g, R0, 8)
MOVW_UNALIGNED(R14, g, R0, 12)
MOVM.IA (g), [R0-R3]
ADD $16, R14
B poly1305_blocks_armv6_mainloop_loaded
poly1305_blocks_armv6_mainloop_aligned:
MOVM.IA.W (R14), [R0-R3]
poly1305_blocks_armv6_mainloop_loaded:
MOVW R0>>26, g
MOVW R1>>20, R11
MOVW R2>>14, R12
MOVW R14, 92(R13)
MOVW R3>>8, R4
ORR R1<<6, g, g
ORR R2<<12, R11, R11
ORR R3<<18, R12, R12
BIC $0xfc000000, R0, R0
BIC $0xfc000000, g, g
MOVW 84(R13), R3
BIC $0xfc000000, R11, R11
BIC $0xfc000000, R12, R12
ADD R0, R5, R5
ADD g, R6, R6
ORR R3, R4, R4
ADD R11, R7, R7
ADD $116, R13, R14
ADD R12, R8, R8
ADD R4, R9, R9
MOVM.IA (R14), [R0-R4]
MULLU R4, R5, (R11, g)
MULLU R3, R5, (R14, R12)
MULALU R3, R6, (R11, g)
MULALU R2, R6, (R14, R12)
MULALU R2, R7, (R11, g)
MULALU R1, R7, (R14, R12)
ADD R4<<2, R4, R4
ADD R3<<2, R3, R3
MULALU R1, R8, (R11, g)
MULALU R0, R8, (R14, R12)
MULALU R0, R9, (R11, g)
MULALU R4, R9, (R14, R12)
MOVW g, 76(R13)
MOVW R11, 80(R13)
MOVW R12, 68(R13)
MOVW R14, 72(R13)
MULLU R2, R5, (R11, g)
MULLU R1, R5, (R14, R12)
MULALU R1, R6, (R11, g)
MULALU R0, R6, (R14, R12)
MULALU R0, R7, (R11, g)
MULALU R4, R7, (R14, R12)
ADD R2<<2, R2, R2
ADD R1<<2, R1, R1
MULALU R4, R8, (R11, g)
MULALU R3, R8, (R14, R12)
MULALU R3, R9, (R11, g)
MULALU R2, R9, (R14, R12)
MOVW g, 60(R13)
MOVW R11, 64(R13)
MOVW R12, 52(R13)
MOVW R14, 56(R13)
MULLU R0, R5, (R11, g)
MULALU R4, R6, (R11, g)
MULALU R3, R7, (R11, g)
MULALU R2, R8, (R11, g)
MULALU R1, R9, (R11, g)
ADD $52, R13, R0
MOVM.IA (R0), [R0-R7]
MOVW g>>26, R12
MOVW R4>>26, R14
ORR R11<<6, R12, R12
ORR R5<<6, R14, R14
BIC $0xfc000000, g, g
BIC $0xfc000000, R4, R4
ADD.S R12, R0, R0
ADC $0, R1, R1
ADD.S R14, R6, R6
ADC $0, R7, R7
MOVW R0>>26, R12
MOVW R6>>26, R14
ORR R1<<6, R12, R12
ORR R7<<6, R14, R14
BIC $0xfc000000, R0, R0
BIC $0xfc000000, R6, R6
ADD R14<<2, R14, R14
ADD.S R12, R2, R2
ADC $0, R3, R3
ADD R14, g, g
MOVW R2>>26, R12
MOVW g>>26, R14
ORR R3<<6, R12, R12
BIC $0xfc000000, g, R5
BIC $0xfc000000, R2, R7
ADD R12, R4, R4
ADD R14, R0, R0
MOVW R4>>26, R12
BIC $0xfc000000, R4, R8
ADD R12, R6, R9
MOVW 96(R13), R12
MOVW 92(R13), R14
MOVW R0, R6
CMP $32, R12
SUB $16, R12, R12
MOVW R12, 96(R13)
BHS poly1305_blocks_armv6_mainloop
poly1305_blocks_armv6_done:
MOVW 88(R13), R12
MOVW R5, 20(R12)
MOVW R6, 24(R12)
MOVW R7, 28(R12)
MOVW R8, 32(R12)
MOVW R9, 36(R12)
ADD $48, R13, R0
MOVM.DA (R0), [R4-R8, R14]
RET
#define MOVHUP_UNALIGNED(Rsrc, Rdst, Rtmp) \
MOVBU.P 1(Rsrc), Rtmp; \
MOVBU.P Rtmp, 1(Rdst); \
MOVBU.P 1(Rsrc), Rtmp; \
MOVBU.P Rtmp, 1(Rdst)
#define MOVWP_UNALIGNED(Rsrc, Rdst, Rtmp) \
MOVHUP_UNALIGNED(Rsrc, Rdst, Rtmp); \
MOVHUP_UNALIGNED(Rsrc, Rdst, Rtmp)
// func poly1305_auth_armv6(out *[16]byte, m *byte, mlen uint32, key *[32]key)
TEXT ·poly1305_auth_armv6(SB), $196-16
// The value 196, just above, is the sum of 64 (the size of the context
// structure) and 132 (the amount of stack needed).
//
// At this point, the stack pointer (R13) has been moved down. It
// points to the saved link register and there's 196 bytes of free
// space above it.
//
// The stack for this function looks like:
//
// +---------------------
// |
// | 64 bytes of context structure
// |
// +---------------------
// |
// | 112 bytes for poly1305_blocks_armv6
// |
// +---------------------
// | 16 bytes of final block, constructed at
// | poly1305_finish_ext_armv6_skip8
// +---------------------
// | four bytes of saved 'g'
// +---------------------
// | lr, saved by prelude <- R13 points here
// +---------------------
MOVW g, 4(R13)
MOVW out+0(FP), R4
MOVW m+4(FP), R5
MOVW mlen+8(FP), R6
MOVW key+12(FP), R7
ADD $136, R13, R0 // 136 = 4 + 4 + 16 + 112
MOVW R7, R1
// poly1305_init_ext_armv6 will write to the stack from R13+4, but
// that's ok because none of the other values have been written yet.
BL poly1305_init_ext_armv6<>(SB)
BIC.S $15, R6, R2
BEQ poly1305_auth_armv6_noblocks
ADD $136, R13, R0
MOVW R5, R1
ADD R2, R5, R5
SUB R2, R6, R6
BL poly1305_blocks_armv6<>(SB)
poly1305_auth_armv6_noblocks:
ADD $136, R13, R0
MOVW R5, R1
MOVW R6, R2
MOVW R4, R3
MOVW R0, R5
MOVW R1, R6
MOVW R2, R7
MOVW R3, R8
AND.S R2, R2, R2
BEQ poly1305_finish_ext_armv6_noremaining
EOR R0, R0
ADD $8, R13, R9 // 8 = offset to 16 byte scratch space
MOVW R0, (R9)
MOVW R0, 4(R9)
MOVW R0, 8(R9)
MOVW R0, 12(R9)
WORD $0xe3110003 // TST R1, #3 not working see issue 5921
BEQ poly1305_finish_ext_armv6_aligned
WORD $0xe3120008 // TST R2, #8 not working see issue 5921
BEQ poly1305_finish_ext_armv6_skip8
MOVWP_UNALIGNED(R1, R9, g)
MOVWP_UNALIGNED(R1, R9, g)
poly1305_finish_ext_armv6_skip8:
WORD $0xe3120004 // TST $4, R2 not working see issue 5921
BEQ poly1305_finish_ext_armv6_skip4
MOVWP_UNALIGNED(R1, R9, g)
poly1305_finish_ext_armv6_skip4:
WORD $0xe3120002 // TST $2, R2 not working see issue 5921
BEQ poly1305_finish_ext_armv6_skip2
MOVHUP_UNALIGNED(R1, R9, g)
B poly1305_finish_ext_armv6_skip2
poly1305_finish_ext_armv6_aligned:
WORD $0xe3120008 // TST R2, #8 not working see issue 5921
BEQ poly1305_finish_ext_armv6_skip8_aligned
MOVM.IA.W (R1), [g-R11]
MOVM.IA.W [g-R11], (R9)
poly1305_finish_ext_armv6_skip8_aligned:
WORD $0xe3120004 // TST $4, R2 not working see issue 5921
BEQ poly1305_finish_ext_armv6_skip4_aligned
MOVW.P 4(R1), g
MOVW.P g, 4(R9)
poly1305_finish_ext_armv6_skip4_aligned:
WORD $0xe3120002 // TST $2, R2 not working see issue 5921
BEQ poly1305_finish_ext_armv6_skip2
MOVHU.P 2(R1), g
MOVH.P g, 2(R9)
poly1305_finish_ext_armv6_skip2:
WORD $0xe3120001 // TST $1, R2 not working see issue 5921
BEQ poly1305_finish_ext_armv6_skip1
MOVBU.P 1(R1), g
MOVBU.P g, 1(R9)
poly1305_finish_ext_armv6_skip1:
MOVW $1, R11
MOVBU R11, 0(R9)
MOVW R11, 56(R5)
MOVW R5, R0
ADD $8, R13, R1
MOVW $16, R2
BL poly1305_blocks_armv6<>(SB)
poly1305_finish_ext_armv6_noremaining:
MOVW 20(R5), R0
MOVW 24(R5), R1
MOVW 28(R5), R2
MOVW 32(R5), R3
MOVW 36(R5), R4
MOVW R4>>26, R12
BIC $0xfc000000, R4, R4
ADD R12<<2, R12, R12
ADD R12, R0, R0
MOVW R0>>26, R12
BIC $0xfc000000, R0, R0
ADD R12, R1, R1
MOVW R1>>26, R12
BIC $0xfc000000, R1, R1
ADD R12, R2, R2
MOVW R2>>26, R12
BIC $0xfc000000, R2, R2
ADD R12, R3, R3
MOVW R3>>26, R12
BIC $0xfc000000, R3, R3
ADD R12, R4, R4
ADD $5, R0, R6
MOVW R6>>26, R12
BIC $0xfc000000, R6, R6
ADD R12, R1, R7
MOVW R7>>26, R12
BIC $0xfc000000, R7, R7
ADD R12, R2, g
MOVW g>>26, R12
BIC $0xfc000000, g, g
ADD R12, R3, R11
MOVW $-(1<<26), R12
ADD R11>>26, R12, R12
BIC $0xfc000000, R11, R11
ADD R12, R4, R9
MOVW R9>>31, R12
SUB $1, R12
AND R12, R6, R6
AND R12, R7, R7
AND R12, g, g
AND R12, R11, R11
AND R12, R9, R9
MVN R12, R12
AND R12, R0, R0
AND R12, R1, R1
AND R12, R2, R2
AND R12, R3, R3
AND R12, R4, R4
ORR R6, R0, R0
ORR R7, R1, R1
ORR g, R2, R2
ORR R11, R3, R3
ORR R9, R4, R4
ORR R1<<26, R0, R0
MOVW R1>>6, R1
ORR R2<<20, R1, R1
MOVW R2>>12, R2
ORR R3<<14, R2, R2
MOVW R3>>18, R3
ORR R4<<8, R3, R3
MOVW 40(R5), R6
MOVW 44(R5), R7
MOVW 48(R5), g
MOVW 52(R5), R11
ADD.S R6, R0, R0
ADC.S R7, R1, R1
ADC.S g, R2, R2
ADC.S R11, R3, R3
MOVM.IA [R0-R3], (R8)
MOVW R5, R12
EOR R0, R0, R0
EOR R1, R1, R1
EOR R2, R2, R2
EOR R3, R3, R3
EOR R4, R4, R4
EOR R5, R5, R5
EOR R6, R6, R6
EOR R7, R7, R7
MOVM.IA.W [R0-R7], (R12)
MOVM.IA [R0-R7], (R12)
MOVW 4(R13), g
RET

View file

@ -1,14 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build s390x,!go1.11 !arm,!amd64,!s390x gccgo appengine nacl
package poly1305
// Sum generates an authenticator for msg using a one-time key and puts the
// 16-byte result into out. Authenticating two different messages with the same
// key allows an attacker to forge messages at will.
func Sum(out *[TagSize]byte, msg []byte, key *[32]byte) {
sumGeneric(out, msg, key)
}

View file

@ -1,139 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package poly1305
import "encoding/binary"
// sumGeneric generates an authenticator for msg using a one-time key and
// puts the 16-byte result into out. This is the generic implementation of
// Sum and should be called if no assembly implementation is available.
func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) {
var (
h0, h1, h2, h3, h4 uint32 // the hash accumulators
r0, r1, r2, r3, r4 uint64 // the r part of the key
)
r0 = uint64(binary.LittleEndian.Uint32(key[0:]) & 0x3ffffff)
r1 = uint64((binary.LittleEndian.Uint32(key[3:]) >> 2) & 0x3ffff03)
r2 = uint64((binary.LittleEndian.Uint32(key[6:]) >> 4) & 0x3ffc0ff)
r3 = uint64((binary.LittleEndian.Uint32(key[9:]) >> 6) & 0x3f03fff)
r4 = uint64((binary.LittleEndian.Uint32(key[12:]) >> 8) & 0x00fffff)
R1, R2, R3, R4 := r1*5, r2*5, r3*5, r4*5
for len(msg) >= TagSize {
// h += msg
h0 += binary.LittleEndian.Uint32(msg[0:]) & 0x3ffffff
h1 += (binary.LittleEndian.Uint32(msg[3:]) >> 2) & 0x3ffffff
h2 += (binary.LittleEndian.Uint32(msg[6:]) >> 4) & 0x3ffffff
h3 += (binary.LittleEndian.Uint32(msg[9:]) >> 6) & 0x3ffffff
h4 += (binary.LittleEndian.Uint32(msg[12:]) >> 8) | (1 << 24)
// h *= r
d0 := (uint64(h0) * r0) + (uint64(h1) * R4) + (uint64(h2) * R3) + (uint64(h3) * R2) + (uint64(h4) * R1)
d1 := (d0 >> 26) + (uint64(h0) * r1) + (uint64(h1) * r0) + (uint64(h2) * R4) + (uint64(h3) * R3) + (uint64(h4) * R2)
d2 := (d1 >> 26) + (uint64(h0) * r2) + (uint64(h1) * r1) + (uint64(h2) * r0) + (uint64(h3) * R4) + (uint64(h4) * R3)
d3 := (d2 >> 26) + (uint64(h0) * r3) + (uint64(h1) * r2) + (uint64(h2) * r1) + (uint64(h3) * r0) + (uint64(h4) * R4)
d4 := (d3 >> 26) + (uint64(h0) * r4) + (uint64(h1) * r3) + (uint64(h2) * r2) + (uint64(h3) * r1) + (uint64(h4) * r0)
// h %= p
h0 = uint32(d0) & 0x3ffffff
h1 = uint32(d1) & 0x3ffffff
h2 = uint32(d2) & 0x3ffffff
h3 = uint32(d3) & 0x3ffffff
h4 = uint32(d4) & 0x3ffffff
h0 += uint32(d4>>26) * 5
h1 += h0 >> 26
h0 = h0 & 0x3ffffff
msg = msg[TagSize:]
}
if len(msg) > 0 {
var block [TagSize]byte
off := copy(block[:], msg)
block[off] = 0x01
// h += msg
h0 += binary.LittleEndian.Uint32(block[0:]) & 0x3ffffff
h1 += (binary.LittleEndian.Uint32(block[3:]) >> 2) & 0x3ffffff
h2 += (binary.LittleEndian.Uint32(block[6:]) >> 4) & 0x3ffffff
h3 += (binary.LittleEndian.Uint32(block[9:]) >> 6) & 0x3ffffff
h4 += (binary.LittleEndian.Uint32(block[12:]) >> 8)
// h *= r
d0 := (uint64(h0) * r0) + (uint64(h1) * R4) + (uint64(h2) * R3) + (uint64(h3) * R2) + (uint64(h4) * R1)
d1 := (d0 >> 26) + (uint64(h0) * r1) + (uint64(h1) * r0) + (uint64(h2) * R4) + (uint64(h3) * R3) + (uint64(h4) * R2)
d2 := (d1 >> 26) + (uint64(h0) * r2) + (uint64(h1) * r1) + (uint64(h2) * r0) + (uint64(h3) * R4) + (uint64(h4) * R3)
d3 := (d2 >> 26) + (uint64(h0) * r3) + (uint64(h1) * r2) + (uint64(h2) * r1) + (uint64(h3) * r0) + (uint64(h4) * R4)
d4 := (d3 >> 26) + (uint64(h0) * r4) + (uint64(h1) * r3) + (uint64(h2) * r2) + (uint64(h3) * r1) + (uint64(h4) * r0)
// h %= p
h0 = uint32(d0) & 0x3ffffff
h1 = uint32(d1) & 0x3ffffff
h2 = uint32(d2) & 0x3ffffff
h3 = uint32(d3) & 0x3ffffff
h4 = uint32(d4) & 0x3ffffff
h0 += uint32(d4>>26) * 5
h1 += h0 >> 26
h0 = h0 & 0x3ffffff
}
// h %= p reduction
h2 += h1 >> 26
h1 &= 0x3ffffff
h3 += h2 >> 26
h2 &= 0x3ffffff
h4 += h3 >> 26
h3 &= 0x3ffffff
h0 += 5 * (h4 >> 26)
h4 &= 0x3ffffff
h1 += h0 >> 26
h0 &= 0x3ffffff
// h - p
t0 := h0 + 5
t1 := h1 + (t0 >> 26)
t2 := h2 + (t1 >> 26)
t3 := h3 + (t2 >> 26)
t4 := h4 + (t3 >> 26) - (1 << 26)
t0 &= 0x3ffffff
t1 &= 0x3ffffff
t2 &= 0x3ffffff
t3 &= 0x3ffffff
// select h if h < p else h - p
t_mask := (t4 >> 31) - 1
h_mask := ^t_mask
h0 = (h0 & h_mask) | (t0 & t_mask)
h1 = (h1 & h_mask) | (t1 & t_mask)
h2 = (h2 & h_mask) | (t2 & t_mask)
h3 = (h3 & h_mask) | (t3 & t_mask)
h4 = (h4 & h_mask) | (t4 & t_mask)
// h %= 2^128
h0 |= h1 << 26
h1 = ((h1 >> 6) | (h2 << 20))
h2 = ((h2 >> 12) | (h3 << 14))
h3 = ((h3 >> 18) | (h4 << 8))
// s: the s part of the key
// tag = (h + s) % (2^128)
t := uint64(h0) + uint64(binary.LittleEndian.Uint32(key[16:]))
h0 = uint32(t)
t = uint64(h1) + uint64(binary.LittleEndian.Uint32(key[20:])) + (t >> 32)
h1 = uint32(t)
t = uint64(h2) + uint64(binary.LittleEndian.Uint32(key[24:])) + (t >> 32)
h2 = uint32(t)
t = uint64(h3) + uint64(binary.LittleEndian.Uint32(key[28:])) + (t >> 32)
h3 = uint32(t)
binary.LittleEndian.PutUint32(out[0:], h0)
binary.LittleEndian.PutUint32(out[4:], h1)
binary.LittleEndian.PutUint32(out[8:], h2)
binary.LittleEndian.PutUint32(out[12:], h3)
}

View file

@ -1,49 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build s390x,go1.11,!gccgo,!appengine
package poly1305
// hasVectorFacility reports whether the machine supports
// the vector facility (vx).
func hasVectorFacility() bool
// hasVMSLFacility reports whether the machine supports
// Vector Multiply Sum Logical (VMSL).
func hasVMSLFacility() bool
var hasVX = hasVectorFacility()
var hasVMSL = hasVMSLFacility()
// poly1305vx is an assembly implementation of Poly1305 that uses vector
// instructions. It must only be called if the vector facility (vx) is
// available.
//go:noescape
func poly1305vx(out *[16]byte, m *byte, mlen uint64, key *[32]byte)
// poly1305vmsl is an assembly implementation of Poly1305 that uses vector
// instructions, including VMSL. It must only be called if the vector facility (vx) is
// available and if VMSL is supported.
//go:noescape
func poly1305vmsl(out *[16]byte, m *byte, mlen uint64, key *[32]byte)
// Sum generates an authenticator for m using a one-time key and puts the
// 16-byte result into out. Authenticating two different messages with the same
// key allows an attacker to forge messages at will.
func Sum(out *[16]byte, m []byte, key *[32]byte) {
if hasVX {
var mPtr *byte
if len(m) > 0 {
mPtr = &m[0]
}
if hasVMSL && len(m) > 256 {
poly1305vmsl(out, mPtr, uint64(len(m)), key)
} else {
poly1305vx(out, mPtr, uint64(len(m)), key)
}
} else {
sumGeneric(out, m, key)
}
}

View file

@ -1,400 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build s390x,go1.11,!gccgo,!appengine
#include "textflag.h"
// Implementation of Poly1305 using the vector facility (vx).
// constants
#define MOD26 V0
#define EX0 V1
#define EX1 V2
#define EX2 V3
// temporaries
#define T_0 V4
#define T_1 V5
#define T_2 V6
#define T_3 V7
#define T_4 V8
// key (r)
#define R_0 V9
#define R_1 V10
#define R_2 V11
#define R_3 V12
#define R_4 V13
#define R5_1 V14
#define R5_2 V15
#define R5_3 V16
#define R5_4 V17
#define RSAVE_0 R5
#define RSAVE_1 R6
#define RSAVE_2 R7
#define RSAVE_3 R8
#define RSAVE_4 R9
#define R5SAVE_1 V28
#define R5SAVE_2 V29
#define R5SAVE_3 V30
#define R5SAVE_4 V31
// message block
#define F_0 V18
#define F_1 V19
#define F_2 V20
#define F_3 V21
#define F_4 V22
// accumulator
#define H_0 V23
#define H_1 V24
#define H_2 V25
#define H_3 V26
#define H_4 V27
GLOBL ·keyMask<>(SB), RODATA, $16
DATA ·keyMask<>+0(SB)/8, $0xffffff0ffcffff0f
DATA ·keyMask<>+8(SB)/8, $0xfcffff0ffcffff0f
GLOBL ·bswapMask<>(SB), RODATA, $16
DATA ·bswapMask<>+0(SB)/8, $0x0f0e0d0c0b0a0908
DATA ·bswapMask<>+8(SB)/8, $0x0706050403020100
GLOBL ·constants<>(SB), RODATA, $64
// MOD26
DATA ·constants<>+0(SB)/8, $0x3ffffff
DATA ·constants<>+8(SB)/8, $0x3ffffff
// EX0
DATA ·constants<>+16(SB)/8, $0x0006050403020100
DATA ·constants<>+24(SB)/8, $0x1016151413121110
// EX1
DATA ·constants<>+32(SB)/8, $0x060c0b0a09080706
DATA ·constants<>+40(SB)/8, $0x161c1b1a19181716
// EX2
DATA ·constants<>+48(SB)/8, $0x0d0d0d0d0d0f0e0d
DATA ·constants<>+56(SB)/8, $0x1d1d1d1d1d1f1e1d
// h = (f*g) % (2**130-5) [partial reduction]
#define MULTIPLY(f0, f1, f2, f3, f4, g0, g1, g2, g3, g4, g51, g52, g53, g54, h0, h1, h2, h3, h4) \
VMLOF f0, g0, h0 \
VMLOF f0, g1, h1 \
VMLOF f0, g2, h2 \
VMLOF f0, g3, h3 \
VMLOF f0, g4, h4 \
VMLOF f1, g54, T_0 \
VMLOF f1, g0, T_1 \
VMLOF f1, g1, T_2 \
VMLOF f1, g2, T_3 \
VMLOF f1, g3, T_4 \
VMALOF f2, g53, h0, h0 \
VMALOF f2, g54, h1, h1 \
VMALOF f2, g0, h2, h2 \
VMALOF f2, g1, h3, h3 \
VMALOF f2, g2, h4, h4 \
VMALOF f3, g52, T_0, T_0 \
VMALOF f3, g53, T_1, T_1 \
VMALOF f3, g54, T_2, T_2 \
VMALOF f3, g0, T_3, T_3 \
VMALOF f3, g1, T_4, T_4 \
VMALOF f4, g51, h0, h0 \
VMALOF f4, g52, h1, h1 \
VMALOF f4, g53, h2, h2 \
VMALOF f4, g54, h3, h3 \
VMALOF f4, g0, h4, h4 \
VAG T_0, h0, h0 \
VAG T_1, h1, h1 \
VAG T_2, h2, h2 \
VAG T_3, h3, h3 \
VAG T_4, h4, h4
// carry h0->h1 h3->h4, h1->h2 h4->h0, h0->h1 h2->h3, h3->h4
#define REDUCE(h0, h1, h2, h3, h4) \
VESRLG $26, h0, T_0 \
VESRLG $26, h3, T_1 \
VN MOD26, h0, h0 \
VN MOD26, h3, h3 \
VAG T_0, h1, h1 \
VAG T_1, h4, h4 \
VESRLG $26, h1, T_2 \
VESRLG $26, h4, T_3 \
VN MOD26, h1, h1 \
VN MOD26, h4, h4 \
VESLG $2, T_3, T_4 \
VAG T_3, T_4, T_4 \
VAG T_2, h2, h2 \
VAG T_4, h0, h0 \
VESRLG $26, h2, T_0 \
VESRLG $26, h0, T_1 \
VN MOD26, h2, h2 \
VN MOD26, h0, h0 \
VAG T_0, h3, h3 \
VAG T_1, h1, h1 \
VESRLG $26, h3, T_2 \
VN MOD26, h3, h3 \
VAG T_2, h4, h4
// expand in0 into d[0] and in1 into d[1]
#define EXPAND(in0, in1, d0, d1, d2, d3, d4) \
VGBM $0x0707, d1 \ // d1=tmp
VPERM in0, in1, EX2, d4 \
VPERM in0, in1, EX0, d0 \
VPERM in0, in1, EX1, d2 \
VN d1, d4, d4 \
VESRLG $26, d0, d1 \
VESRLG $30, d2, d3 \
VESRLG $4, d2, d2 \
VN MOD26, d0, d0 \
VN MOD26, d1, d1 \
VN MOD26, d2, d2 \
VN MOD26, d3, d3
// pack h4:h0 into h1:h0 (no carry)
#define PACK(h0, h1, h2, h3, h4) \
VESLG $26, h1, h1 \
VESLG $26, h3, h3 \
VO h0, h1, h0 \
VO h2, h3, h2 \
VESLG $4, h2, h2 \
VLEIB $7, $48, h1 \
VSLB h1, h2, h2 \
VO h0, h2, h0 \
VLEIB $7, $104, h1 \
VSLB h1, h4, h3 \
VO h3, h0, h0 \
VLEIB $7, $24, h1 \
VSRLB h1, h4, h1
// if h > 2**130-5 then h -= 2**130-5
#define MOD(h0, h1, t0, t1, t2) \
VZERO t0 \
VLEIG $1, $5, t0 \
VACCQ h0, t0, t1 \
VAQ h0, t0, t0 \
VONE t2 \
VLEIG $1, $-4, t2 \
VAQ t2, t1, t1 \
VACCQ h1, t1, t1 \
VONE t2 \
VAQ t2, t1, t1 \
VN h0, t1, t2 \
VNC t0, t1, t1 \
VO t1, t2, h0
// func poly1305vx(out *[16]byte, m *byte, mlen uint64, key *[32]key)
TEXT ·poly1305vx(SB), $0-32
// This code processes up to 2 blocks (32 bytes) per iteration
// using the algorithm described in:
// NEON crypto, Daniel J. Bernstein & Peter Schwabe
// https://cryptojedi.org/papers/neoncrypto-20120320.pdf
LMG out+0(FP), R1, R4 // R1=out, R2=m, R3=mlen, R4=key
// load MOD26, EX0, EX1 and EX2
MOVD $·constants<>(SB), R5
VLM (R5), MOD26, EX2
// setup r
VL (R4), T_0
MOVD $·keyMask<>(SB), R6
VL (R6), T_1
VN T_0, T_1, T_0
EXPAND(T_0, T_0, R_0, R_1, R_2, R_3, R_4)
// setup r*5
VLEIG $0, $5, T_0
VLEIG $1, $5, T_0
// store r (for final block)
VMLOF T_0, R_1, R5SAVE_1
VMLOF T_0, R_2, R5SAVE_2
VMLOF T_0, R_3, R5SAVE_3
VMLOF T_0, R_4, R5SAVE_4
VLGVG $0, R_0, RSAVE_0
VLGVG $0, R_1, RSAVE_1
VLGVG $0, R_2, RSAVE_2
VLGVG $0, R_3, RSAVE_3
VLGVG $0, R_4, RSAVE_4
// skip r**2 calculation
CMPBLE R3, $16, skip
// calculate r**2
MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5SAVE_1, R5SAVE_2, R5SAVE_3, R5SAVE_4, H_0, H_1, H_2, H_3, H_4)
REDUCE(H_0, H_1, H_2, H_3, H_4)
VLEIG $0, $5, T_0
VLEIG $1, $5, T_0
VMLOF T_0, H_1, R5_1
VMLOF T_0, H_2, R5_2
VMLOF T_0, H_3, R5_3
VMLOF T_0, H_4, R5_4
VLR H_0, R_0
VLR H_1, R_1
VLR H_2, R_2
VLR H_3, R_3
VLR H_4, R_4
// initialize h
VZERO H_0
VZERO H_1
VZERO H_2
VZERO H_3
VZERO H_4
loop:
CMPBLE R3, $32, b2
VLM (R2), T_0, T_1
SUB $32, R3
MOVD $32(R2), R2
EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4)
VLEIB $4, $1, F_4
VLEIB $12, $1, F_4
multiply:
VAG H_0, F_0, F_0
VAG H_1, F_1, F_1
VAG H_2, F_2, F_2
VAG H_3, F_3, F_3
VAG H_4, F_4, F_4
MULTIPLY(F_0, F_1, F_2, F_3, F_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4)
REDUCE(H_0, H_1, H_2, H_3, H_4)
CMPBNE R3, $0, loop
finish:
// sum vectors
VZERO T_0
VSUMQG H_0, T_0, H_0
VSUMQG H_1, T_0, H_1
VSUMQG H_2, T_0, H_2
VSUMQG H_3, T_0, H_3
VSUMQG H_4, T_0, H_4
// h may be >= 2*(2**130-5) so we need to reduce it again
REDUCE(H_0, H_1, H_2, H_3, H_4)
// carry h1->h4
VESRLG $26, H_1, T_1
VN MOD26, H_1, H_1
VAQ T_1, H_2, H_2
VESRLG $26, H_2, T_2
VN MOD26, H_2, H_2
VAQ T_2, H_3, H_3
VESRLG $26, H_3, T_3
VN MOD26, H_3, H_3
VAQ T_3, H_4, H_4
// h is now < 2*(2**130-5)
// pack h into h1 (hi) and h0 (lo)
PACK(H_0, H_1, H_2, H_3, H_4)
// if h > 2**130-5 then h -= 2**130-5
MOD(H_0, H_1, T_0, T_1, T_2)
// h += s
MOVD $·bswapMask<>(SB), R5
VL (R5), T_1
VL 16(R4), T_0
VPERM T_0, T_0, T_1, T_0 // reverse bytes (to big)
VAQ T_0, H_0, H_0
VPERM H_0, H_0, T_1, H_0 // reverse bytes (to little)
VST H_0, (R1)
RET
b2:
CMPBLE R3, $16, b1
// 2 blocks remaining
SUB $17, R3
VL (R2), T_0
VLL R3, 16(R2), T_1
ADD $1, R3
MOVBZ $1, R0
CMPBEQ R3, $16, 2(PC)
VLVGB R3, R0, T_1
EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4)
CMPBNE R3, $16, 2(PC)
VLEIB $12, $1, F_4
VLEIB $4, $1, F_4
// setup [r²,r]
VLVGG $1, RSAVE_0, R_0
VLVGG $1, RSAVE_1, R_1
VLVGG $1, RSAVE_2, R_2
VLVGG $1, RSAVE_3, R_3
VLVGG $1, RSAVE_4, R_4
VPDI $0, R5_1, R5SAVE_1, R5_1
VPDI $0, R5_2, R5SAVE_2, R5_2
VPDI $0, R5_3, R5SAVE_3, R5_3
VPDI $0, R5_4, R5SAVE_4, R5_4
MOVD $0, R3
BR multiply
skip:
VZERO H_0
VZERO H_1
VZERO H_2
VZERO H_3
VZERO H_4
CMPBEQ R3, $0, finish
b1:
// 1 block remaining
SUB $1, R3
VLL R3, (R2), T_0
ADD $1, R3
MOVBZ $1, R0
CMPBEQ R3, $16, 2(PC)
VLVGB R3, R0, T_0
VZERO T_1
EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4)
CMPBNE R3, $16, 2(PC)
VLEIB $4, $1, F_4
VLEIG $1, $1, R_0
VZERO R_1
VZERO R_2
VZERO R_3
VZERO R_4
VZERO R5_1
VZERO R5_2
VZERO R5_3
VZERO R5_4
// setup [r, 1]
VLVGG $0, RSAVE_0, R_0
VLVGG $0, RSAVE_1, R_1
VLVGG $0, RSAVE_2, R_2
VLVGG $0, RSAVE_3, R_3
VLVGG $0, RSAVE_4, R_4
VPDI $0, R5SAVE_1, R5_1, R5_1
VPDI $0, R5SAVE_2, R5_2, R5_2
VPDI $0, R5SAVE_3, R5_3, R5_3
VPDI $0, R5SAVE_4, R5_4, R5_4
MOVD $0, R3
BR multiply
TEXT ·hasVectorFacility(SB), NOSPLIT, $24-1
MOVD $x-24(SP), R1
XC $24, 0(R1), 0(R1) // clear the storage
MOVD $2, R0 // R0 is the number of double words stored -1
WORD $0xB2B01000 // STFLE 0(R1)
XOR R0, R0 // reset the value of R0
MOVBZ z-8(SP), R1
AND $0x40, R1
BEQ novector
vectorinstalled:
// check if the vector instruction has been enabled
VLEIB $0, $0xF, V16
VLGVB $0, V16, R1
CMPBNE R1, $0xF, novector
MOVB $1, ret+0(FP) // have vx
RET
novector:
MOVB $0, ret+0(FP) // no vx
RET

View file

@ -1,931 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build s390x,go1.11,!gccgo,!appengine
#include "textflag.h"
// Implementation of Poly1305 using the vector facility (vx) and the VMSL instruction.
// constants
#define EX0 V1
#define EX1 V2
#define EX2 V3
// temporaries
#define T_0 V4
#define T_1 V5
#define T_2 V6
#define T_3 V7
#define T_4 V8
#define T_5 V9
#define T_6 V10
#define T_7 V11
#define T_8 V12
#define T_9 V13
#define T_10 V14
// r**2 & r**4
#define R_0 V15
#define R_1 V16
#define R_2 V17
#define R5_1 V18
#define R5_2 V19
// key (r)
#define RSAVE_0 R7
#define RSAVE_1 R8
#define RSAVE_2 R9
#define R5SAVE_1 R10
#define R5SAVE_2 R11
// message block
#define M0 V20
#define M1 V21
#define M2 V22
#define M3 V23
#define M4 V24
#define M5 V25
// accumulator
#define H0_0 V26
#define H1_0 V27
#define H2_0 V28
#define H0_1 V29
#define H1_1 V30
#define H2_1 V31
GLOBL ·keyMask<>(SB), RODATA, $16
DATA ·keyMask<>+0(SB)/8, $0xffffff0ffcffff0f
DATA ·keyMask<>+8(SB)/8, $0xfcffff0ffcffff0f
GLOBL ·bswapMask<>(SB), RODATA, $16
DATA ·bswapMask<>+0(SB)/8, $0x0f0e0d0c0b0a0908
DATA ·bswapMask<>+8(SB)/8, $0x0706050403020100
GLOBL ·constants<>(SB), RODATA, $48
// EX0
DATA ·constants<>+0(SB)/8, $0x18191a1b1c1d1e1f
DATA ·constants<>+8(SB)/8, $0x0000050403020100
// EX1
DATA ·constants<>+16(SB)/8, $0x18191a1b1c1d1e1f
DATA ·constants<>+24(SB)/8, $0x00000a0908070605
// EX2
DATA ·constants<>+32(SB)/8, $0x18191a1b1c1d1e1f
DATA ·constants<>+40(SB)/8, $0x0000000f0e0d0c0b
GLOBL ·c<>(SB), RODATA, $48
// EX0
DATA ·c<>+0(SB)/8, $0x0000050403020100
DATA ·c<>+8(SB)/8, $0x0000151413121110
// EX1
DATA ·c<>+16(SB)/8, $0x00000a0908070605
DATA ·c<>+24(SB)/8, $0x00001a1918171615
// EX2
DATA ·c<>+32(SB)/8, $0x0000000f0e0d0c0b
DATA ·c<>+40(SB)/8, $0x0000001f1e1d1c1b
GLOBL ·reduce<>(SB), RODATA, $32
// 44 bit
DATA ·reduce<>+0(SB)/8, $0x0
DATA ·reduce<>+8(SB)/8, $0xfffffffffff
// 42 bit
DATA ·reduce<>+16(SB)/8, $0x0
DATA ·reduce<>+24(SB)/8, $0x3ffffffffff
// h = (f*g) % (2**130-5) [partial reduction]
// uses T_0...T_9 temporary registers
// input: m02_0, m02_1, m02_2, m13_0, m13_1, m13_2, r_0, r_1, r_2, r5_1, r5_2, m4_0, m4_1, m4_2, m5_0, m5_1, m5_2
// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8, t9
// output: m02_0, m02_1, m02_2, m13_0, m13_1, m13_2
#define MULTIPLY(m02_0, m02_1, m02_2, m13_0, m13_1, m13_2, r_0, r_1, r_2, r5_1, r5_2, m4_0, m4_1, m4_2, m5_0, m5_1, m5_2, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) \
\ // Eliminate the dependency for the last 2 VMSLs
VMSLG m02_0, r_2, m4_2, m4_2 \
VMSLG m13_0, r_2, m5_2, m5_2 \ // 8 VMSLs pipelined
VMSLG m02_0, r_0, m4_0, m4_0 \
VMSLG m02_1, r5_2, V0, T_0 \
VMSLG m02_0, r_1, m4_1, m4_1 \
VMSLG m02_1, r_0, V0, T_1 \
VMSLG m02_1, r_1, V0, T_2 \
VMSLG m02_2, r5_1, V0, T_3 \
VMSLG m02_2, r5_2, V0, T_4 \
VMSLG m13_0, r_0, m5_0, m5_0 \
VMSLG m13_1, r5_2, V0, T_5 \
VMSLG m13_0, r_1, m5_1, m5_1 \
VMSLG m13_1, r_0, V0, T_6 \
VMSLG m13_1, r_1, V0, T_7 \
VMSLG m13_2, r5_1, V0, T_8 \
VMSLG m13_2, r5_2, V0, T_9 \
VMSLG m02_2, r_0, m4_2, m4_2 \
VMSLG m13_2, r_0, m5_2, m5_2 \
VAQ m4_0, T_0, m02_0 \
VAQ m4_1, T_1, m02_1 \
VAQ m5_0, T_5, m13_0 \
VAQ m5_1, T_6, m13_1 \
VAQ m02_0, T_3, m02_0 \
VAQ m02_1, T_4, m02_1 \
VAQ m13_0, T_8, m13_0 \
VAQ m13_1, T_9, m13_1 \
VAQ m4_2, T_2, m02_2 \
VAQ m5_2, T_7, m13_2 \
// SQUARE uses three limbs of r and r_2*5 to output square of r
// uses T_1, T_5 and T_7 temporary registers
// input: r_0, r_1, r_2, r5_2
// temp: TEMP0, TEMP1, TEMP2
// output: p0, p1, p2
#define SQUARE(r_0, r_1, r_2, r5_2, p0, p1, p2, TEMP0, TEMP1, TEMP2) \
VMSLG r_0, r_0, p0, p0 \
VMSLG r_1, r5_2, V0, TEMP0 \
VMSLG r_2, r5_2, p1, p1 \
VMSLG r_0, r_1, V0, TEMP1 \
VMSLG r_1, r_1, p2, p2 \
VMSLG r_0, r_2, V0, TEMP2 \
VAQ TEMP0, p0, p0 \
VAQ TEMP1, p1, p1 \
VAQ TEMP2, p2, p2 \
VAQ TEMP0, p0, p0 \
VAQ TEMP1, p1, p1 \
VAQ TEMP2, p2, p2 \
// carry h0->h1->h2->h0 || h3->h4->h5->h3
// uses T_2, T_4, T_5, T_7, T_8, T_9
// t6, t7, t8, t9, t10, t11
// input: h0, h1, h2, h3, h4, h5
// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11
// output: h0, h1, h2, h3, h4, h5
#define REDUCE(h0, h1, h2, h3, h4, h5, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11) \
VLM (R12), t6, t7 \ // 44 and 42 bit clear mask
VLEIB $7, $0x28, t10 \ // 5 byte shift mask
VREPIB $4, t8 \ // 4 bit shift mask
VREPIB $2, t11 \ // 2 bit shift mask
VSRLB t10, h0, t0 \ // h0 byte shift
VSRLB t10, h1, t1 \ // h1 byte shift
VSRLB t10, h2, t2 \ // h2 byte shift
VSRLB t10, h3, t3 \ // h3 byte shift
VSRLB t10, h4, t4 \ // h4 byte shift
VSRLB t10, h5, t5 \ // h5 byte shift
VSRL t8, t0, t0 \ // h0 bit shift
VSRL t8, t1, t1 \ // h2 bit shift
VSRL t11, t2, t2 \ // h2 bit shift
VSRL t8, t3, t3 \ // h3 bit shift
VSRL t8, t4, t4 \ // h4 bit shift
VESLG $2, t2, t9 \ // h2 carry x5
VSRL t11, t5, t5 \ // h5 bit shift
VN t6, h0, h0 \ // h0 clear carry
VAQ t2, t9, t2 \ // h2 carry x5
VESLG $2, t5, t9 \ // h5 carry x5
VN t6, h1, h1 \ // h1 clear carry
VN t7, h2, h2 \ // h2 clear carry
VAQ t5, t9, t5 \ // h5 carry x5
VN t6, h3, h3 \ // h3 clear carry
VN t6, h4, h4 \ // h4 clear carry
VN t7, h5, h5 \ // h5 clear carry
VAQ t0, h1, h1 \ // h0->h1
VAQ t3, h4, h4 \ // h3->h4
VAQ t1, h2, h2 \ // h1->h2
VAQ t4, h5, h5 \ // h4->h5
VAQ t2, h0, h0 \ // h2->h0
VAQ t5, h3, h3 \ // h5->h3
VREPG $1, t6, t6 \ // 44 and 42 bit masks across both halves
VREPG $1, t7, t7 \
VSLDB $8, h0, h0, h0 \ // set up [h0/1/2, h3/4/5]
VSLDB $8, h1, h1, h1 \
VSLDB $8, h2, h2, h2 \
VO h0, h3, h3 \
VO h1, h4, h4 \
VO h2, h5, h5 \
VESRLG $44, h3, t0 \ // 44 bit shift right
VESRLG $44, h4, t1 \
VESRLG $42, h5, t2 \
VN t6, h3, h3 \ // clear carry bits
VN t6, h4, h4 \
VN t7, h5, h5 \
VESLG $2, t2, t9 \ // multiply carry by 5
VAQ t9, t2, t2 \
VAQ t0, h4, h4 \
VAQ t1, h5, h5 \
VAQ t2, h3, h3 \
// carry h0->h1->h2->h0
// input: h0, h1, h2
// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8
// output: h0, h1, h2
#define REDUCE2(h0, h1, h2, t0, t1, t2, t3, t4, t5, t6, t7, t8) \
VLEIB $7, $0x28, t3 \ // 5 byte shift mask
VREPIB $4, t4 \ // 4 bit shift mask
VREPIB $2, t7 \ // 2 bit shift mask
VGBM $0x003F, t5 \ // mask to clear carry bits
VSRLB t3, h0, t0 \
VSRLB t3, h1, t1 \
VSRLB t3, h2, t2 \
VESRLG $4, t5, t5 \ // 44 bit clear mask
VSRL t4, t0, t0 \
VSRL t4, t1, t1 \
VSRL t7, t2, t2 \
VESRLG $2, t5, t6 \ // 42 bit clear mask
VESLG $2, t2, t8 \
VAQ t8, t2, t2 \
VN t5, h0, h0 \
VN t5, h1, h1 \
VN t6, h2, h2 \
VAQ t0, h1, h1 \
VAQ t1, h2, h2 \
VAQ t2, h0, h0 \
VSRLB t3, h0, t0 \
VSRLB t3, h1, t1 \
VSRLB t3, h2, t2 \
VSRL t4, t0, t0 \
VSRL t4, t1, t1 \
VSRL t7, t2, t2 \
VN t5, h0, h0 \
VN t5, h1, h1 \
VESLG $2, t2, t8 \
VN t6, h2, h2 \
VAQ t0, h1, h1 \
VAQ t8, t2, t2 \
VAQ t1, h2, h2 \
VAQ t2, h0, h0 \
// expands two message blocks into the lower halfs of the d registers
// moves the contents of the d registers into upper halfs
// input: in1, in2, d0, d1, d2, d3, d4, d5
// temp: TEMP0, TEMP1, TEMP2, TEMP3
// output: d0, d1, d2, d3, d4, d5
#define EXPACC(in1, in2, d0, d1, d2, d3, d4, d5, TEMP0, TEMP1, TEMP2, TEMP3) \
VGBM $0xff3f, TEMP0 \
VGBM $0xff1f, TEMP1 \
VESLG $4, d1, TEMP2 \
VESLG $4, d4, TEMP3 \
VESRLG $4, TEMP0, TEMP0 \
VPERM in1, d0, EX0, d0 \
VPERM in2, d3, EX0, d3 \
VPERM in1, d2, EX2, d2 \
VPERM in2, d5, EX2, d5 \
VPERM in1, TEMP2, EX1, d1 \
VPERM in2, TEMP3, EX1, d4 \
VN TEMP0, d0, d0 \
VN TEMP0, d3, d3 \
VESRLG $4, d1, d1 \
VESRLG $4, d4, d4 \
VN TEMP1, d2, d2 \
VN TEMP1, d5, d5 \
VN TEMP0, d1, d1 \
VN TEMP0, d4, d4 \
// expands one message block into the lower halfs of the d registers
// moves the contents of the d registers into upper halfs
// input: in, d0, d1, d2
// temp: TEMP0, TEMP1, TEMP2
// output: d0, d1, d2
#define EXPACC2(in, d0, d1, d2, TEMP0, TEMP1, TEMP2) \
VGBM $0xff3f, TEMP0 \
VESLG $4, d1, TEMP2 \
VGBM $0xff1f, TEMP1 \
VPERM in, d0, EX0, d0 \
VESRLG $4, TEMP0, TEMP0 \
VPERM in, d2, EX2, d2 \
VPERM in, TEMP2, EX1, d1 \
VN TEMP0, d0, d0 \
VN TEMP1, d2, d2 \
VESRLG $4, d1, d1 \
VN TEMP0, d1, d1 \
// pack h2:h0 into h1:h0 (no carry)
// input: h0, h1, h2
// output: h0, h1, h2
#define PACK(h0, h1, h2) \
VMRLG h1, h2, h2 \ // copy h1 to upper half h2
VESLG $44, h1, h1 \ // shift limb 1 44 bits, leaving 20
VO h0, h1, h0 \ // combine h0 with 20 bits from limb 1
VESRLG $20, h2, h1 \ // put top 24 bits of limb 1 into h1
VLEIG $1, $0, h1 \ // clear h2 stuff from lower half of h1
VO h0, h1, h0 \ // h0 now has 88 bits (limb 0 and 1)
VLEIG $0, $0, h2 \ // clear upper half of h2
VESRLG $40, h2, h1 \ // h1 now has upper two bits of result
VLEIB $7, $88, h1 \ // for byte shift (11 bytes)
VSLB h1, h2, h2 \ // shift h2 11 bytes to the left
VO h0, h2, h0 \ // combine h0 with 20 bits from limb 1
VLEIG $0, $0, h1 \ // clear upper half of h1
// if h > 2**130-5 then h -= 2**130-5
// input: h0, h1
// temp: t0, t1, t2
// output: h0
#define MOD(h0, h1, t0, t1, t2) \
VZERO t0 \
VLEIG $1, $5, t0 \
VACCQ h0, t0, t1 \
VAQ h0, t0, t0 \
VONE t2 \
VLEIG $1, $-4, t2 \
VAQ t2, t1, t1 \
VACCQ h1, t1, t1 \
VONE t2 \
VAQ t2, t1, t1 \
VN h0, t1, t2 \
VNC t0, t1, t1 \
VO t1, t2, h0 \
// func poly1305vmsl(out *[16]byte, m *byte, mlen uint64, key *[32]key)
TEXT ·poly1305vmsl(SB), $0-32
// This code processes 6 + up to 4 blocks (32 bytes) per iteration
// using the algorithm described in:
// NEON crypto, Daniel J. Bernstein & Peter Schwabe
// https://cryptojedi.org/papers/neoncrypto-20120320.pdf
// And as moddified for VMSL as described in
// Accelerating Poly1305 Cryptographic Message Authentication on the z14
// O'Farrell et al, CASCON 2017, p48-55
// https://ibm.ent.box.com/s/jf9gedj0e9d2vjctfyh186shaztavnht
LMG out+0(FP), R1, R4 // R1=out, R2=m, R3=mlen, R4=key
VZERO V0 // c
// load EX0, EX1 and EX2
MOVD $·constants<>(SB), R5
VLM (R5), EX0, EX2 // c
// setup r
VL (R4), T_0
MOVD $·keyMask<>(SB), R6
VL (R6), T_1
VN T_0, T_1, T_0
VZERO T_2 // limbs for r
VZERO T_3
VZERO T_4
EXPACC2(T_0, T_2, T_3, T_4, T_1, T_5, T_7)
// T_2, T_3, T_4: [0, r]
// setup r*20
VLEIG $0, $0, T_0
VLEIG $1, $20, T_0 // T_0: [0, 20]
VZERO T_5
VZERO T_6
VMSLG T_0, T_3, T_5, T_5
VMSLG T_0, T_4, T_6, T_6
// store r for final block in GR
VLGVG $1, T_2, RSAVE_0 // c
VLGVG $1, T_3, RSAVE_1 // c
VLGVG $1, T_4, RSAVE_2 // c
VLGVG $1, T_5, R5SAVE_1 // c
VLGVG $1, T_6, R5SAVE_2 // c
// initialize h
VZERO H0_0
VZERO H1_0
VZERO H2_0
VZERO H0_1
VZERO H1_1
VZERO H2_1
// initialize pointer for reduce constants
MOVD $·reduce<>(SB), R12
// calculate r**2 and 20*(r**2)
VZERO R_0
VZERO R_1
VZERO R_2
SQUARE(T_2, T_3, T_4, T_6, R_0, R_1, R_2, T_1, T_5, T_7)
REDUCE2(R_0, R_1, R_2, M0, M1, M2, M3, M4, R5_1, R5_2, M5, T_1)
VZERO R5_1
VZERO R5_2
VMSLG T_0, R_1, R5_1, R5_1
VMSLG T_0, R_2, R5_2, R5_2
// skip r**4 calculation if 3 blocks or less
CMPBLE R3, $48, b4
// calculate r**4 and 20*(r**4)
VZERO T_8
VZERO T_9
VZERO T_10
SQUARE(R_0, R_1, R_2, R5_2, T_8, T_9, T_10, T_1, T_5, T_7)
REDUCE2(T_8, T_9, T_10, M0, M1, M2, M3, M4, T_2, T_3, M5, T_1)
VZERO T_2
VZERO T_3
VMSLG T_0, T_9, T_2, T_2
VMSLG T_0, T_10, T_3, T_3
// put r**2 to the right and r**4 to the left of R_0, R_1, R_2
VSLDB $8, T_8, T_8, T_8
VSLDB $8, T_9, T_9, T_9
VSLDB $8, T_10, T_10, T_10
VSLDB $8, T_2, T_2, T_2
VSLDB $8, T_3, T_3, T_3
VO T_8, R_0, R_0
VO T_9, R_1, R_1
VO T_10, R_2, R_2
VO T_2, R5_1, R5_1
VO T_3, R5_2, R5_2
CMPBLE R3, $80, load // less than or equal to 5 blocks in message
// 6(or 5+1) blocks
SUB $81, R3
VLM (R2), M0, M4
VLL R3, 80(R2), M5
ADD $1, R3
MOVBZ $1, R0
CMPBGE R3, $16, 2(PC)
VLVGB R3, R0, M5
MOVD $96(R2), R2
EXPACC(M0, M1, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3)
EXPACC(M2, M3, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3)
VLEIB $2, $1, H2_0
VLEIB $2, $1, H2_1
VLEIB $10, $1, H2_0
VLEIB $10, $1, H2_1
VZERO M0
VZERO M1
VZERO M2
VZERO M3
VZERO T_4
VZERO T_10
EXPACC(M4, M5, M0, M1, M2, M3, T_4, T_10, T_0, T_1, T_2, T_3)
VLR T_4, M4
VLEIB $10, $1, M2
CMPBLT R3, $16, 2(PC)
VLEIB $10, $1, T_10
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M2, M3, M4, T_4, T_5, T_2, T_7, T_8, T_9)
VMRHG V0, H0_1, H0_0
VMRHG V0, H1_1, H1_0
VMRHG V0, H2_1, H2_0
VMRLG V0, H0_1, H0_1
VMRLG V0, H1_1, H1_1
VMRLG V0, H2_1, H2_1
SUB $16, R3
CMPBLE R3, $0, square
load:
// load EX0, EX1 and EX2
MOVD $·c<>(SB), R5
VLM (R5), EX0, EX2
loop:
CMPBLE R3, $64, add // b4 // last 4 or less blocks left
// next 4 full blocks
VLM (R2), M2, M5
SUB $64, R3
MOVD $64(R2), R2
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, T_0, T_1, T_3, T_4, T_5, T_2, T_7, T_8, T_9)
// expacc in-lined to create [m2, m3] limbs
VGBM $0x3f3f, T_0 // 44 bit clear mask
VGBM $0x1f1f, T_1 // 40 bit clear mask
VPERM M2, M3, EX0, T_3
VESRLG $4, T_0, T_0 // 44 bit clear mask ready
VPERM M2, M3, EX1, T_4
VPERM M2, M3, EX2, T_5
VN T_0, T_3, T_3
VESRLG $4, T_4, T_4
VN T_1, T_5, T_5
VN T_0, T_4, T_4
VMRHG H0_1, T_3, H0_0
VMRHG H1_1, T_4, H1_0
VMRHG H2_1, T_5, H2_0
VMRLG H0_1, T_3, H0_1
VMRLG H1_1, T_4, H1_1
VMRLG H2_1, T_5, H2_1
VLEIB $10, $1, H2_0
VLEIB $10, $1, H2_1
VPERM M4, M5, EX0, T_3
VPERM M4, M5, EX1, T_4
VPERM M4, M5, EX2, T_5
VN T_0, T_3, T_3
VESRLG $4, T_4, T_4
VN T_1, T_5, T_5
VN T_0, T_4, T_4
VMRHG V0, T_3, M0
VMRHG V0, T_4, M1
VMRHG V0, T_5, M2
VMRLG V0, T_3, M3
VMRLG V0, T_4, M4
VMRLG V0, T_5, M5
VLEIB $10, $1, M2
VLEIB $10, $1, M5
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
CMPBNE R3, $0, loop
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9)
VMRHG V0, H0_1, H0_0
VMRHG V0, H1_1, H1_0
VMRHG V0, H2_1, H2_0
VMRLG V0, H0_1, H0_1
VMRLG V0, H1_1, H1_1
VMRLG V0, H2_1, H2_1
// load EX0, EX1, EX2
MOVD $·constants<>(SB), R5
VLM (R5), EX0, EX2
// sum vectors
VAQ H0_0, H0_1, H0_0
VAQ H1_0, H1_1, H1_0
VAQ H2_0, H2_1, H2_0
// h may be >= 2*(2**130-5) so we need to reduce it again
// M0...M4 are used as temps here
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5)
next: // carry h1->h2
VLEIB $7, $0x28, T_1
VREPIB $4, T_2
VGBM $0x003F, T_3
VESRLG $4, T_3
// byte shift
VSRLB T_1, H1_0, T_4
// bit shift
VSRL T_2, T_4, T_4
// clear h1 carry bits
VN T_3, H1_0, H1_0
// add carry
VAQ T_4, H2_0, H2_0
// h is now < 2*(2**130-5)
// pack h into h1 (hi) and h0 (lo)
PACK(H0_0, H1_0, H2_0)
// if h > 2**130-5 then h -= 2**130-5
MOD(H0_0, H1_0, T_0, T_1, T_2)
// h += s
MOVD $·bswapMask<>(SB), R5
VL (R5), T_1
VL 16(R4), T_0
VPERM T_0, T_0, T_1, T_0 // reverse bytes (to big)
VAQ T_0, H0_0, H0_0
VPERM H0_0, H0_0, T_1, H0_0 // reverse bytes (to little)
VST H0_0, (R1)
RET
add:
// load EX0, EX1, EX2
MOVD $·constants<>(SB), R5
VLM (R5), EX0, EX2
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9)
VMRHG V0, H0_1, H0_0
VMRHG V0, H1_1, H1_0
VMRHG V0, H2_1, H2_0
VMRLG V0, H0_1, H0_1
VMRLG V0, H1_1, H1_1
VMRLG V0, H2_1, H2_1
CMPBLE R3, $64, b4
b4:
CMPBLE R3, $48, b3 // 3 blocks or less
// 4(3+1) blocks remaining
SUB $49, R3
VLM (R2), M0, M2
VLL R3, 48(R2), M3
ADD $1, R3
MOVBZ $1, R0
CMPBEQ R3, $16, 2(PC)
VLVGB R3, R0, M3
MOVD $64(R2), R2
EXPACC(M0, M1, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3)
VLEIB $10, $1, H2_0
VLEIB $10, $1, H2_1
VZERO M0
VZERO M1
VZERO M4
VZERO M5
VZERO T_4
VZERO T_10
EXPACC(M2, M3, M0, M1, M4, M5, T_4, T_10, T_0, T_1, T_2, T_3)
VLR T_4, M2
VLEIB $10, $1, M4
CMPBNE R3, $16, 2(PC)
VLEIB $10, $1, T_10
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M4, M5, M2, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9)
VMRHG V0, H0_1, H0_0
VMRHG V0, H1_1, H1_0
VMRHG V0, H2_1, H2_0
VMRLG V0, H0_1, H0_1
VMRLG V0, H1_1, H1_1
VMRLG V0, H2_1, H2_1
SUB $16, R3
CMPBLE R3, $0, square // this condition must always hold true!
b3:
CMPBLE R3, $32, b2
// 3 blocks remaining
// setup [r²,r]
VSLDB $8, R_0, R_0, R_0
VSLDB $8, R_1, R_1, R_1
VSLDB $8, R_2, R_2, R_2
VSLDB $8, R5_1, R5_1, R5_1
VSLDB $8, R5_2, R5_2, R5_2
VLVGG $1, RSAVE_0, R_0
VLVGG $1, RSAVE_1, R_1
VLVGG $1, RSAVE_2, R_2
VLVGG $1, R5SAVE_1, R5_1
VLVGG $1, R5SAVE_2, R5_2
// setup [h0, h1]
VSLDB $8, H0_0, H0_0, H0_0
VSLDB $8, H1_0, H1_0, H1_0
VSLDB $8, H2_0, H2_0, H2_0
VO H0_1, H0_0, H0_0
VO H1_1, H1_0, H1_0
VO H2_1, H2_0, H2_0
VZERO H0_1
VZERO H1_1
VZERO H2_1
VZERO M0
VZERO M1
VZERO M2
VZERO M3
VZERO M4
VZERO M5
// H*[r**2, r]
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, H0_1, H1_1, T_10, M5)
SUB $33, R3
VLM (R2), M0, M1
VLL R3, 32(R2), M2
ADD $1, R3
MOVBZ $1, R0
CMPBEQ R3, $16, 2(PC)
VLVGB R3, R0, M2
// H += m0
VZERO T_1
VZERO T_2
VZERO T_3
EXPACC2(M0, T_1, T_2, T_3, T_4, T_5, T_6)
VLEIB $10, $1, T_3
VAG H0_0, T_1, H0_0
VAG H1_0, T_2, H1_0
VAG H2_0, T_3, H2_0
VZERO M0
VZERO M3
VZERO M4
VZERO M5
VZERO T_10
// (H+m0)*r
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M3, M4, M5, V0, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
REDUCE2(H0_0, H1_0, H2_0, M0, M3, M4, M5, T_10, H0_1, H1_1, H2_1, T_9)
// H += m1
VZERO V0
VZERO T_1
VZERO T_2
VZERO T_3
EXPACC2(M1, T_1, T_2, T_3, T_4, T_5, T_6)
VLEIB $10, $1, T_3
VAQ H0_0, T_1, H0_0
VAQ H1_0, T_2, H1_0
VAQ H2_0, T_3, H2_0
REDUCE2(H0_0, H1_0, H2_0, M0, M3, M4, M5, T_9, H0_1, H1_1, H2_1, T_10)
// [H, m2] * [r**2, r]
EXPACC2(M2, H0_0, H1_0, H2_0, T_1, T_2, T_3)
CMPBNE R3, $16, 2(PC)
VLEIB $10, $1, H2_0
VZERO M0
VZERO M1
VZERO M2
VZERO M3
VZERO M4
VZERO M5
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, H0_1, H1_1, M5, T_10)
SUB $16, R3
CMPBLE R3, $0, next // this condition must always hold true!
b2:
CMPBLE R3, $16, b1
// 2 blocks remaining
// setup [r²,r]
VSLDB $8, R_0, R_0, R_0
VSLDB $8, R_1, R_1, R_1
VSLDB $8, R_2, R_2, R_2
VSLDB $8, R5_1, R5_1, R5_1
VSLDB $8, R5_2, R5_2, R5_2
VLVGG $1, RSAVE_0, R_0
VLVGG $1, RSAVE_1, R_1
VLVGG $1, RSAVE_2, R_2
VLVGG $1, R5SAVE_1, R5_1
VLVGG $1, R5SAVE_2, R5_2
// setup [h0, h1]
VSLDB $8, H0_0, H0_0, H0_0
VSLDB $8, H1_0, H1_0, H1_0
VSLDB $8, H2_0, H2_0, H2_0
VO H0_1, H0_0, H0_0
VO H1_1, H1_0, H1_0
VO H2_1, H2_0, H2_0
VZERO H0_1
VZERO H1_1
VZERO H2_1
VZERO M0
VZERO M1
VZERO M2
VZERO M3
VZERO M4
VZERO M5
// H*[r**2, r]
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M2, M3, M4, T_4, T_5, T_2, T_7, T_8, T_9)
VMRHG V0, H0_1, H0_0
VMRHG V0, H1_1, H1_0
VMRHG V0, H2_1, H2_0
VMRLG V0, H0_1, H0_1
VMRLG V0, H1_1, H1_1
VMRLG V0, H2_1, H2_1
// move h to the left and 0s at the right
VSLDB $8, H0_0, H0_0, H0_0
VSLDB $8, H1_0, H1_0, H1_0
VSLDB $8, H2_0, H2_0, H2_0
// get message blocks and append 1 to start
SUB $17, R3
VL (R2), M0
VLL R3, 16(R2), M1
ADD $1, R3
MOVBZ $1, R0
CMPBEQ R3, $16, 2(PC)
VLVGB R3, R0, M1
VZERO T_6
VZERO T_7
VZERO T_8
EXPACC2(M0, T_6, T_7, T_8, T_1, T_2, T_3)
EXPACC2(M1, T_6, T_7, T_8, T_1, T_2, T_3)
VLEIB $2, $1, T_8
CMPBNE R3, $16, 2(PC)
VLEIB $10, $1, T_8
// add [m0, m1] to h
VAG H0_0, T_6, H0_0
VAG H1_0, T_7, H1_0
VAG H2_0, T_8, H2_0
VZERO M2
VZERO M3
VZERO M4
VZERO M5
VZERO T_10
VZERO M0
// at this point R_0 .. R5_2 look like [r**2, r]
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M2, M3, M4, M5, T_10, M0, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
REDUCE2(H0_0, H1_0, H2_0, M2, M3, M4, M5, T_9, H0_1, H1_1, H2_1, T_10)
SUB $16, R3, R3
CMPBLE R3, $0, next
b1:
CMPBLE R3, $0, next
// 1 block remaining
// setup [r²,r]
VSLDB $8, R_0, R_0, R_0
VSLDB $8, R_1, R_1, R_1
VSLDB $8, R_2, R_2, R_2
VSLDB $8, R5_1, R5_1, R5_1
VSLDB $8, R5_2, R5_2, R5_2
VLVGG $1, RSAVE_0, R_0
VLVGG $1, RSAVE_1, R_1
VLVGG $1, RSAVE_2, R_2
VLVGG $1, R5SAVE_1, R5_1
VLVGG $1, R5SAVE_2, R5_2
// setup [h0, h1]
VSLDB $8, H0_0, H0_0, H0_0
VSLDB $8, H1_0, H1_0, H1_0
VSLDB $8, H2_0, H2_0, H2_0
VO H0_1, H0_0, H0_0
VO H1_1, H1_0, H1_0
VO H2_1, H2_0, H2_0
VZERO H0_1
VZERO H1_1
VZERO H2_1
VZERO M0
VZERO M1
VZERO M2
VZERO M3
VZERO M4
VZERO M5
// H*[r**2, r]
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5)
// set up [0, m0] limbs
SUB $1, R3
VLL R3, (R2), M0
ADD $1, R3
MOVBZ $1, R0
CMPBEQ R3, $16, 2(PC)
VLVGB R3, R0, M0
VZERO T_1
VZERO T_2
VZERO T_3
EXPACC2(M0, T_1, T_2, T_3, T_4, T_5, T_6)// limbs: [0, m]
CMPBNE R3, $16, 2(PC)
VLEIB $10, $1, T_3
// h+m0
VAQ H0_0, T_1, H0_0
VAQ H1_0, T_2, H1_0
VAQ H2_0, T_3, H2_0
VZERO M0
VZERO M1
VZERO M2
VZERO M3
VZERO M4
VZERO M5
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5)
BR next
square:
// setup [r²,r]
VSLDB $8, R_0, R_0, R_0
VSLDB $8, R_1, R_1, R_1
VSLDB $8, R_2, R_2, R_2
VSLDB $8, R5_1, R5_1, R5_1
VSLDB $8, R5_2, R5_2, R5_2
VLVGG $1, RSAVE_0, R_0
VLVGG $1, RSAVE_1, R_1
VLVGG $1, RSAVE_2, R_2
VLVGG $1, R5SAVE_1, R5_1
VLVGG $1, R5SAVE_2, R5_2
// setup [h0, h1]
VSLDB $8, H0_0, H0_0, H0_0
VSLDB $8, H1_0, H1_0, H1_0
VSLDB $8, H2_0, H2_0, H2_0
VO H0_1, H0_0, H0_0
VO H1_1, H1_0, H1_0
VO H2_1, H2_0, H2_0
VZERO H0_1
VZERO H1_1
VZERO H2_1
VZERO M0
VZERO M1
VZERO M2
VZERO M3
VZERO M4
VZERO M5
// (h0*r**2) + (h1*r)
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5)
BR next
TEXT ·hasVMSLFacility(SB), NOSPLIT, $24-1
MOVD $x-24(SP), R1
XC $24, 0(R1), 0(R1) // clear the storage
MOVD $2, R0 // R0 is the number of double words stored -1
WORD $0xB2B01000 // STFLE 0(R1)
XOR R0, R0 // reset the value of R0
MOVBZ z-8(SP), R1
AND $0x01, R1
BEQ novmsl
vectorinstalled:
// check if the vector instruction has been enabled
VLEIB $0, $0xF, V16
VLGVB $0, V16, R1
CMPBNE R1, $0xF, novmsl
MOVB $1, ret+0(FP) // have vx
RET
novmsl:
MOVB $0, ret+0(FP) // no vx
RET

27
vendor/golang.org/x/sys/LICENSE generated vendored
View file

@ -1,27 +0,0 @@
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

22
vendor/golang.org/x/sys/PATENTS generated vendored
View file

@ -1,22 +0,0 @@
Additional IP Rights Grant (Patents)
"This implementation" means the copyrightable works distributed by
Google as part of the Go project.
Google hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import,
transfer and otherwise run, modify and propagate the contents of this
implementation of Go, where such license applies only to those patent
claims, both currently owned or controlled by Google and acquired in
the future, licensable by Google that are necessarily infringed by this
implementation of Go. This grant does not include claims that would be
infringed only as a consequence of further modification of this
implementation. If you or your agent or exclusive licensee institute or
order or agree to the institution of patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging
that this implementation of Go or any code incorporated within this
implementation of Go constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any patent
rights granted to you under this License for this implementation of Go
shall terminate as of the date such litigation is filed.

View file

@ -1,30 +0,0 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cpu
import (
"encoding/binary"
"runtime"
)
// hostByteOrder returns binary.LittleEndian on little-endian machines and
// binary.BigEndian on big-endian machines.
func hostByteOrder() binary.ByteOrder {
switch runtime.GOARCH {
case "386", "amd64", "amd64p32",
"arm", "arm64",
"mipsle", "mips64le", "mips64p32le",
"ppc64le",
"riscv", "riscv64":
return binary.LittleEndian
case "armbe", "arm64be",
"mips", "mips64", "mips64p32",
"ppc", "ppc64",
"s390", "s390x",
"sparc", "sparc64":
return binary.BigEndian
}
panic("unknown architecture")
}

89
vendor/golang.org/x/sys/cpu/cpu.go generated vendored
View file

@ -1,89 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package cpu implements processor feature detection for
// various CPU architectures.
package cpu
// CacheLinePad is used to pad structs to avoid false sharing.
type CacheLinePad struct{ _ [cacheLineSize]byte }
// X86 contains the supported CPU features of the
// current X86/AMD64 platform. If the current platform
// is not X86/AMD64 then all feature flags are false.
//
// X86 is padded to avoid false sharing. Further the HasAVX
// and HasAVX2 are only set if the OS supports XMM and YMM
// registers in addition to the CPUID feature bit being set.
var X86 struct {
_ CacheLinePad
HasAES bool // AES hardware implementation (AES NI)
HasADX bool // Multi-precision add-carry instruction extensions
HasAVX bool // Advanced vector extension
HasAVX2 bool // Advanced vector extension 2
HasBMI1 bool // Bit manipulation instruction set 1
HasBMI2 bool // Bit manipulation instruction set 2
HasERMS bool // Enhanced REP for MOVSB and STOSB
HasFMA bool // Fused-multiply-add instructions
HasOSXSAVE bool // OS supports XSAVE/XRESTOR for saving/restoring XMM registers.
HasPCLMULQDQ bool // PCLMULQDQ instruction - most often used for AES-GCM
HasPOPCNT bool // Hamming weight instruction POPCNT.
HasRDRAND bool // RDRAND instruction (on-chip random number generator)
HasRDSEED bool // RDSEED instruction (on-chip random number generator)
HasSSE2 bool // Streaming SIMD extension 2 (always available on amd64)
HasSSE3 bool // Streaming SIMD extension 3
HasSSSE3 bool // Supplemental streaming SIMD extension 3
HasSSE41 bool // Streaming SIMD extension 4 and 4.1
HasSSE42 bool // Streaming SIMD extension 4 and 4.2
_ CacheLinePad
}
// ARM64 contains the supported CPU features of the
// current ARMv8(aarch64) platform. If the current platform
// is not arm64 then all feature flags are false.
var ARM64 struct {
_ CacheLinePad
HasFP bool // Floating-point instruction set (always available)
HasASIMD bool // Advanced SIMD (always available)
HasEVTSTRM bool // Event stream support
HasAES bool // AES hardware implementation
HasPMULL bool // Polynomial multiplication instruction set
HasSHA1 bool // SHA1 hardware implementation
HasSHA2 bool // SHA2 hardware implementation
HasCRC32 bool // CRC32 hardware implementation
HasATOMICS bool // Atomic memory operation instruction set
HasFPHP bool // Half precision floating-point instruction set
HasASIMDHP bool // Advanced SIMD half precision instruction set
HasCPUID bool // CPUID identification scheme registers
HasASIMDRDM bool // Rounding double multiply add/subtract instruction set
HasJSCVT bool // Javascript conversion from floating-point to integer
HasFCMA bool // Floating-point multiplication and addition of complex numbers
HasLRCPC bool // Release Consistent processor consistent support
HasDCPOP bool // Persistent memory support
HasSHA3 bool // SHA3 hardware implementation
HasSM3 bool // SM3 hardware implementation
HasSM4 bool // SM4 hardware implementation
HasASIMDDP bool // Advanced SIMD double precision instruction set
HasSHA512 bool // SHA512 hardware implementation
HasSVE bool // Scalable Vector Extensions
HasASIMDFHM bool // Advanced SIMD multiplication FP16 to FP32
_ CacheLinePad
}
// PPC64 contains the supported CPU features of the current ppc64/ppc64le platforms.
// If the current platform is not ppc64/ppc64le then all feature flags are false.
//
// For ppc64/ppc64le, it is safe to check only for ISA level starting on ISA v3.00,
// since there are no optional categories. There are some exceptions that also
// require kernel support to work (DARN, SCV), so there are feature bits for
// those as well. The minimum processor requirement is POWER8 (ISA 2.07).
// The struct is padded to avoid false sharing.
var PPC64 struct {
_ CacheLinePad
HasDARN bool // Hardware random number generator (requires kernel enablement)
HasSCV bool // Syscall vectored (requires kernel enablement)
IsPOWER8 bool // ISA v2.07 (POWER8)
IsPOWER9 bool // ISA v3.00 (POWER9)
_ CacheLinePad
}

View file

@ -1,9 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cpu
const cacheLineSize = 32
func doinit() {}

View file

@ -1,16 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build 386 amd64 amd64p32
// +build !gccgo
package cpu
// cpuid is implemented in cpu_x86.s for gc compiler
// and in cpu_gccgo.c for gccgo.
func cpuid(eaxArg, ecxArg uint32) (eax, ebx, ecx, edx uint32)
// xgetbv with ecx = 0 is implemented in cpu_x86.s for gc compiler
// and in cpu_gccgo.c for gccgo.
func xgetbv() (eax, edx uint32)

View file

@ -1,43 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build 386 amd64 amd64p32
// +build gccgo
#include <cpuid.h>
#include <stdint.h>
// Need to wrap __get_cpuid_count because it's declared as static.
int
gccgoGetCpuidCount(uint32_t leaf, uint32_t subleaf,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
return __get_cpuid_count(leaf, subleaf, eax, ebx, ecx, edx);
}
// xgetbv reads the contents of an XCR (Extended Control Register)
// specified in the ECX register into registers EDX:EAX.
// Currently, the only supported value for XCR is 0.
//
// TODO: Replace with a better alternative:
//
// #include <xsaveintrin.h>
//
// #pragma GCC target("xsave")
//
// void gccgoXgetbv(uint32_t *eax, uint32_t *edx) {
// unsigned long long x = _xgetbv(0);
// *eax = x & 0xffffffff;
// *edx = (x >> 32) & 0xffffffff;
// }
//
// Note that _xgetbv is defined starting with GCC 8.
void
gccgoXgetbv(uint32_t *eax, uint32_t *edx)
{
__asm(" xorl %%ecx, %%ecx\n"
" xgetbv"
: "=a"(*eax), "=d"(*edx));
}

View file

@ -1,26 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build 386 amd64 amd64p32
// +build gccgo
package cpu
//extern gccgoGetCpuidCount
func gccgoGetCpuidCount(eaxArg, ecxArg uint32, eax, ebx, ecx, edx *uint32)
func cpuid(eaxArg, ecxArg uint32) (eax, ebx, ecx, edx uint32) {
var a, b, c, d uint32
gccgoGetCpuidCount(eaxArg, ecxArg, &a, &b, &c, &d)
return a, b, c, d
}
//extern gccgoXgetbv
func gccgoXgetbv(eax, edx *uint32)
func xgetbv() (eax, edx uint32) {
var a, d uint32
gccgoXgetbv(&a, &d)
return a, d
}

View file

@ -1,55 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//+build !amd64,!amd64p32,!386
package cpu
import (
"io/ioutil"
)
const (
_AT_HWCAP = 16
_AT_HWCAP2 = 26
procAuxv = "/proc/self/auxv"
uintSize = int(32 << (^uint(0) >> 63))
)
// For those platforms don't have a 'cpuid' equivalent we use HWCAP/HWCAP2
// These are initialized in cpu_$GOARCH.go
// and should not be changed after they are initialized.
var hwCap uint
var hwCap2 uint
func init() {
buf, err := ioutil.ReadFile(procAuxv)
if err != nil {
panic("read proc auxv failed: " + err.Error())
}
bo := hostByteOrder()
for len(buf) >= 2*(uintSize/8) {
var tag, val uint
switch uintSize {
case 32:
tag = uint(bo.Uint32(buf[0:]))
val = uint(bo.Uint32(buf[4:]))
buf = buf[8:]
case 64:
tag = uint(bo.Uint64(buf[0:]))
val = uint(bo.Uint64(buf[8:]))
buf = buf[16:]
}
switch tag {
case _AT_HWCAP:
hwCap = val
case _AT_HWCAP2:
hwCap2 = val
}
}
doinit()
}

View file

@ -1,67 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cpu
const cacheLineSize = 64
// HWCAP/HWCAP2 bits. These are exposed by Linux.
const (
hwcap_FP = 1 << 0
hwcap_ASIMD = 1 << 1
hwcap_EVTSTRM = 1 << 2
hwcap_AES = 1 << 3
hwcap_PMULL = 1 << 4
hwcap_SHA1 = 1 << 5
hwcap_SHA2 = 1 << 6
hwcap_CRC32 = 1 << 7
hwcap_ATOMICS = 1 << 8
hwcap_FPHP = 1 << 9
hwcap_ASIMDHP = 1 << 10
hwcap_CPUID = 1 << 11
hwcap_ASIMDRDM = 1 << 12
hwcap_JSCVT = 1 << 13
hwcap_FCMA = 1 << 14
hwcap_LRCPC = 1 << 15
hwcap_DCPOP = 1 << 16
hwcap_SHA3 = 1 << 17
hwcap_SM3 = 1 << 18
hwcap_SM4 = 1 << 19
hwcap_ASIMDDP = 1 << 20
hwcap_SHA512 = 1 << 21
hwcap_SVE = 1 << 22
hwcap_ASIMDFHM = 1 << 23
)
func doinit() {
// HWCAP feature bits
ARM64.HasFP = isSet(hwCap, hwcap_FP)
ARM64.HasASIMD = isSet(hwCap, hwcap_ASIMD)
ARM64.HasEVTSTRM = isSet(hwCap, hwcap_EVTSTRM)
ARM64.HasAES = isSet(hwCap, hwcap_AES)
ARM64.HasPMULL = isSet(hwCap, hwcap_PMULL)
ARM64.HasSHA1 = isSet(hwCap, hwcap_SHA1)
ARM64.HasSHA2 = isSet(hwCap, hwcap_SHA2)
ARM64.HasCRC32 = isSet(hwCap, hwcap_CRC32)
ARM64.HasATOMICS = isSet(hwCap, hwcap_ATOMICS)
ARM64.HasFPHP = isSet(hwCap, hwcap_FPHP)
ARM64.HasASIMDHP = isSet(hwCap, hwcap_ASIMDHP)
ARM64.HasCPUID = isSet(hwCap, hwcap_CPUID)
ARM64.HasASIMDRDM = isSet(hwCap, hwcap_ASIMDRDM)
ARM64.HasJSCVT = isSet(hwCap, hwcap_JSCVT)
ARM64.HasFCMA = isSet(hwCap, hwcap_FCMA)
ARM64.HasLRCPC = isSet(hwCap, hwcap_LRCPC)
ARM64.HasDCPOP = isSet(hwCap, hwcap_DCPOP)
ARM64.HasSHA3 = isSet(hwCap, hwcap_SHA3)
ARM64.HasSM3 = isSet(hwCap, hwcap_SM3)
ARM64.HasSM4 = isSet(hwCap, hwcap_SM4)
ARM64.HasASIMDDP = isSet(hwCap, hwcap_ASIMDDP)
ARM64.HasSHA512 = isSet(hwCap, hwcap_SHA512)
ARM64.HasSVE = isSet(hwCap, hwcap_SVE)
ARM64.HasASIMDFHM = isSet(hwCap, hwcap_ASIMDFHM)
}
func isSet(hwc uint, value uint) bool {
return hwc&value != 0
}

View file

@ -1,33 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build linux
// +build ppc64 ppc64le
package cpu
const cacheLineSize = 128
// HWCAP/HWCAP2 bits. These are exposed by the kernel.
const (
// ISA Level
_PPC_FEATURE2_ARCH_2_07 = 0x80000000
_PPC_FEATURE2_ARCH_3_00 = 0x00800000
// CPU features
_PPC_FEATURE2_DARN = 0x00200000
_PPC_FEATURE2_SCV = 0x00100000
)
func doinit() {
// HWCAP2 feature bits
PPC64.IsPOWER8 = isSet(hwCap2, _PPC_FEATURE2_ARCH_2_07)
PPC64.IsPOWER9 = isSet(hwCap2, _PPC_FEATURE2_ARCH_3_00)
PPC64.HasDARN = isSet(hwCap2, _PPC_FEATURE2_DARN)
PPC64.HasSCV = isSet(hwCap2, _PPC_FEATURE2_SCV)
}
func isSet(hwc uint, value uint) bool {
return hwc&value != 0
}

View file

@ -1,11 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build mips64 mips64le
package cpu
const cacheLineSize = 32
func doinit() {}

View file

@ -1,11 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build mips mipsle
package cpu
const cacheLineSize = 32
func doinit() {}

View file

@ -1,11 +0,0 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !linux,arm64
package cpu
const cacheLineSize = 64
func doinit() {}

View file

@ -1,12 +0,0 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !linux
// +build ppc64 ppc64le
package cpu
const cacheLineSize = 128
func doinit() {}

View file

@ -1,9 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cpu
const cacheLineSize = 256
func doinit() {}

View file

@ -1,57 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build 386 amd64 amd64p32
package cpu
const cacheLineSize = 64
func init() {
maxID, _, _, _ := cpuid(0, 0)
if maxID < 1 {
return
}
_, _, ecx1, edx1 := cpuid(1, 0)
X86.HasSSE2 = isSet(26, edx1)
X86.HasSSE3 = isSet(0, ecx1)
X86.HasPCLMULQDQ = isSet(1, ecx1)
X86.HasSSSE3 = isSet(9, ecx1)
X86.HasFMA = isSet(12, ecx1)
X86.HasSSE41 = isSet(19, ecx1)
X86.HasSSE42 = isSet(20, ecx1)
X86.HasPOPCNT = isSet(23, ecx1)
X86.HasAES = isSet(25, ecx1)
X86.HasOSXSAVE = isSet(27, ecx1)
X86.HasRDRAND = isSet(30, ecx1)
osSupportsAVX := false
// For XGETBV, OSXSAVE bit is required and sufficient.
if X86.HasOSXSAVE {
eax, _ := xgetbv()
// Check if XMM and YMM registers have OS support.
osSupportsAVX = isSet(1, eax) && isSet(2, eax)
}
X86.HasAVX = isSet(28, ecx1) && osSupportsAVX
if maxID < 7 {
return
}
_, ebx7, _, _ := cpuid(7, 0)
X86.HasBMI1 = isSet(3, ebx7)
X86.HasAVX2 = isSet(5, ebx7) && osSupportsAVX
X86.HasBMI2 = isSet(8, ebx7)
X86.HasERMS = isSet(9, ebx7)
X86.HasRDSEED = isSet(18, ebx7)
X86.HasADX = isSet(19, ebx7)
}
func isSet(bitpos uint, value uint32) bool {
return value&(1<<bitpos) != 0
}

View file

@ -1,27 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build 386 amd64 amd64p32
// +build !gccgo
#include "textflag.h"
// func cpuid(eaxArg, ecxArg uint32) (eax, ebx, ecx, edx uint32)
TEXT ·cpuid(SB), NOSPLIT, $0-24
MOVL eaxArg+0(FP), AX
MOVL ecxArg+4(FP), CX
CPUID
MOVL AX, eax+8(FP)
MOVL BX, ebx+12(FP)
MOVL CX, ecx+16(FP)
MOVL DX, edx+20(FP)
RET
// func xgetbv() (eax, edx uint32)
TEXT ·xgetbv(SB),NOSPLIT,$0-8
MOVL $0, CX
XGETBV
MOVL AX, eax+0(FP)
MOVL DX, edx+4(FP)
RET

73
vendor/vendor.json vendored
View file

@ -1,73 +0,0 @@
{
"comment": "",
"ignore": "test",
"package": [
{
"checksumSHA1": "PYXuf7wvcj492uWhjvmXlyyQUYc=",
"path": "github.com/cheekybits/genny/generic",
"revision": "9127e812e1e9e501ce899a18121d316ecb52e4ba",
"revisionTime": "2017-03-28T20:00:08Z"
},
{
"checksumSHA1": "VMuxCTSkMjqkSscxRBHD5JlX0gs=",
"path": "github.com/marten-seemann/qtls",
"revision": "3bd36a564cf25c643ab12d4f2c7ea3e8dca0aae7",
"revisionTime": "2019-02-07T13:56:52Z"
},
{
"checksumSHA1": "9TPZ7plxFmlYtMEv2LLXRCEQg7c=",
"path": "golang.org/x/crypto/chacha20poly1305",
"revision": "a4c6cb3142f211c99e4bf4cd769535b29a9b616f",
"revisionTime": "2019-02-12T17:56:05Z"
},
{
"checksumSHA1": "1ezNasqd516o9HG59beqc5s+2Ro=",
"path": "golang.org/x/crypto/cryptobyte",
"revision": "a4c6cb3142f211c99e4bf4cd769535b29a9b616f",
"revisionTime": "2019-02-12T17:56:05Z"
},
{
"checksumSHA1": "YEoV2AiZZPDuF7pMVzDt7buS9gc=",
"path": "golang.org/x/crypto/cryptobyte/asn1",
"revision": "a4c6cb3142f211c99e4bf4cd769535b29a9b616f",
"revisionTime": "2019-02-12T17:56:05Z"
},
{
"checksumSHA1": "JjkVVfbdvjH+FbVgKPrv0+WtpFw=",
"path": "golang.org/x/crypto/curve25519",
"revision": "a4c6cb3142f211c99e4bf4cd769535b29a9b616f",
"revisionTime": "2019-02-12T17:56:05Z"
},
{
"checksumSHA1": "ELSEW2KG0p3oua5lIxl1xW2oFBo=",
"path": "golang.org/x/crypto/hkdf",
"revision": "a4c6cb3142f211c99e4bf4cd769535b29a9b616f",
"revisionTime": "2019-02-12T17:56:05Z"
},
{
"checksumSHA1": "o9qI6uBV0qk8q+v6IkyKfZh9Cj0=",
"path": "golang.org/x/crypto/internal/chacha20",
"revision": "a4c6cb3142f211c99e4bf4cd769535b29a9b616f",
"revisionTime": "2019-02-12T17:56:05Z"
},
{
"checksumSHA1": "/U7f2gaH6DnEmLguVLDbipU6kXU=",
"path": "golang.org/x/crypto/internal/subtle",
"revision": "a4c6cb3142f211c99e4bf4cd769535b29a9b616f",
"revisionTime": "2019-02-12T17:56:05Z"
},
{
"checksumSHA1": "vKbPb9fpjCdzuoOvajOJnYfHG2g=",
"path": "golang.org/x/crypto/poly1305",
"revision": "a4c6cb3142f211c99e4bf4cd769535b29a9b616f",
"revisionTime": "2019-02-12T17:56:05Z"
},
{
"checksumSHA1": "6SFZmy6PmyRtJ6/vdt2H2yr2n4Y=",
"path": "golang.org/x/sys/cpu",
"revision": "ec7b60b042fd2c54ad5ceaac0c891bd88843f4a2",
"revisionTime": "2019-02-21T21:34:35Z"
}
],
"rootPath": "github.com/lucas-clemente/quic-go"
}