uquic/framer.go
2025-04-01 11:48:45 -06:00

291 lines
8.9 KiB
Go

package quic
import (
"slices"
"sync"
"time"
"github.com/refraction-networking/uquic/internal/ackhandler"
"github.com/refraction-networking/uquic/internal/flowcontrol"
"github.com/refraction-networking/uquic/internal/protocol"
"github.com/refraction-networking/uquic/internal/utils/ringbuffer"
"github.com/refraction-networking/uquic/internal/wire"
"github.com/refraction-networking/uquic/quicvarint"
)
const (
maxPathResponses = 256
maxControlFrames = 16 << 10
)
// This is the largest possible size of a stream-related control frame
// (which is the RESET_STREAM frame).
const maxStreamControlFrameSize = 25
type streamControlFrameGetter interface {
getControlFrame(time.Time) (_ ackhandler.Frame, ok, hasMore bool)
}
type framer struct {
mutex sync.Mutex
activeStreams map[protocol.StreamID]sendStreamI
streamQueue ringbuffer.RingBuffer[protocol.StreamID]
streamsWithControlFrames map[protocol.StreamID]streamControlFrameGetter
controlFrameMutex sync.Mutex
controlFrames []wire.Frame
pathResponses []*wire.PathResponseFrame
connFlowController flowcontrol.ConnectionFlowController
queuedTooManyControlFrames bool
}
func newFramer(connFlowController flowcontrol.ConnectionFlowController) *framer {
return &framer{
activeStreams: make(map[protocol.StreamID]sendStreamI),
streamsWithControlFrames: make(map[protocol.StreamID]streamControlFrameGetter),
connFlowController: connFlowController,
}
}
func (f *framer) HasData() bool {
f.mutex.Lock()
hasData := !f.streamQueue.Empty()
f.mutex.Unlock()
if hasData {
return true
}
f.controlFrameMutex.Lock()
defer f.controlFrameMutex.Unlock()
return len(f.streamsWithControlFrames) > 0 || len(f.controlFrames) > 0 || len(f.pathResponses) > 0
}
func (f *framer) QueueControlFrame(frame wire.Frame) {
f.controlFrameMutex.Lock()
defer f.controlFrameMutex.Unlock()
if pr, ok := frame.(*wire.PathResponseFrame); ok {
// Only queue up to maxPathResponses PATH_RESPONSE frames.
// This limit should be high enough to never be hit in practice,
// unless the peer is doing something malicious.
if len(f.pathResponses) >= maxPathResponses {
return
}
f.pathResponses = append(f.pathResponses, pr)
return
}
// This is a hack.
if len(f.controlFrames) >= maxControlFrames {
f.queuedTooManyControlFrames = true
return
}
f.controlFrames = append(f.controlFrames, frame)
}
func (f *framer) Append(
frames []ackhandler.Frame,
streamFrames []ackhandler.StreamFrame,
maxLen protocol.ByteCount,
now time.Time,
v protocol.Version,
) ([]ackhandler.Frame, []ackhandler.StreamFrame, protocol.ByteCount) {
f.controlFrameMutex.Lock()
frames, controlFrameLen := f.appendControlFrames(frames, maxLen, now, v)
maxLen -= controlFrameLen
var lastFrame ackhandler.StreamFrame
var streamFrameLen protocol.ByteCount
f.mutex.Lock()
// pop STREAM frames, until less than 128 bytes are left in the packet
numActiveStreams := f.streamQueue.Len()
for i := 0; i < numActiveStreams; i++ {
if protocol.MinStreamFrameSize > maxLen {
break
}
sf, blocked := f.getNextStreamFrame(maxLen, v)
if sf.Frame != nil {
streamFrames = append(streamFrames, sf)
maxLen -= sf.Frame.Length(v)
lastFrame = sf
streamFrameLen += sf.Frame.Length(v)
}
// If the stream just became blocked on stream flow control, attempt to pack the
// STREAM_DATA_BLOCKED into the same packet.
if blocked != nil {
l := blocked.Length(v)
// In case it doesn't fit, queue it for the next packet.
if maxLen < l {
f.controlFrames = append(f.controlFrames, blocked)
break
}
frames = append(frames, ackhandler.Frame{Frame: blocked})
maxLen -= l
controlFrameLen += l
}
}
// The only way to become blocked on connection-level flow control is by sending STREAM frames.
if isBlocked, offset := f.connFlowController.IsNewlyBlocked(); isBlocked {
blocked := &wire.DataBlockedFrame{MaximumData: offset}
l := blocked.Length(v)
// In case it doesn't fit, queue it for the next packet.
if maxLen >= l {
frames = append(frames, ackhandler.Frame{Frame: blocked})
controlFrameLen += l
} else {
f.controlFrames = append(f.controlFrames, blocked)
}
}
f.mutex.Unlock()
f.controlFrameMutex.Unlock()
if lastFrame.Frame != nil {
// account for the smaller size of the last STREAM frame
streamFrameLen -= lastFrame.Frame.Length(v)
lastFrame.Frame.DataLenPresent = false
streamFrameLen += lastFrame.Frame.Length(v)
}
return frames, streamFrames, controlFrameLen + streamFrameLen
}
func (f *framer) appendControlFrames(
frames []ackhandler.Frame,
maxLen protocol.ByteCount,
now time.Time,
v protocol.Version,
) ([]ackhandler.Frame, protocol.ByteCount) {
var length protocol.ByteCount
// add a PATH_RESPONSE first, but only pack a single PATH_RESPONSE per packet
if len(f.pathResponses) > 0 {
frame := f.pathResponses[0]
frameLen := frame.Length(v)
if frameLen <= maxLen {
frames = append(frames, ackhandler.Frame{Frame: frame})
length += frameLen
f.pathResponses = f.pathResponses[1:]
}
}
// add stream-related control frames
for id, str := range f.streamsWithControlFrames {
start:
remainingLen := maxLen - length
if remainingLen <= maxStreamControlFrameSize {
break
}
fr, ok, hasMore := str.getControlFrame(now)
if !hasMore {
delete(f.streamsWithControlFrames, id)
}
if !ok {
continue
}
frames = append(frames, fr)
length += fr.Frame.Length(v)
if hasMore {
// It is rare that a stream has more than one control frame to queue.
// We don't want to spawn another loop for just to cover that case.
goto start
}
}
for len(f.controlFrames) > 0 {
frame := f.controlFrames[len(f.controlFrames)-1]
frameLen := frame.Length(v)
if length+frameLen > maxLen {
break
}
frames = append(frames, ackhandler.Frame{Frame: frame})
length += frameLen
f.controlFrames = f.controlFrames[:len(f.controlFrames)-1]
}
return frames, length
}
// QueuedTooManyControlFrames says if the control frame queue exceeded its maximum queue length.
// This is a hack.
// It is easier to implement than propagating an error return value in QueueControlFrame.
// The correct solution would be to queue frames with their respective structs.
// See https://github.com/quic-go/quic-go/issues/4271 for the queueing of stream-related control frames.
func (f *framer) QueuedTooManyControlFrames() bool {
return f.queuedTooManyControlFrames
}
func (f *framer) AddActiveStream(id protocol.StreamID, str sendStreamI) {
f.mutex.Lock()
if _, ok := f.activeStreams[id]; !ok {
f.streamQueue.PushBack(id)
f.activeStreams[id] = str
}
f.mutex.Unlock()
}
func (f *framer) AddStreamWithControlFrames(id protocol.StreamID, str streamControlFrameGetter) {
f.controlFrameMutex.Lock()
if _, ok := f.streamsWithControlFrames[id]; !ok {
f.streamsWithControlFrames[id] = str
}
f.controlFrameMutex.Unlock()
}
// RemoveActiveStream is called when a stream completes.
func (f *framer) RemoveActiveStream(id protocol.StreamID) {
f.mutex.Lock()
delete(f.activeStreams, id)
// We don't delete the stream from the streamQueue,
// since we'd have to iterate over the ringbuffer.
// Instead, we check if the stream is still in activeStreams when appending STREAM frames.
f.mutex.Unlock()
}
func (f *framer) getNextStreamFrame(maxLen protocol.ByteCount, v protocol.Version) (ackhandler.StreamFrame, *wire.StreamDataBlockedFrame) {
id := f.streamQueue.PopFront()
// This should never return an error. Better check it anyway.
// The stream will only be in the streamQueue, if it enqueued itself there.
str, ok := f.activeStreams[id]
// The stream might have been removed after being enqueued.
if !ok {
return ackhandler.StreamFrame{}, nil
}
// For the last STREAM frame, we'll remove the DataLen field later.
// Therefore, we can pretend to have more bytes available when popping
// the STREAM frame (which will always have the DataLen set).
maxLen += protocol.ByteCount(quicvarint.Len(uint64(maxLen)))
frame, blocked, hasMoreData := str.popStreamFrame(maxLen, v)
if hasMoreData { // put the stream back in the queue (at the end)
f.streamQueue.PushBack(id)
} else { // no more data to send. Stream is not active
delete(f.activeStreams, id)
}
// Note that the frame.Frame can be nil:
// * if the stream was canceled after it said it had data
// * the remaining size doesn't allow us to add another STREAM frame
return frame, blocked
}
func (f *framer) Handle0RTTRejection() {
f.mutex.Lock()
defer f.mutex.Unlock()
f.controlFrameMutex.Lock()
defer f.controlFrameMutex.Unlock()
f.streamQueue.Clear()
for id := range f.activeStreams {
delete(f.activeStreams, id)
}
var j int
for i, frame := range f.controlFrames {
switch frame.(type) {
case *wire.MaxDataFrame, *wire.MaxStreamDataFrame, *wire.MaxStreamsFrame,
*wire.DataBlockedFrame, *wire.StreamDataBlockedFrame, *wire.StreamsBlockedFrame:
continue
default:
f.controlFrames[j] = f.controlFrames[i]
j++
}
}
f.controlFrames = slices.Delete(f.controlFrames, j, len(f.controlFrames))
}