uquic/connection.go
Marten Seemann 4a99b816ae
close connection when an abnormally large number of frames are queued (#4369)
Under normal circumstances, we should be able to send out control frames
right away, so we don't expect any queue to build up. To defend against
resource exhaustion attacks, we limit the control frame queue to 16384
elements.
2024-03-17 17:29:00 -07:00

2393 lines
77 KiB
Go

package quic
import (
"bytes"
"context"
"crypto/tls"
"errors"
"fmt"
"io"
"net"
"reflect"
"sync"
"sync/atomic"
"time"
"github.com/quic-go/quic-go/internal/ackhandler"
"github.com/quic-go/quic-go/internal/flowcontrol"
"github.com/quic-go/quic-go/internal/handshake"
"github.com/quic-go/quic-go/internal/logutils"
"github.com/quic-go/quic-go/internal/protocol"
"github.com/quic-go/quic-go/internal/qerr"
"github.com/quic-go/quic-go/internal/utils"
"github.com/quic-go/quic-go/internal/wire"
"github.com/quic-go/quic-go/logging"
)
type unpacker interface {
UnpackLongHeader(hdr *wire.Header, rcvTime time.Time, data []byte, v protocol.Version) (*unpackedPacket, error)
UnpackShortHeader(rcvTime time.Time, data []byte) (protocol.PacketNumber, protocol.PacketNumberLen, protocol.KeyPhaseBit, []byte, error)
}
type streamGetter interface {
GetOrOpenReceiveStream(protocol.StreamID) (receiveStreamI, error)
GetOrOpenSendStream(protocol.StreamID) (sendStreamI, error)
}
type streamManager interface {
GetOrOpenSendStream(protocol.StreamID) (sendStreamI, error)
GetOrOpenReceiveStream(protocol.StreamID) (receiveStreamI, error)
OpenStream() (Stream, error)
OpenUniStream() (SendStream, error)
OpenStreamSync(context.Context) (Stream, error)
OpenUniStreamSync(context.Context) (SendStream, error)
AcceptStream(context.Context) (Stream, error)
AcceptUniStream(context.Context) (ReceiveStream, error)
DeleteStream(protocol.StreamID) error
UpdateLimits(*wire.TransportParameters)
HandleMaxStreamsFrame(*wire.MaxStreamsFrame)
CloseWithError(error)
ResetFor0RTT()
UseResetMaps()
}
type cryptoStreamHandler interface {
StartHandshake() error
ChangeConnectionID(protocol.ConnectionID)
SetLargest1RTTAcked(protocol.PacketNumber) error
SetHandshakeConfirmed()
GetSessionTicket() ([]byte, error)
NextEvent() handshake.Event
DiscardInitialKeys()
io.Closer
ConnectionState() handshake.ConnectionState
}
type receivedPacket struct {
buffer *packetBuffer
remoteAddr net.Addr
rcvTime time.Time
data []byte
ecn protocol.ECN
info packetInfo // only valid if the contained IP address is valid
}
func (p *receivedPacket) Size() protocol.ByteCount { return protocol.ByteCount(len(p.data)) }
func (p *receivedPacket) Clone() *receivedPacket {
return &receivedPacket{
remoteAddr: p.remoteAddr,
rcvTime: p.rcvTime,
data: p.data,
buffer: p.buffer,
ecn: p.ecn,
info: p.info,
}
}
type connRunner interface {
Add(protocol.ConnectionID, packetHandler) bool
GetStatelessResetToken(protocol.ConnectionID) protocol.StatelessResetToken
Retire(protocol.ConnectionID)
Remove(protocol.ConnectionID)
ReplaceWithClosed([]protocol.ConnectionID, []byte)
AddResetToken(protocol.StatelessResetToken, packetHandler)
RemoveResetToken(protocol.StatelessResetToken)
}
type closeError struct {
err error
remote bool
immediate bool
}
type errCloseForRecreating struct {
nextPacketNumber protocol.PacketNumber
nextVersion protocol.Version
}
func (e *errCloseForRecreating) Error() string {
return "closing connection in order to recreate it"
}
var connTracingID uint64 // to be accessed atomically
func nextConnTracingID() uint64 { return atomic.AddUint64(&connTracingID, 1) }
// A Connection is a QUIC connection
type connection struct {
// Destination connection ID used during the handshake.
// Used to check source connection ID on incoming packets.
handshakeDestConnID protocol.ConnectionID
// Set for the client. Destination connection ID used on the first Initial sent.
origDestConnID protocol.ConnectionID
retrySrcConnID *protocol.ConnectionID // only set for the client (and if a Retry was performed)
srcConnIDLen int
perspective protocol.Perspective
version protocol.Version
config *Config
conn sendConn
sendQueue sender
streamsMap streamManager
connIDManager *connIDManager
connIDGenerator *connIDGenerator
rttStats *utils.RTTStats
cryptoStreamManager *cryptoStreamManager
sentPacketHandler ackhandler.SentPacketHandler
receivedPacketHandler ackhandler.ReceivedPacketHandler
retransmissionQueue *retransmissionQueue
framer framer
windowUpdateQueue *windowUpdateQueue
connFlowController flowcontrol.ConnectionFlowController
tokenStoreKey string // only set for the client
tokenGenerator *handshake.TokenGenerator // only set for the server
unpacker unpacker
frameParser wire.FrameParser
packer packer
mtuDiscoverer mtuDiscoverer // initialized when the handshake completes
initialStream cryptoStream
handshakeStream cryptoStream
oneRTTStream cryptoStream // only set for the server
cryptoStreamHandler cryptoStreamHandler
receivedPackets chan receivedPacket
sendingScheduled chan struct{}
closeOnce sync.Once
// closeChan is used to notify the run loop that it should terminate
closeChan chan closeError
ctx context.Context
ctxCancel context.CancelCauseFunc
handshakeCtx context.Context
handshakeCtxCancel context.CancelFunc
undecryptablePackets []receivedPacket // undecryptable packets, waiting for a change in encryption level
undecryptablePacketsToProcess []receivedPacket
earlyConnReadyChan chan struct{}
sentFirstPacket bool
droppedInitialKeys bool
handshakeComplete bool
handshakeConfirmed bool
receivedRetry bool
versionNegotiated bool
receivedFirstPacket bool
// the minimum of the max_idle_timeout values advertised by both endpoints
idleTimeout time.Duration
creationTime time.Time
// The idle timeout is set based on the max of the time we received the last packet...
lastPacketReceivedTime time.Time
// ... and the time we sent a new ack-eliciting packet after receiving a packet.
firstAckElicitingPacketAfterIdleSentTime time.Time
// pacingDeadline is the time when the next packet should be sent
pacingDeadline time.Time
peerParams *wire.TransportParameters
timer connectionTimer
// keepAlivePingSent stores whether a keep alive PING is in flight.
// It is reset as soon as we receive a packet from the peer.
keepAlivePingSent bool
keepAliveInterval time.Duration
datagramQueue *datagramQueue
connStateMutex sync.Mutex
connState ConnectionState
logID string
tracer *logging.ConnectionTracer
logger utils.Logger
}
var (
_ Connection = &connection{}
_ EarlyConnection = &connection{}
_ streamSender = &connection{}
)
var newConnection = func(
conn sendConn,
runner connRunner,
origDestConnID protocol.ConnectionID,
retrySrcConnID *protocol.ConnectionID,
clientDestConnID protocol.ConnectionID,
destConnID protocol.ConnectionID,
srcConnID protocol.ConnectionID,
connIDGenerator ConnectionIDGenerator,
statelessResetToken protocol.StatelessResetToken,
conf *Config,
tlsConf *tls.Config,
tokenGenerator *handshake.TokenGenerator,
clientAddressValidated bool,
tracer *logging.ConnectionTracer,
tracingID uint64,
logger utils.Logger,
v protocol.Version,
) quicConn {
s := &connection{
conn: conn,
config: conf,
handshakeDestConnID: destConnID,
srcConnIDLen: srcConnID.Len(),
tokenGenerator: tokenGenerator,
oneRTTStream: newCryptoStream(),
perspective: protocol.PerspectiveServer,
tracer: tracer,
logger: logger,
version: v,
}
if origDestConnID.Len() > 0 {
s.logID = origDestConnID.String()
} else {
s.logID = destConnID.String()
}
s.connIDManager = newConnIDManager(
destConnID,
func(token protocol.StatelessResetToken) { runner.AddResetToken(token, s) },
runner.RemoveResetToken,
s.queueControlFrame,
)
s.connIDGenerator = newConnIDGenerator(
srcConnID,
&clientDestConnID,
func(connID protocol.ConnectionID) { runner.Add(connID, s) },
runner.GetStatelessResetToken,
runner.Remove,
runner.Retire,
runner.ReplaceWithClosed,
s.queueControlFrame,
connIDGenerator,
)
s.preSetup()
s.ctx, s.ctxCancel = context.WithCancelCause(context.WithValue(context.Background(), ConnectionTracingKey, tracingID))
s.sentPacketHandler, s.receivedPacketHandler = ackhandler.NewAckHandler(
0,
getMaxPacketSize(s.conn.RemoteAddr()),
s.rttStats,
clientAddressValidated,
s.conn.capabilities().ECN,
s.perspective,
s.tracer,
s.logger,
)
s.mtuDiscoverer = newMTUDiscoverer(s.rttStats, getMaxPacketSize(s.conn.RemoteAddr()), s.sentPacketHandler.SetMaxDatagramSize)
params := &wire.TransportParameters{
InitialMaxStreamDataBidiLocal: protocol.ByteCount(s.config.InitialStreamReceiveWindow),
InitialMaxStreamDataBidiRemote: protocol.ByteCount(s.config.InitialStreamReceiveWindow),
InitialMaxStreamDataUni: protocol.ByteCount(s.config.InitialStreamReceiveWindow),
InitialMaxData: protocol.ByteCount(s.config.InitialConnectionReceiveWindow),
MaxIdleTimeout: s.config.MaxIdleTimeout,
MaxBidiStreamNum: protocol.StreamNum(s.config.MaxIncomingStreams),
MaxUniStreamNum: protocol.StreamNum(s.config.MaxIncomingUniStreams),
MaxAckDelay: protocol.MaxAckDelayInclGranularity,
AckDelayExponent: protocol.AckDelayExponent,
DisableActiveMigration: true,
StatelessResetToken: &statelessResetToken,
OriginalDestinationConnectionID: origDestConnID,
// For interoperability with quic-go versions before May 2023, this value must be set to a value
// different from protocol.DefaultActiveConnectionIDLimit.
// If set to the default value, it will be omitted from the transport parameters, which will make
// old quic-go versions interpret it as 0, instead of the default value of 2.
// See https://github.com/quic-go/quic-go/pull/3806.
ActiveConnectionIDLimit: protocol.MaxActiveConnectionIDs,
InitialSourceConnectionID: srcConnID,
RetrySourceConnectionID: retrySrcConnID,
}
if s.config.EnableDatagrams {
params.MaxDatagramFrameSize = wire.MaxDatagramSize
} else {
params.MaxDatagramFrameSize = protocol.InvalidByteCount
}
if s.tracer != nil && s.tracer.SentTransportParameters != nil {
s.tracer.SentTransportParameters(params)
}
cs := handshake.NewCryptoSetupServer(
clientDestConnID,
conn.LocalAddr(),
conn.RemoteAddr(),
params,
tlsConf,
conf.Allow0RTT,
s.rttStats,
tracer,
logger,
s.version,
)
s.cryptoStreamHandler = cs
s.packer = newPacketPacker(srcConnID, s.connIDManager.Get, s.initialStream, s.handshakeStream, s.sentPacketHandler, s.retransmissionQueue, cs, s.framer, s.receivedPacketHandler, s.datagramQueue, s.perspective)
s.unpacker = newPacketUnpacker(cs, s.srcConnIDLen)
s.cryptoStreamManager = newCryptoStreamManager(cs, s.initialStream, s.handshakeStream, s.oneRTTStream)
return s
}
// declare this as a variable, such that we can it mock it in the tests
var newClientConnection = func(
conn sendConn,
runner connRunner,
destConnID protocol.ConnectionID,
srcConnID protocol.ConnectionID,
connIDGenerator ConnectionIDGenerator,
conf *Config,
tlsConf *tls.Config,
initialPacketNumber protocol.PacketNumber,
enable0RTT bool,
hasNegotiatedVersion bool,
tracer *logging.ConnectionTracer,
tracingID uint64,
logger utils.Logger,
v protocol.Version,
) quicConn {
s := &connection{
conn: conn,
config: conf,
origDestConnID: destConnID,
handshakeDestConnID: destConnID,
srcConnIDLen: srcConnID.Len(),
perspective: protocol.PerspectiveClient,
logID: destConnID.String(),
logger: logger,
tracer: tracer,
versionNegotiated: hasNegotiatedVersion,
version: v,
}
s.connIDManager = newConnIDManager(
destConnID,
func(token protocol.StatelessResetToken) { runner.AddResetToken(token, s) },
runner.RemoveResetToken,
s.queueControlFrame,
)
s.connIDGenerator = newConnIDGenerator(
srcConnID,
nil,
func(connID protocol.ConnectionID) { runner.Add(connID, s) },
runner.GetStatelessResetToken,
runner.Remove,
runner.Retire,
runner.ReplaceWithClosed,
s.queueControlFrame,
connIDGenerator,
)
s.preSetup()
s.ctx, s.ctxCancel = context.WithCancelCause(context.WithValue(context.Background(), ConnectionTracingKey, tracingID))
s.sentPacketHandler, s.receivedPacketHandler = ackhandler.NewAckHandler(
initialPacketNumber,
getMaxPacketSize(s.conn.RemoteAddr()),
s.rttStats,
false, // has no effect
s.conn.capabilities().ECN,
s.perspective,
s.tracer,
s.logger,
)
s.mtuDiscoverer = newMTUDiscoverer(s.rttStats, getMaxPacketSize(s.conn.RemoteAddr()), s.sentPacketHandler.SetMaxDatagramSize)
oneRTTStream := newCryptoStream()
params := &wire.TransportParameters{
InitialMaxStreamDataBidiRemote: protocol.ByteCount(s.config.InitialStreamReceiveWindow),
InitialMaxStreamDataBidiLocal: protocol.ByteCount(s.config.InitialStreamReceiveWindow),
InitialMaxStreamDataUni: protocol.ByteCount(s.config.InitialStreamReceiveWindow),
InitialMaxData: protocol.ByteCount(s.config.InitialConnectionReceiveWindow),
MaxIdleTimeout: s.config.MaxIdleTimeout,
MaxBidiStreamNum: protocol.StreamNum(s.config.MaxIncomingStreams),
MaxUniStreamNum: protocol.StreamNum(s.config.MaxIncomingUniStreams),
MaxAckDelay: protocol.MaxAckDelayInclGranularity,
AckDelayExponent: protocol.AckDelayExponent,
DisableActiveMigration: true,
// For interoperability with quic-go versions before May 2023, this value must be set to a value
// different from protocol.DefaultActiveConnectionIDLimit.
// If set to the default value, it will be omitted from the transport parameters, which will make
// old quic-go versions interpret it as 0, instead of the default value of 2.
// See https://github.com/quic-go/quic-go/pull/3806.
ActiveConnectionIDLimit: protocol.MaxActiveConnectionIDs,
InitialSourceConnectionID: srcConnID,
}
if s.config.EnableDatagrams {
params.MaxDatagramFrameSize = wire.MaxDatagramSize
} else {
params.MaxDatagramFrameSize = protocol.InvalidByteCount
}
if s.tracer != nil && s.tracer.SentTransportParameters != nil {
s.tracer.SentTransportParameters(params)
}
cs := handshake.NewCryptoSetupClient(
destConnID,
params,
tlsConf,
enable0RTT,
s.rttStats,
tracer,
logger,
s.version,
)
s.cryptoStreamHandler = cs
s.cryptoStreamManager = newCryptoStreamManager(cs, s.initialStream, s.handshakeStream, oneRTTStream)
s.unpacker = newPacketUnpacker(cs, s.srcConnIDLen)
s.packer = newPacketPacker(srcConnID, s.connIDManager.Get, s.initialStream, s.handshakeStream, s.sentPacketHandler, s.retransmissionQueue, cs, s.framer, s.receivedPacketHandler, s.datagramQueue, s.perspective)
if len(tlsConf.ServerName) > 0 {
s.tokenStoreKey = tlsConf.ServerName
} else {
s.tokenStoreKey = conn.RemoteAddr().String()
}
if s.config.TokenStore != nil {
if token := s.config.TokenStore.Pop(s.tokenStoreKey); token != nil {
s.packer.SetToken(token.data)
}
}
return s
}
func (s *connection) preSetup() {
s.initialStream = newCryptoStream()
s.handshakeStream = newCryptoStream()
s.sendQueue = newSendQueue(s.conn)
s.retransmissionQueue = newRetransmissionQueue()
s.frameParser = *wire.NewFrameParser(s.config.EnableDatagrams)
s.rttStats = &utils.RTTStats{}
s.connFlowController = flowcontrol.NewConnectionFlowController(
protocol.ByteCount(s.config.InitialConnectionReceiveWindow),
protocol.ByteCount(s.config.MaxConnectionReceiveWindow),
s.onHasConnectionWindowUpdate,
func(size protocol.ByteCount) bool {
if s.config.AllowConnectionWindowIncrease == nil {
return true
}
return s.config.AllowConnectionWindowIncrease(s, uint64(size))
},
s.rttStats,
s.logger,
)
s.earlyConnReadyChan = make(chan struct{})
s.streamsMap = newStreamsMap(
s,
s.newFlowController,
uint64(s.config.MaxIncomingStreams),
uint64(s.config.MaxIncomingUniStreams),
s.perspective,
)
s.framer = newFramer(s.streamsMap)
s.receivedPackets = make(chan receivedPacket, protocol.MaxConnUnprocessedPackets)
s.closeChan = make(chan closeError, 1)
s.sendingScheduled = make(chan struct{}, 1)
s.handshakeCtx, s.handshakeCtxCancel = context.WithCancel(context.Background())
now := time.Now()
s.lastPacketReceivedTime = now
s.creationTime = now
s.windowUpdateQueue = newWindowUpdateQueue(s.streamsMap, s.connFlowController, s.framer.QueueControlFrame)
s.datagramQueue = newDatagramQueue(s.scheduleSending, s.logger)
s.connState.Version = s.version
}
// run the connection main loop
func (s *connection) run() error {
var closeErr closeError
defer func() {
s.ctxCancel(closeErr.err)
}()
s.timer = *newTimer()
if err := s.cryptoStreamHandler.StartHandshake(); err != nil {
return err
}
if err := s.handleHandshakeEvents(); err != nil {
return err
}
go func() {
if err := s.sendQueue.Run(); err != nil {
s.destroyImpl(err)
}
}()
if s.perspective == protocol.PerspectiveClient {
s.scheduleSending() // so the ClientHello actually gets sent
}
var sendQueueAvailable <-chan struct{}
runLoop:
for {
if s.framer.QueuedTooManyControlFrames() {
s.closeLocal(&qerr.TransportError{ErrorCode: InternalError})
}
// Close immediately if requested
select {
case closeErr = <-s.closeChan:
break runLoop
default:
}
s.maybeResetTimer()
var processedUndecryptablePacket bool
if len(s.undecryptablePacketsToProcess) > 0 {
queue := s.undecryptablePacketsToProcess
s.undecryptablePacketsToProcess = nil
for _, p := range queue {
if processed := s.handlePacketImpl(p); processed {
processedUndecryptablePacket = true
}
// Don't set timers and send packets if the packet made us close the connection.
select {
case closeErr = <-s.closeChan:
break runLoop
default:
}
}
}
// If we processed any undecryptable packets, jump to the resetting of the timers directly.
if !processedUndecryptablePacket {
select {
case closeErr = <-s.closeChan:
break runLoop
case <-s.timer.Chan():
s.timer.SetRead()
// We do all the interesting stuff after the switch statement, so
// nothing to see here.
case <-s.sendingScheduled:
// We do all the interesting stuff after the switch statement, so
// nothing to see here.
case <-sendQueueAvailable:
case firstPacket := <-s.receivedPackets:
wasProcessed := s.handlePacketImpl(firstPacket)
// Don't set timers and send packets if the packet made us close the connection.
select {
case closeErr = <-s.closeChan:
break runLoop
default:
}
if s.handshakeComplete {
// Now process all packets in the receivedPackets channel.
// Limit the number of packets to the length of the receivedPackets channel,
// so we eventually get a chance to send out an ACK when receiving a lot of packets.
numPackets := len(s.receivedPackets)
receiveLoop:
for i := 0; i < numPackets; i++ {
select {
case p := <-s.receivedPackets:
if processed := s.handlePacketImpl(p); processed {
wasProcessed = true
}
select {
case closeErr = <-s.closeChan:
break runLoop
default:
}
default:
break receiveLoop
}
}
}
// Only reset the timers if this packet was actually processed.
// This avoids modifying any state when handling undecryptable packets,
// which could be injected by an attacker.
if !wasProcessed {
continue
}
}
}
now := time.Now()
if timeout := s.sentPacketHandler.GetLossDetectionTimeout(); !timeout.IsZero() && timeout.Before(now) {
// This could cause packets to be retransmitted.
// Check it before trying to send packets.
if err := s.sentPacketHandler.OnLossDetectionTimeout(); err != nil {
s.closeLocal(err)
}
}
if keepAliveTime := s.nextKeepAliveTime(); !keepAliveTime.IsZero() && !now.Before(keepAliveTime) {
// send a PING frame since there is no activity in the connection
s.logger.Debugf("Sending a keep-alive PING to keep the connection alive.")
s.framer.QueueControlFrame(&wire.PingFrame{})
s.keepAlivePingSent = true
} else if !s.handshakeComplete && now.Sub(s.creationTime) >= s.config.handshakeTimeout() {
s.destroyImpl(qerr.ErrHandshakeTimeout)
continue
} else {
idleTimeoutStartTime := s.idleTimeoutStartTime()
if (!s.handshakeComplete && now.Sub(idleTimeoutStartTime) >= s.config.HandshakeIdleTimeout) ||
(s.handshakeComplete && now.After(s.nextIdleTimeoutTime())) {
s.destroyImpl(qerr.ErrIdleTimeout)
continue
}
}
if s.sendQueue.WouldBlock() {
// The send queue is still busy sending out packets.
// Wait until there's space to enqueue new packets.
sendQueueAvailable = s.sendQueue.Available()
continue
}
if err := s.triggerSending(now); err != nil {
s.closeLocal(err)
}
if s.sendQueue.WouldBlock() {
sendQueueAvailable = s.sendQueue.Available()
} else {
sendQueueAvailable = nil
}
}
s.cryptoStreamHandler.Close()
s.sendQueue.Close() // close the send queue before sending the CONNECTION_CLOSE
s.handleCloseError(&closeErr)
if s.tracer != nil && s.tracer.Close != nil {
if e := (&errCloseForRecreating{}); !errors.As(closeErr.err, &e) {
s.tracer.Close()
}
}
s.logger.Infof("Connection %s closed.", s.logID)
s.timer.Stop()
return closeErr.err
}
// blocks until the early connection can be used
func (s *connection) earlyConnReady() <-chan struct{} {
return s.earlyConnReadyChan
}
func (s *connection) HandshakeComplete() <-chan struct{} {
return s.handshakeCtx.Done()
}
func (s *connection) Context() context.Context {
return s.ctx
}
func (s *connection) supportsDatagrams() bool {
return s.peerParams.MaxDatagramFrameSize > 0
}
func (s *connection) ConnectionState() ConnectionState {
s.connStateMutex.Lock()
defer s.connStateMutex.Unlock()
cs := s.cryptoStreamHandler.ConnectionState()
s.connState.TLS = cs.ConnectionState
s.connState.Used0RTT = cs.Used0RTT
s.connState.GSO = s.conn.capabilities().GSO
return s.connState
}
// Time when the connection should time out
func (s *connection) nextIdleTimeoutTime() time.Time {
idleTimeout := max(s.idleTimeout, s.rttStats.PTO(true)*3)
return s.idleTimeoutStartTime().Add(idleTimeout)
}
// Time when the next keep-alive packet should be sent.
// It returns a zero time if no keep-alive should be sent.
func (s *connection) nextKeepAliveTime() time.Time {
if s.config.KeepAlivePeriod == 0 || s.keepAlivePingSent || !s.firstAckElicitingPacketAfterIdleSentTime.IsZero() {
return time.Time{}
}
keepAliveInterval := max(s.keepAliveInterval, s.rttStats.PTO(true)*3/2)
return s.lastPacketReceivedTime.Add(keepAliveInterval)
}
func (s *connection) maybeResetTimer() {
var deadline time.Time
if !s.handshakeComplete {
deadline = utils.MinTime(
s.creationTime.Add(s.config.handshakeTimeout()),
s.idleTimeoutStartTime().Add(s.config.HandshakeIdleTimeout),
)
} else {
if keepAliveTime := s.nextKeepAliveTime(); !keepAliveTime.IsZero() {
deadline = keepAliveTime
} else {
deadline = s.nextIdleTimeoutTime()
}
}
s.timer.SetTimer(
deadline,
s.receivedPacketHandler.GetAlarmTimeout(),
s.sentPacketHandler.GetLossDetectionTimeout(),
s.pacingDeadline,
)
}
func (s *connection) idleTimeoutStartTime() time.Time {
return utils.MaxTime(s.lastPacketReceivedTime, s.firstAckElicitingPacketAfterIdleSentTime)
}
func (s *connection) handleHandshakeComplete() error {
defer s.handshakeCtxCancel()
// Once the handshake completes, we have derived 1-RTT keys.
// There's no point in queueing undecryptable packets for later decryption anymore.
s.undecryptablePackets = nil
s.connIDManager.SetHandshakeComplete()
s.connIDGenerator.SetHandshakeComplete()
if s.tracer != nil && s.tracer.ChoseALPN != nil {
s.tracer.ChoseALPN(s.cryptoStreamHandler.ConnectionState().NegotiatedProtocol)
}
// The server applies transport parameters right away, but the client side has to wait for handshake completion.
// During a 0-RTT connection, the client is only allowed to use the new transport parameters for 1-RTT packets.
if s.perspective == protocol.PerspectiveClient {
s.applyTransportParameters()
return nil
}
// All these only apply to the server side.
if err := s.handleHandshakeConfirmed(); err != nil {
return err
}
ticket, err := s.cryptoStreamHandler.GetSessionTicket()
if err != nil {
return err
}
if ticket != nil { // may be nil if session tickets are disabled via tls.Config.SessionTicketsDisabled
s.oneRTTStream.Write(ticket)
for s.oneRTTStream.HasData() {
s.queueControlFrame(s.oneRTTStream.PopCryptoFrame(protocol.MaxPostHandshakeCryptoFrameSize))
}
}
token, err := s.tokenGenerator.NewToken(s.conn.RemoteAddr())
if err != nil {
return err
}
s.queueControlFrame(&wire.NewTokenFrame{Token: token})
s.queueControlFrame(&wire.HandshakeDoneFrame{})
return nil
}
func (s *connection) handleHandshakeConfirmed() error {
if err := s.dropEncryptionLevel(protocol.EncryptionHandshake); err != nil {
return err
}
s.handshakeConfirmed = true
s.sentPacketHandler.SetHandshakeConfirmed()
s.cryptoStreamHandler.SetHandshakeConfirmed()
if !s.config.DisablePathMTUDiscovery && s.conn.capabilities().DF {
maxPacketSize := s.peerParams.MaxUDPPayloadSize
if maxPacketSize == 0 {
maxPacketSize = protocol.MaxByteCount
}
s.mtuDiscoverer.Start(min(maxPacketSize, protocol.MaxPacketBufferSize))
}
return nil
}
func (s *connection) handlePacketImpl(rp receivedPacket) bool {
s.sentPacketHandler.ReceivedBytes(rp.Size())
if wire.IsVersionNegotiationPacket(rp.data) {
s.handleVersionNegotiationPacket(rp)
return false
}
var counter uint8
var lastConnID protocol.ConnectionID
var processed bool
data := rp.data
p := rp
for len(data) > 0 {
var destConnID protocol.ConnectionID
if counter > 0 {
p = *(p.Clone())
p.data = data
var err error
destConnID, err = wire.ParseConnectionID(p.data, s.srcConnIDLen)
if err != nil {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeNotDetermined, protocol.InvalidPacketNumber, protocol.ByteCount(len(data)), logging.PacketDropHeaderParseError)
}
s.logger.Debugf("error parsing packet, couldn't parse connection ID: %s", err)
break
}
if destConnID != lastConnID {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeNotDetermined, protocol.InvalidPacketNumber, protocol.ByteCount(len(data)), logging.PacketDropUnknownConnectionID)
}
s.logger.Debugf("coalesced packet has different destination connection ID: %s, expected %s", destConnID, lastConnID)
break
}
}
if wire.IsLongHeaderPacket(p.data[0]) {
hdr, packetData, rest, err := wire.ParsePacket(p.data)
if err != nil {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
dropReason := logging.PacketDropHeaderParseError
if err == wire.ErrUnsupportedVersion {
dropReason = logging.PacketDropUnsupportedVersion
}
s.tracer.DroppedPacket(logging.PacketTypeNotDetermined, protocol.InvalidPacketNumber, protocol.ByteCount(len(data)), dropReason)
}
s.logger.Debugf("error parsing packet: %s", err)
break
}
lastConnID = hdr.DestConnectionID
if hdr.Version != s.version {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeFromHeader(hdr), protocol.InvalidPacketNumber, protocol.ByteCount(len(data)), logging.PacketDropUnexpectedVersion)
}
s.logger.Debugf("Dropping packet with version %x. Expected %x.", hdr.Version, s.version)
break
}
if counter > 0 {
p.buffer.Split()
}
counter++
// only log if this actually a coalesced packet
if s.logger.Debug() && (counter > 1 || len(rest) > 0) {
s.logger.Debugf("Parsed a coalesced packet. Part %d: %d bytes. Remaining: %d bytes.", counter, len(packetData), len(rest))
}
p.data = packetData
if wasProcessed := s.handleLongHeaderPacket(p, hdr); wasProcessed {
processed = true
}
data = rest
} else {
if counter > 0 {
p.buffer.Split()
}
processed = s.handleShortHeaderPacket(p, destConnID)
break
}
}
p.buffer.MaybeRelease()
return processed
}
func (s *connection) handleShortHeaderPacket(p receivedPacket, destConnID protocol.ConnectionID) bool {
var wasQueued bool
defer func() {
// Put back the packet buffer if the packet wasn't queued for later decryption.
if !wasQueued {
p.buffer.Decrement()
}
}()
pn, pnLen, keyPhase, data, err := s.unpacker.UnpackShortHeader(p.rcvTime, p.data)
if err != nil {
wasQueued = s.handleUnpackError(err, p, logging.PacketType1RTT)
return false
}
if s.logger.Debug() {
s.logger.Debugf("<- Reading packet %d (%d bytes) for connection %s, 1-RTT", pn, p.Size(), destConnID)
wire.LogShortHeader(s.logger, destConnID, pn, pnLen, keyPhase)
}
if s.receivedPacketHandler.IsPotentiallyDuplicate(pn, protocol.Encryption1RTT) {
s.logger.Debugf("Dropping (potentially) duplicate packet.")
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketType1RTT, pn, p.Size(), logging.PacketDropDuplicate)
}
return false
}
var log func([]logging.Frame)
if s.tracer != nil && s.tracer.ReceivedShortHeaderPacket != nil {
log = func(frames []logging.Frame) {
s.tracer.ReceivedShortHeaderPacket(
&logging.ShortHeader{
DestConnectionID: destConnID,
PacketNumber: pn,
PacketNumberLen: pnLen,
KeyPhase: keyPhase,
},
p.Size(),
p.ecn,
frames,
)
}
}
if err := s.handleUnpackedShortHeaderPacket(destConnID, pn, data, p.ecn, p.rcvTime, log); err != nil {
s.closeLocal(err)
return false
}
return true
}
func (s *connection) handleLongHeaderPacket(p receivedPacket, hdr *wire.Header) bool /* was the packet successfully processed */ {
var wasQueued bool
defer func() {
// Put back the packet buffer if the packet wasn't queued for later decryption.
if !wasQueued {
p.buffer.Decrement()
}
}()
if hdr.Type == protocol.PacketTypeRetry {
return s.handleRetryPacket(hdr, p.data, p.rcvTime)
}
// The server can change the source connection ID with the first Handshake packet.
// After this, all packets with a different source connection have to be ignored.
if s.receivedFirstPacket && hdr.Type == protocol.PacketTypeInitial && hdr.SrcConnectionID != s.handshakeDestConnID {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeInitial, protocol.InvalidPacketNumber, p.Size(), logging.PacketDropUnknownConnectionID)
}
s.logger.Debugf("Dropping Initial packet (%d bytes) with unexpected source connection ID: %s (expected %s)", p.Size(), hdr.SrcConnectionID, s.handshakeDestConnID)
return false
}
// drop 0-RTT packets, if we are a client
if s.perspective == protocol.PerspectiveClient && hdr.Type == protocol.PacketType0RTT {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketType0RTT, protocol.InvalidPacketNumber, p.Size(), logging.PacketDropKeyUnavailable)
}
return false
}
packet, err := s.unpacker.UnpackLongHeader(hdr, p.rcvTime, p.data, s.version)
if err != nil {
wasQueued = s.handleUnpackError(err, p, logging.PacketTypeFromHeader(hdr))
return false
}
if s.logger.Debug() {
s.logger.Debugf("<- Reading packet %d (%d bytes) for connection %s, %s", packet.hdr.PacketNumber, p.Size(), hdr.DestConnectionID, packet.encryptionLevel)
packet.hdr.Log(s.logger)
}
if pn := packet.hdr.PacketNumber; s.receivedPacketHandler.IsPotentiallyDuplicate(pn, packet.encryptionLevel) {
s.logger.Debugf("Dropping (potentially) duplicate packet.")
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeFromHeader(hdr), pn, p.Size(), logging.PacketDropDuplicate)
}
return false
}
if err := s.handleUnpackedLongHeaderPacket(packet, p.ecn, p.rcvTime, p.Size()); err != nil {
s.closeLocal(err)
return false
}
return true
}
func (s *connection) handleUnpackError(err error, p receivedPacket, pt logging.PacketType) (wasQueued bool) {
switch err {
case handshake.ErrKeysDropped:
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(pt, protocol.InvalidPacketNumber, p.Size(), logging.PacketDropKeyUnavailable)
}
s.logger.Debugf("Dropping %s packet (%d bytes) because we already dropped the keys.", pt, p.Size())
case handshake.ErrKeysNotYetAvailable:
// Sealer for this encryption level not yet available.
// Try again later.
s.tryQueueingUndecryptablePacket(p, pt)
return true
case wire.ErrInvalidReservedBits:
s.closeLocal(&qerr.TransportError{
ErrorCode: qerr.ProtocolViolation,
ErrorMessage: err.Error(),
})
case handshake.ErrDecryptionFailed:
// This might be a packet injected by an attacker. Drop it.
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(pt, protocol.InvalidPacketNumber, p.Size(), logging.PacketDropPayloadDecryptError)
}
s.logger.Debugf("Dropping %s packet (%d bytes) that could not be unpacked. Error: %s", pt, p.Size(), err)
default:
var headerErr *headerParseError
if errors.As(err, &headerErr) {
// This might be a packet injected by an attacker. Drop it.
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(pt, protocol.InvalidPacketNumber, p.Size(), logging.PacketDropHeaderParseError)
}
s.logger.Debugf("Dropping %s packet (%d bytes) for which we couldn't unpack the header. Error: %s", pt, p.Size(), err)
} else {
// This is an error returned by the AEAD (other than ErrDecryptionFailed).
// For example, a PROTOCOL_VIOLATION due to key updates.
s.closeLocal(err)
}
}
return false
}
func (s *connection) handleRetryPacket(hdr *wire.Header, data []byte, rcvTime time.Time) bool /* was this a valid Retry */ {
if s.perspective == protocol.PerspectiveServer {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeRetry, protocol.InvalidPacketNumber, protocol.ByteCount(len(data)), logging.PacketDropUnexpectedPacket)
}
s.logger.Debugf("Ignoring Retry.")
return false
}
if s.receivedFirstPacket {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeRetry, protocol.InvalidPacketNumber, protocol.ByteCount(len(data)), logging.PacketDropUnexpectedPacket)
}
s.logger.Debugf("Ignoring Retry, since we already received a packet.")
return false
}
destConnID := s.connIDManager.Get()
if hdr.SrcConnectionID == destConnID {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeRetry, protocol.InvalidPacketNumber, protocol.ByteCount(len(data)), logging.PacketDropUnexpectedPacket)
}
s.logger.Debugf("Ignoring Retry, since the server didn't change the Source Connection ID.")
return false
}
// If a token is already set, this means that we already received a Retry from the server.
// Ignore this Retry packet.
if s.receivedRetry {
s.logger.Debugf("Ignoring Retry, since a Retry was already received.")
return false
}
tag := handshake.GetRetryIntegrityTag(data[:len(data)-16], destConnID, hdr.Version)
if !bytes.Equal(data[len(data)-16:], tag[:]) {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeRetry, protocol.InvalidPacketNumber, protocol.ByteCount(len(data)), logging.PacketDropPayloadDecryptError)
}
s.logger.Debugf("Ignoring spoofed Retry. Integrity Tag doesn't match.")
return false
}
if s.logger.Debug() {
s.logger.Debugf("<- Received Retry:")
(&wire.ExtendedHeader{Header: *hdr}).Log(s.logger)
s.logger.Debugf("Switching destination connection ID to: %s", hdr.SrcConnectionID)
}
if s.tracer != nil && s.tracer.ReceivedRetry != nil {
s.tracer.ReceivedRetry(hdr)
}
newDestConnID := hdr.SrcConnectionID
s.receivedRetry = true
if err := s.sentPacketHandler.ResetForRetry(rcvTime); err != nil {
s.closeLocal(err)
return false
}
s.handshakeDestConnID = newDestConnID
s.retrySrcConnID = &newDestConnID
s.cryptoStreamHandler.ChangeConnectionID(newDestConnID)
s.packer.SetToken(hdr.Token)
s.connIDManager.ChangeInitialConnID(newDestConnID)
s.scheduleSending()
return true
}
func (s *connection) handleVersionNegotiationPacket(p receivedPacket) {
if s.perspective == protocol.PerspectiveServer || // servers never receive version negotiation packets
s.receivedFirstPacket || s.versionNegotiated { // ignore delayed / duplicated version negotiation packets
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeVersionNegotiation, protocol.InvalidPacketNumber, p.Size(), logging.PacketDropUnexpectedPacket)
}
return
}
src, dest, supportedVersions, err := wire.ParseVersionNegotiationPacket(p.data)
if err != nil {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeVersionNegotiation, protocol.InvalidPacketNumber, p.Size(), logging.PacketDropHeaderParseError)
}
s.logger.Debugf("Error parsing Version Negotiation packet: %s", err)
return
}
for _, v := range supportedVersions {
if v == s.version {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeVersionNegotiation, protocol.InvalidPacketNumber, p.Size(), logging.PacketDropUnexpectedVersion)
}
// The Version Negotiation packet contains the version that we offered.
// This might be a packet sent by an attacker, or it was corrupted.
return
}
}
s.logger.Infof("Received a Version Negotiation packet. Supported Versions: %s", supportedVersions)
if s.tracer != nil && s.tracer.ReceivedVersionNegotiationPacket != nil {
s.tracer.ReceivedVersionNegotiationPacket(dest, src, supportedVersions)
}
newVersion, ok := protocol.ChooseSupportedVersion(s.config.Versions, supportedVersions)
if !ok {
s.destroyImpl(&VersionNegotiationError{
Ours: s.config.Versions,
Theirs: supportedVersions,
})
s.logger.Infof("No compatible QUIC version found.")
return
}
if s.tracer != nil && s.tracer.NegotiatedVersion != nil {
s.tracer.NegotiatedVersion(newVersion, s.config.Versions, supportedVersions)
}
s.logger.Infof("Switching to QUIC version %s.", newVersion)
nextPN, _ := s.sentPacketHandler.PeekPacketNumber(protocol.EncryptionInitial)
s.destroyImpl(&errCloseForRecreating{
nextPacketNumber: nextPN,
nextVersion: newVersion,
})
}
func (s *connection) handleUnpackedLongHeaderPacket(
packet *unpackedPacket,
ecn protocol.ECN,
rcvTime time.Time,
packetSize protocol.ByteCount, // only for logging
) error {
if !s.receivedFirstPacket {
s.receivedFirstPacket = true
if !s.versionNegotiated && s.tracer != nil && s.tracer.NegotiatedVersion != nil {
var clientVersions, serverVersions []protocol.Version
switch s.perspective {
case protocol.PerspectiveClient:
clientVersions = s.config.Versions
case protocol.PerspectiveServer:
serverVersions = s.config.Versions
}
s.tracer.NegotiatedVersion(s.version, clientVersions, serverVersions)
}
// The server can change the source connection ID with the first Handshake packet.
if s.perspective == protocol.PerspectiveClient && packet.hdr.SrcConnectionID != s.handshakeDestConnID {
cid := packet.hdr.SrcConnectionID
s.logger.Debugf("Received first packet. Switching destination connection ID to: %s", cid)
s.handshakeDestConnID = cid
s.connIDManager.ChangeInitialConnID(cid)
}
// We create the connection as soon as we receive the first packet from the client.
// We do that before authenticating the packet.
// That means that if the source connection ID was corrupted,
// we might have created a connection with an incorrect source connection ID.
// Once we authenticate the first packet, we need to update it.
if s.perspective == protocol.PerspectiveServer {
if packet.hdr.SrcConnectionID != s.handshakeDestConnID {
s.handshakeDestConnID = packet.hdr.SrcConnectionID
s.connIDManager.ChangeInitialConnID(packet.hdr.SrcConnectionID)
}
if s.tracer != nil && s.tracer.StartedConnection != nil {
s.tracer.StartedConnection(
s.conn.LocalAddr(),
s.conn.RemoteAddr(),
packet.hdr.SrcConnectionID,
packet.hdr.DestConnectionID,
)
}
}
}
if s.perspective == protocol.PerspectiveServer && packet.encryptionLevel == protocol.EncryptionHandshake &&
!s.droppedInitialKeys {
// On the server side, Initial keys are dropped as soon as the first Handshake packet is received.
// See Section 4.9.1 of RFC 9001.
if err := s.dropEncryptionLevel(protocol.EncryptionInitial); err != nil {
return err
}
}
s.lastPacketReceivedTime = rcvTime
s.firstAckElicitingPacketAfterIdleSentTime = time.Time{}
s.keepAlivePingSent = false
var log func([]logging.Frame)
if s.tracer != nil && s.tracer.ReceivedLongHeaderPacket != nil {
log = func(frames []logging.Frame) {
s.tracer.ReceivedLongHeaderPacket(packet.hdr, packetSize, ecn, frames)
}
}
isAckEliciting, err := s.handleFrames(packet.data, packet.hdr.DestConnectionID, packet.encryptionLevel, log)
if err != nil {
return err
}
return s.receivedPacketHandler.ReceivedPacket(packet.hdr.PacketNumber, ecn, packet.encryptionLevel, rcvTime, isAckEliciting)
}
func (s *connection) handleUnpackedShortHeaderPacket(
destConnID protocol.ConnectionID,
pn protocol.PacketNumber,
data []byte,
ecn protocol.ECN,
rcvTime time.Time,
log func([]logging.Frame),
) error {
s.lastPacketReceivedTime = rcvTime
s.firstAckElicitingPacketAfterIdleSentTime = time.Time{}
s.keepAlivePingSent = false
isAckEliciting, err := s.handleFrames(data, destConnID, protocol.Encryption1RTT, log)
if err != nil {
return err
}
return s.receivedPacketHandler.ReceivedPacket(pn, ecn, protocol.Encryption1RTT, rcvTime, isAckEliciting)
}
func (s *connection) handleFrames(
data []byte,
destConnID protocol.ConnectionID,
encLevel protocol.EncryptionLevel,
log func([]logging.Frame),
) (isAckEliciting bool, _ error) {
// Only used for tracing.
// If we're not tracing, this slice will always remain empty.
var frames []logging.Frame
if log != nil {
frames = make([]logging.Frame, 0, 4)
}
handshakeWasComplete := s.handshakeComplete
var handleErr error
for len(data) > 0 {
l, frame, err := s.frameParser.ParseNext(data, encLevel, s.version)
if err != nil {
return false, err
}
data = data[l:]
if frame == nil {
break
}
if ackhandler.IsFrameAckEliciting(frame) {
isAckEliciting = true
}
if log != nil {
frames = append(frames, logutils.ConvertFrame(frame))
}
// An error occurred handling a previous frame.
// Don't handle the current frame.
if handleErr != nil {
continue
}
if err := s.handleFrame(frame, encLevel, destConnID); err != nil {
if log == nil {
return false, err
}
// If we're logging, we need to keep parsing (but not handling) all frames.
handleErr = err
}
}
if log != nil {
log(frames)
if handleErr != nil {
return false, handleErr
}
}
// Handle completion of the handshake after processing all the frames.
// This ensures that we correctly handle the following case on the server side:
// We receive a Handshake packet that contains the CRYPTO frame that allows us to complete the handshake,
// and an ACK serialized after that CRYPTO frame. In this case, we still want to process the ACK frame.
if !handshakeWasComplete && s.handshakeComplete {
if err := s.handleHandshakeComplete(); err != nil {
return false, err
}
}
return
}
func (s *connection) handleFrame(f wire.Frame, encLevel protocol.EncryptionLevel, destConnID protocol.ConnectionID) error {
var err error
wire.LogFrame(s.logger, f, false)
switch frame := f.(type) {
case *wire.CryptoFrame:
err = s.handleCryptoFrame(frame, encLevel)
case *wire.StreamFrame:
err = s.handleStreamFrame(frame)
case *wire.AckFrame:
err = s.handleAckFrame(frame, encLevel)
case *wire.ConnectionCloseFrame:
s.handleConnectionCloseFrame(frame)
case *wire.ResetStreamFrame:
err = s.handleResetStreamFrame(frame)
case *wire.MaxDataFrame:
s.handleMaxDataFrame(frame)
case *wire.MaxStreamDataFrame:
err = s.handleMaxStreamDataFrame(frame)
case *wire.MaxStreamsFrame:
s.handleMaxStreamsFrame(frame)
case *wire.DataBlockedFrame:
case *wire.StreamDataBlockedFrame:
case *wire.StreamsBlockedFrame:
case *wire.StopSendingFrame:
err = s.handleStopSendingFrame(frame)
case *wire.PingFrame:
case *wire.PathChallengeFrame:
s.handlePathChallengeFrame(frame)
case *wire.PathResponseFrame:
// since we don't send PATH_CHALLENGEs, we don't expect PATH_RESPONSEs
err = errors.New("unexpected PATH_RESPONSE frame")
case *wire.NewTokenFrame:
err = s.handleNewTokenFrame(frame)
case *wire.NewConnectionIDFrame:
err = s.handleNewConnectionIDFrame(frame)
case *wire.RetireConnectionIDFrame:
err = s.handleRetireConnectionIDFrame(frame, destConnID)
case *wire.HandshakeDoneFrame:
err = s.handleHandshakeDoneFrame()
case *wire.DatagramFrame:
err = s.handleDatagramFrame(frame)
default:
err = fmt.Errorf("unexpected frame type: %s", reflect.ValueOf(&frame).Elem().Type().Name())
}
return err
}
// handlePacket is called by the server with a new packet
func (s *connection) handlePacket(p receivedPacket) {
// Discard packets once the amount of queued packets is larger than
// the channel size, protocol.MaxConnUnprocessedPackets
select {
case s.receivedPackets <- p:
default:
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeNotDetermined, protocol.InvalidPacketNumber, p.Size(), logging.PacketDropDOSPrevention)
}
}
}
func (s *connection) handleConnectionCloseFrame(frame *wire.ConnectionCloseFrame) {
if frame.IsApplicationError {
s.closeRemote(&qerr.ApplicationError{
Remote: true,
ErrorCode: qerr.ApplicationErrorCode(frame.ErrorCode),
ErrorMessage: frame.ReasonPhrase,
})
return
}
s.closeRemote(&qerr.TransportError{
Remote: true,
ErrorCode: qerr.TransportErrorCode(frame.ErrorCode),
FrameType: frame.FrameType,
ErrorMessage: frame.ReasonPhrase,
})
}
func (s *connection) handleCryptoFrame(frame *wire.CryptoFrame, encLevel protocol.EncryptionLevel) error {
if err := s.cryptoStreamManager.HandleCryptoFrame(frame, encLevel); err != nil {
return err
}
return s.handleHandshakeEvents()
}
func (s *connection) handleHandshakeEvents() error {
for {
ev := s.cryptoStreamHandler.NextEvent()
var err error
switch ev.Kind {
case handshake.EventNoEvent:
return nil
case handshake.EventHandshakeComplete:
// Don't call handleHandshakeComplete yet.
// It's advantageous to process ACK frames that might be serialized after the CRYPTO frame first.
s.handshakeComplete = true
case handshake.EventReceivedTransportParameters:
err = s.handleTransportParameters(ev.TransportParameters)
case handshake.EventRestoredTransportParameters:
s.restoreTransportParameters(ev.TransportParameters)
close(s.earlyConnReadyChan)
case handshake.EventReceivedReadKeys:
// Queue all packets for decryption that have been undecryptable so far.
s.undecryptablePacketsToProcess = s.undecryptablePackets
s.undecryptablePackets = nil
case handshake.EventDiscard0RTTKeys:
err = s.dropEncryptionLevel(protocol.Encryption0RTT)
case handshake.EventWriteInitialData:
_, err = s.initialStream.Write(ev.Data)
case handshake.EventWriteHandshakeData:
_, err = s.handshakeStream.Write(ev.Data)
}
if err != nil {
return err
}
}
}
func (s *connection) handleStreamFrame(frame *wire.StreamFrame) error {
str, err := s.streamsMap.GetOrOpenReceiveStream(frame.StreamID)
if err != nil {
return err
}
if str == nil {
// Stream is closed and already garbage collected
// ignore this StreamFrame
return nil
}
return str.handleStreamFrame(frame)
}
func (s *connection) handleMaxDataFrame(frame *wire.MaxDataFrame) {
s.connFlowController.UpdateSendWindow(frame.MaximumData)
}
func (s *connection) handleMaxStreamDataFrame(frame *wire.MaxStreamDataFrame) error {
str, err := s.streamsMap.GetOrOpenSendStream(frame.StreamID)
if err != nil {
return err
}
if str == nil {
// stream is closed and already garbage collected
return nil
}
str.updateSendWindow(frame.MaximumStreamData)
return nil
}
func (s *connection) handleMaxStreamsFrame(frame *wire.MaxStreamsFrame) {
s.streamsMap.HandleMaxStreamsFrame(frame)
}
func (s *connection) handleResetStreamFrame(frame *wire.ResetStreamFrame) error {
str, err := s.streamsMap.GetOrOpenReceiveStream(frame.StreamID)
if err != nil {
return err
}
if str == nil {
// stream is closed and already garbage collected
return nil
}
return str.handleResetStreamFrame(frame)
}
func (s *connection) handleStopSendingFrame(frame *wire.StopSendingFrame) error {
str, err := s.streamsMap.GetOrOpenSendStream(frame.StreamID)
if err != nil {
return err
}
if str == nil {
// stream is closed and already garbage collected
return nil
}
str.handleStopSendingFrame(frame)
return nil
}
func (s *connection) handlePathChallengeFrame(frame *wire.PathChallengeFrame) {
s.queueControlFrame(&wire.PathResponseFrame{Data: frame.Data})
}
func (s *connection) handleNewTokenFrame(frame *wire.NewTokenFrame) error {
if s.perspective == protocol.PerspectiveServer {
return &qerr.TransportError{
ErrorCode: qerr.ProtocolViolation,
ErrorMessage: "received NEW_TOKEN frame from the client",
}
}
if s.config.TokenStore != nil {
s.config.TokenStore.Put(s.tokenStoreKey, &ClientToken{data: frame.Token})
}
return nil
}
func (s *connection) handleNewConnectionIDFrame(f *wire.NewConnectionIDFrame) error {
return s.connIDManager.Add(f)
}
func (s *connection) handleRetireConnectionIDFrame(f *wire.RetireConnectionIDFrame, destConnID protocol.ConnectionID) error {
return s.connIDGenerator.Retire(f.SequenceNumber, destConnID)
}
func (s *connection) handleHandshakeDoneFrame() error {
if s.perspective == protocol.PerspectiveServer {
return &qerr.TransportError{
ErrorCode: qerr.ProtocolViolation,
ErrorMessage: "received a HANDSHAKE_DONE frame",
}
}
if !s.handshakeConfirmed {
return s.handleHandshakeConfirmed()
}
return nil
}
func (s *connection) handleAckFrame(frame *wire.AckFrame, encLevel protocol.EncryptionLevel) error {
acked1RTTPacket, err := s.sentPacketHandler.ReceivedAck(frame, encLevel, s.lastPacketReceivedTime)
if err != nil {
return err
}
if !acked1RTTPacket {
return nil
}
// On the client side: If the packet acknowledged a 1-RTT packet, this confirms the handshake.
// This is only possible if the ACK was sent in a 1-RTT packet.
// This is an optimization over simply waiting for a HANDSHAKE_DONE frame, see section 4.1.2 of RFC 9001.
if s.perspective == protocol.PerspectiveClient && !s.handshakeConfirmed {
if err := s.handleHandshakeConfirmed(); err != nil {
return err
}
}
return s.cryptoStreamHandler.SetLargest1RTTAcked(frame.LargestAcked())
}
func (s *connection) handleDatagramFrame(f *wire.DatagramFrame) error {
if f.Length(s.version) > wire.MaxDatagramSize {
return &qerr.TransportError{
ErrorCode: qerr.ProtocolViolation,
ErrorMessage: "DATAGRAM frame too large",
}
}
s.datagramQueue.HandleDatagramFrame(f)
return nil
}
// closeLocal closes the connection and send a CONNECTION_CLOSE containing the error
func (s *connection) closeLocal(e error) {
s.closeOnce.Do(func() {
if e == nil {
s.logger.Infof("Closing connection.")
} else {
s.logger.Errorf("Closing connection with error: %s", e)
}
s.closeChan <- closeError{err: e, immediate: false, remote: false}
})
}
// destroy closes the connection without sending the error on the wire
func (s *connection) destroy(e error) {
s.destroyImpl(e)
<-s.ctx.Done()
}
func (s *connection) destroyImpl(e error) {
s.closeOnce.Do(func() {
if nerr, ok := e.(net.Error); ok && nerr.Timeout() {
s.logger.Errorf("Destroying connection: %s", e)
} else {
s.logger.Errorf("Destroying connection with error: %s", e)
}
s.closeChan <- closeError{err: e, immediate: true, remote: false}
})
}
func (s *connection) closeRemote(e error) {
s.closeOnce.Do(func() {
s.logger.Errorf("Peer closed connection with error: %s", e)
s.closeChan <- closeError{err: e, immediate: true, remote: true}
})
}
func (s *connection) CloseWithError(code ApplicationErrorCode, desc string) error {
s.closeLocal(&qerr.ApplicationError{
ErrorCode: code,
ErrorMessage: desc,
})
<-s.ctx.Done()
return nil
}
func (s *connection) closeWithTransportError(code TransportErrorCode) {
s.closeLocal(&qerr.TransportError{ErrorCode: code})
<-s.ctx.Done()
}
func (s *connection) handleCloseError(closeErr *closeError) {
e := closeErr.err
if e == nil {
e = &qerr.ApplicationError{}
} else {
defer func() {
closeErr.err = e
}()
}
var (
statelessResetErr *StatelessResetError
versionNegotiationErr *VersionNegotiationError
recreateErr *errCloseForRecreating
applicationErr *ApplicationError
transportErr *TransportError
)
switch {
case errors.Is(e, qerr.ErrIdleTimeout),
errors.Is(e, qerr.ErrHandshakeTimeout),
errors.As(e, &statelessResetErr),
errors.As(e, &versionNegotiationErr),
errors.As(e, &recreateErr),
errors.As(e, &applicationErr),
errors.As(e, &transportErr):
default:
e = &qerr.TransportError{
ErrorCode: qerr.InternalError,
ErrorMessage: e.Error(),
}
}
s.streamsMap.CloseWithError(e)
s.connIDManager.Close()
if s.datagramQueue != nil {
s.datagramQueue.CloseWithError(e)
}
if s.tracer != nil && s.tracer.ClosedConnection != nil && !errors.As(e, &recreateErr) {
s.tracer.ClosedConnection(e)
}
// If this is a remote close we're done here
if closeErr.remote {
s.connIDGenerator.ReplaceWithClosed(nil)
return
}
if closeErr.immediate {
s.connIDGenerator.RemoveAll()
return
}
// Don't send out any CONNECTION_CLOSE if this is an error that occurred
// before we even sent out the first packet.
if s.perspective == protocol.PerspectiveClient && !s.sentFirstPacket {
s.connIDGenerator.RemoveAll()
return
}
connClosePacket, err := s.sendConnectionClose(e)
if err != nil {
s.logger.Debugf("Error sending CONNECTION_CLOSE: %s", err)
}
s.connIDGenerator.ReplaceWithClosed(connClosePacket)
}
func (s *connection) dropEncryptionLevel(encLevel protocol.EncryptionLevel) error {
if s.tracer != nil && s.tracer.DroppedEncryptionLevel != nil {
s.tracer.DroppedEncryptionLevel(encLevel)
}
s.sentPacketHandler.DropPackets(encLevel)
s.receivedPacketHandler.DropPackets(encLevel)
//nolint:exhaustive // only Initial and 0-RTT need special treatment
switch encLevel {
case protocol.EncryptionInitial:
s.droppedInitialKeys = true
s.cryptoStreamHandler.DiscardInitialKeys()
case protocol.Encryption0RTT:
s.streamsMap.ResetFor0RTT()
if err := s.connFlowController.Reset(); err != nil {
return err
}
return s.framer.Handle0RTTRejection()
}
return s.cryptoStreamManager.Drop(encLevel)
}
// is called for the client, when restoring transport parameters saved for 0-RTT
func (s *connection) restoreTransportParameters(params *wire.TransportParameters) {
if s.logger.Debug() {
s.logger.Debugf("Restoring Transport Parameters: %s", params)
}
s.peerParams = params
s.connIDGenerator.SetMaxActiveConnIDs(params.ActiveConnectionIDLimit)
s.connFlowController.UpdateSendWindow(params.InitialMaxData)
s.streamsMap.UpdateLimits(params)
s.connStateMutex.Lock()
s.connState.SupportsDatagrams = s.supportsDatagrams()
s.connStateMutex.Unlock()
}
func (s *connection) handleTransportParameters(params *wire.TransportParameters) error {
if s.tracer != nil && s.tracer.ReceivedTransportParameters != nil {
s.tracer.ReceivedTransportParameters(params)
}
if err := s.checkTransportParameters(params); err != nil {
return &qerr.TransportError{
ErrorCode: qerr.TransportParameterError,
ErrorMessage: err.Error(),
}
}
if s.perspective == protocol.PerspectiveClient && s.peerParams != nil && s.ConnectionState().Used0RTT && !params.ValidForUpdate(s.peerParams) {
return &qerr.TransportError{
ErrorCode: qerr.ProtocolViolation,
ErrorMessage: "server sent reduced limits after accepting 0-RTT data",
}
}
s.peerParams = params
// On the client side we have to wait for handshake completion.
// During a 0-RTT connection, we are only allowed to use the new transport parameters for 1-RTT packets.
if s.perspective == protocol.PerspectiveServer {
s.applyTransportParameters()
// On the server side, the early connection is ready as soon as we processed
// the client's transport parameters.
close(s.earlyConnReadyChan)
}
s.connStateMutex.Lock()
s.connState.SupportsDatagrams = s.supportsDatagrams()
s.connStateMutex.Unlock()
return nil
}
func (s *connection) checkTransportParameters(params *wire.TransportParameters) error {
if s.logger.Debug() {
s.logger.Debugf("Processed Transport Parameters: %s", params)
}
// check the initial_source_connection_id
if params.InitialSourceConnectionID != s.handshakeDestConnID {
return fmt.Errorf("expected initial_source_connection_id to equal %s, is %s", s.handshakeDestConnID, params.InitialSourceConnectionID)
}
if s.perspective == protocol.PerspectiveServer {
return nil
}
// check the original_destination_connection_id
if params.OriginalDestinationConnectionID != s.origDestConnID {
return fmt.Errorf("expected original_destination_connection_id to equal %s, is %s", s.origDestConnID, params.OriginalDestinationConnectionID)
}
if s.retrySrcConnID != nil { // a Retry was performed
if params.RetrySourceConnectionID == nil {
return errors.New("missing retry_source_connection_id")
}
if *params.RetrySourceConnectionID != *s.retrySrcConnID {
return fmt.Errorf("expected retry_source_connection_id to equal %s, is %s", s.retrySrcConnID, *params.RetrySourceConnectionID)
}
} else if params.RetrySourceConnectionID != nil {
return errors.New("received retry_source_connection_id, although no Retry was performed")
}
return nil
}
func (s *connection) applyTransportParameters() {
params := s.peerParams
// Our local idle timeout will always be > 0.
s.idleTimeout = utils.MinNonZeroDuration(s.config.MaxIdleTimeout, params.MaxIdleTimeout)
s.keepAliveInterval = min(s.config.KeepAlivePeriod, min(s.idleTimeout/2, protocol.MaxKeepAliveInterval))
s.streamsMap.UpdateLimits(params)
s.frameParser.SetAckDelayExponent(params.AckDelayExponent)
s.connFlowController.UpdateSendWindow(params.InitialMaxData)
s.rttStats.SetMaxAckDelay(params.MaxAckDelay)
s.connIDGenerator.SetMaxActiveConnIDs(params.ActiveConnectionIDLimit)
if params.StatelessResetToken != nil {
s.connIDManager.SetStatelessResetToken(*params.StatelessResetToken)
}
// We don't support connection migration yet, so we don't have any use for the preferred_address.
if params.PreferredAddress != nil {
// Retire the connection ID.
s.connIDManager.AddFromPreferredAddress(params.PreferredAddress.ConnectionID, params.PreferredAddress.StatelessResetToken)
}
}
func (s *connection) triggerSending(now time.Time) error {
s.pacingDeadline = time.Time{}
sendMode := s.sentPacketHandler.SendMode(now)
//nolint:exhaustive // No need to handle pacing limited here.
switch sendMode {
case ackhandler.SendAny:
return s.sendPackets(now)
case ackhandler.SendNone:
return nil
case ackhandler.SendPacingLimited:
deadline := s.sentPacketHandler.TimeUntilSend()
if deadline.IsZero() {
deadline = deadlineSendImmediately
}
s.pacingDeadline = deadline
// Allow sending of an ACK if we're pacing limit.
// This makes sure that a peer that is mostly receiving data (and thus has an inaccurate cwnd estimate)
// sends enough ACKs to allow its peer to utilize the bandwidth.
fallthrough
case ackhandler.SendAck:
// We can at most send a single ACK only packet.
// There will only be a new ACK after receiving new packets.
// SendAck is only returned when we're congestion limited, so we don't need to set the pacinggs timer.
return s.maybeSendAckOnlyPacket(now)
case ackhandler.SendPTOInitial:
if err := s.sendProbePacket(protocol.EncryptionInitial, now); err != nil {
return err
}
if s.sendQueue.WouldBlock() {
s.scheduleSending()
return nil
}
return s.triggerSending(now)
case ackhandler.SendPTOHandshake:
if err := s.sendProbePacket(protocol.EncryptionHandshake, now); err != nil {
return err
}
if s.sendQueue.WouldBlock() {
s.scheduleSending()
return nil
}
return s.triggerSending(now)
case ackhandler.SendPTOAppData:
if err := s.sendProbePacket(protocol.Encryption1RTT, now); err != nil {
return err
}
if s.sendQueue.WouldBlock() {
s.scheduleSending()
return nil
}
return s.triggerSending(now)
default:
return fmt.Errorf("BUG: invalid send mode %d", sendMode)
}
}
func (s *connection) sendPackets(now time.Time) error {
// Path MTU Discovery
// Can't use GSO, since we need to send a single packet that's larger than our current maximum size.
// Performance-wise, this doesn't matter, since we only send a very small (<10) number of
// MTU probe packets per connection.
if s.handshakeConfirmed && s.mtuDiscoverer != nil && s.mtuDiscoverer.ShouldSendProbe(now) {
ping, size := s.mtuDiscoverer.GetPing()
p, buf, err := s.packer.PackMTUProbePacket(ping, size, s.version)
if err != nil {
return err
}
ecn := s.sentPacketHandler.ECNMode(true)
s.logShortHeaderPacket(p.DestConnID, p.Ack, p.Frames, p.StreamFrames, p.PacketNumber, p.PacketNumberLen, p.KeyPhase, ecn, buf.Len(), false)
s.registerPackedShortHeaderPacket(p, ecn, now)
s.sendQueue.Send(buf, 0, ecn)
// This is kind of a hack. We need to trigger sending again somehow.
s.pacingDeadline = deadlineSendImmediately
return nil
}
if isBlocked, offset := s.connFlowController.IsNewlyBlocked(); isBlocked {
s.framer.QueueControlFrame(&wire.DataBlockedFrame{MaximumData: offset})
}
s.windowUpdateQueue.QueueAll()
if cf := s.cryptoStreamManager.GetPostHandshakeData(protocol.MaxPostHandshakeCryptoFrameSize); cf != nil {
s.queueControlFrame(cf)
}
if !s.handshakeConfirmed {
packet, err := s.packer.PackCoalescedPacket(false, s.mtuDiscoverer.CurrentSize(), s.version)
if err != nil || packet == nil {
return err
}
s.sentFirstPacket = true
if err := s.sendPackedCoalescedPacket(packet, s.sentPacketHandler.ECNMode(packet.IsOnlyShortHeaderPacket()), now); err != nil {
return err
}
sendMode := s.sentPacketHandler.SendMode(now)
if sendMode == ackhandler.SendPacingLimited {
s.resetPacingDeadline()
} else if sendMode == ackhandler.SendAny {
s.pacingDeadline = deadlineSendImmediately
}
return nil
}
if s.conn.capabilities().GSO {
return s.sendPacketsWithGSO(now)
}
return s.sendPacketsWithoutGSO(now)
}
func (s *connection) sendPacketsWithoutGSO(now time.Time) error {
for {
buf := getPacketBuffer()
ecn := s.sentPacketHandler.ECNMode(true)
if _, err := s.appendOneShortHeaderPacket(buf, s.mtuDiscoverer.CurrentSize(), ecn, now); err != nil {
if err == errNothingToPack {
buf.Release()
return nil
}
return err
}
s.sendQueue.Send(buf, 0, ecn)
if s.sendQueue.WouldBlock() {
return nil
}
sendMode := s.sentPacketHandler.SendMode(now)
if sendMode == ackhandler.SendPacingLimited {
s.resetPacingDeadline()
return nil
}
if sendMode != ackhandler.SendAny {
return nil
}
// Prioritize receiving of packets over sending out more packets.
if len(s.receivedPackets) > 0 {
s.pacingDeadline = deadlineSendImmediately
return nil
}
}
}
func (s *connection) sendPacketsWithGSO(now time.Time) error {
buf := getLargePacketBuffer()
maxSize := s.mtuDiscoverer.CurrentSize()
ecn := s.sentPacketHandler.ECNMode(true)
for {
var dontSendMore bool
size, err := s.appendOneShortHeaderPacket(buf, maxSize, ecn, now)
if err != nil {
if err != errNothingToPack {
return err
}
if buf.Len() == 0 {
buf.Release()
return nil
}
dontSendMore = true
}
if !dontSendMore {
sendMode := s.sentPacketHandler.SendMode(now)
if sendMode == ackhandler.SendPacingLimited {
s.resetPacingDeadline()
}
if sendMode != ackhandler.SendAny {
dontSendMore = true
}
}
// Don't send more packets in this batch if they require a different ECN marking than the previous ones.
nextECN := s.sentPacketHandler.ECNMode(true)
// Append another packet if
// 1. The congestion controller and pacer allow sending more
// 2. The last packet appended was a full-size packet
// 3. The next packet will have the same ECN marking
// 4. We still have enough space for another full-size packet in the buffer
if !dontSendMore && size == maxSize && nextECN == ecn && buf.Len()+maxSize <= buf.Cap() {
continue
}
s.sendQueue.Send(buf, uint16(maxSize), ecn)
if dontSendMore {
return nil
}
if s.sendQueue.WouldBlock() {
return nil
}
// Prioritize receiving of packets over sending out more packets.
if len(s.receivedPackets) > 0 {
s.pacingDeadline = deadlineSendImmediately
return nil
}
buf = getLargePacketBuffer()
}
}
func (s *connection) resetPacingDeadline() {
deadline := s.sentPacketHandler.TimeUntilSend()
if deadline.IsZero() {
deadline = deadlineSendImmediately
}
s.pacingDeadline = deadline
}
func (s *connection) maybeSendAckOnlyPacket(now time.Time) error {
if !s.handshakeConfirmed {
ecn := s.sentPacketHandler.ECNMode(false)
packet, err := s.packer.PackCoalescedPacket(true, s.mtuDiscoverer.CurrentSize(), s.version)
if err != nil {
return err
}
if packet == nil {
return nil
}
return s.sendPackedCoalescedPacket(packet, ecn, now)
}
ecn := s.sentPacketHandler.ECNMode(true)
p, buf, err := s.packer.PackAckOnlyPacket(s.mtuDiscoverer.CurrentSize(), s.version)
if err != nil {
if err == errNothingToPack {
return nil
}
return err
}
s.logShortHeaderPacket(p.DestConnID, p.Ack, p.Frames, p.StreamFrames, p.PacketNumber, p.PacketNumberLen, p.KeyPhase, ecn, buf.Len(), false)
s.registerPackedShortHeaderPacket(p, ecn, now)
s.sendQueue.Send(buf, 0, ecn)
return nil
}
func (s *connection) sendProbePacket(encLevel protocol.EncryptionLevel, now time.Time) error {
// Queue probe packets until we actually send out a packet,
// or until there are no more packets to queue.
var packet *coalescedPacket
for {
if wasQueued := s.sentPacketHandler.QueueProbePacket(encLevel); !wasQueued {
break
}
var err error
packet, err = s.packer.MaybePackProbePacket(encLevel, s.mtuDiscoverer.CurrentSize(), s.version)
if err != nil {
return err
}
if packet != nil {
break
}
}
if packet == nil {
s.retransmissionQueue.AddPing(encLevel)
var err error
packet, err = s.packer.MaybePackProbePacket(encLevel, s.mtuDiscoverer.CurrentSize(), s.version)
if err != nil {
return err
}
}
if packet == nil || (len(packet.longHdrPackets) == 0 && packet.shortHdrPacket == nil) {
return fmt.Errorf("connection BUG: couldn't pack %s probe packet", encLevel)
}
return s.sendPackedCoalescedPacket(packet, s.sentPacketHandler.ECNMode(packet.IsOnlyShortHeaderPacket()), now)
}
// appendOneShortHeaderPacket appends a new packet to the given packetBuffer.
// If there was nothing to pack, the returned size is 0.
func (s *connection) appendOneShortHeaderPacket(buf *packetBuffer, maxSize protocol.ByteCount, ecn protocol.ECN, now time.Time) (protocol.ByteCount, error) {
startLen := buf.Len()
p, err := s.packer.AppendPacket(buf, maxSize, s.version)
if err != nil {
return 0, err
}
size := buf.Len() - startLen
s.logShortHeaderPacket(p.DestConnID, p.Ack, p.Frames, p.StreamFrames, p.PacketNumber, p.PacketNumberLen, p.KeyPhase, ecn, size, false)
s.registerPackedShortHeaderPacket(p, ecn, now)
return size, nil
}
func (s *connection) registerPackedShortHeaderPacket(p shortHeaderPacket, ecn protocol.ECN, now time.Time) {
if s.firstAckElicitingPacketAfterIdleSentTime.IsZero() && (len(p.StreamFrames) > 0 || ackhandler.HasAckElicitingFrames(p.Frames)) {
s.firstAckElicitingPacketAfterIdleSentTime = now
}
largestAcked := protocol.InvalidPacketNumber
if p.Ack != nil {
largestAcked = p.Ack.LargestAcked()
}
s.sentPacketHandler.SentPacket(now, p.PacketNumber, largestAcked, p.StreamFrames, p.Frames, protocol.Encryption1RTT, ecn, p.Length, p.IsPathMTUProbePacket)
s.connIDManager.SentPacket()
}
func (s *connection) sendPackedCoalescedPacket(packet *coalescedPacket, ecn protocol.ECN, now time.Time) error {
s.logCoalescedPacket(packet, ecn)
for _, p := range packet.longHdrPackets {
if s.firstAckElicitingPacketAfterIdleSentTime.IsZero() && p.IsAckEliciting() {
s.firstAckElicitingPacketAfterIdleSentTime = now
}
largestAcked := protocol.InvalidPacketNumber
if p.ack != nil {
largestAcked = p.ack.LargestAcked()
}
s.sentPacketHandler.SentPacket(now, p.header.PacketNumber, largestAcked, p.streamFrames, p.frames, p.EncryptionLevel(), ecn, p.length, false)
if s.perspective == protocol.PerspectiveClient && p.EncryptionLevel() == protocol.EncryptionHandshake &&
!s.droppedInitialKeys {
// On the client side, Initial keys are dropped as soon as the first Handshake packet is sent.
// See Section 4.9.1 of RFC 9001.
if err := s.dropEncryptionLevel(protocol.EncryptionInitial); err != nil {
return err
}
}
}
if p := packet.shortHdrPacket; p != nil {
if s.firstAckElicitingPacketAfterIdleSentTime.IsZero() && p.IsAckEliciting() {
s.firstAckElicitingPacketAfterIdleSentTime = now
}
largestAcked := protocol.InvalidPacketNumber
if p.Ack != nil {
largestAcked = p.Ack.LargestAcked()
}
s.sentPacketHandler.SentPacket(now, p.PacketNumber, largestAcked, p.StreamFrames, p.Frames, protocol.Encryption1RTT, ecn, p.Length, p.IsPathMTUProbePacket)
}
s.connIDManager.SentPacket()
s.sendQueue.Send(packet.buffer, 0, ecn)
return nil
}
func (s *connection) sendConnectionClose(e error) ([]byte, error) {
var packet *coalescedPacket
var err error
var transportErr *qerr.TransportError
var applicationErr *qerr.ApplicationError
if errors.As(e, &transportErr) {
packet, err = s.packer.PackConnectionClose(transportErr, s.mtuDiscoverer.CurrentSize(), s.version)
} else if errors.As(e, &applicationErr) {
packet, err = s.packer.PackApplicationClose(applicationErr, s.mtuDiscoverer.CurrentSize(), s.version)
} else {
packet, err = s.packer.PackConnectionClose(&qerr.TransportError{
ErrorCode: qerr.InternalError,
ErrorMessage: fmt.Sprintf("connection BUG: unspecified error type (msg: %s)", e.Error()),
}, s.mtuDiscoverer.CurrentSize(), s.version)
}
if err != nil {
return nil, err
}
ecn := s.sentPacketHandler.ECNMode(packet.IsOnlyShortHeaderPacket())
s.logCoalescedPacket(packet, ecn)
return packet.buffer.Data, s.conn.Write(packet.buffer.Data, 0, ecn)
}
func (s *connection) logLongHeaderPacket(p *longHeaderPacket, ecn protocol.ECN) {
// quic-go logging
if s.logger.Debug() {
p.header.Log(s.logger)
if p.ack != nil {
wire.LogFrame(s.logger, p.ack, true)
}
for _, frame := range p.frames {
wire.LogFrame(s.logger, frame.Frame, true)
}
for _, frame := range p.streamFrames {
wire.LogFrame(s.logger, frame.Frame, true)
}
}
// tracing
if s.tracer != nil && s.tracer.SentLongHeaderPacket != nil {
frames := make([]logging.Frame, 0, len(p.frames))
for _, f := range p.frames {
frames = append(frames, logutils.ConvertFrame(f.Frame))
}
for _, f := range p.streamFrames {
frames = append(frames, logutils.ConvertFrame(f.Frame))
}
var ack *logging.AckFrame
if p.ack != nil {
ack = logutils.ConvertAckFrame(p.ack)
}
s.tracer.SentLongHeaderPacket(p.header, p.length, ecn, ack, frames)
}
}
func (s *connection) logShortHeaderPacket(
destConnID protocol.ConnectionID,
ackFrame *wire.AckFrame,
frames []ackhandler.Frame,
streamFrames []ackhandler.StreamFrame,
pn protocol.PacketNumber,
pnLen protocol.PacketNumberLen,
kp protocol.KeyPhaseBit,
ecn protocol.ECN,
size protocol.ByteCount,
isCoalesced bool,
) {
if s.logger.Debug() && !isCoalesced {
s.logger.Debugf("-> Sending packet %d (%d bytes) for connection %s, 1-RTT (ECN: %s)", pn, size, s.logID, ecn)
}
// quic-go logging
if s.logger.Debug() {
wire.LogShortHeader(s.logger, destConnID, pn, pnLen, kp)
if ackFrame != nil {
wire.LogFrame(s.logger, ackFrame, true)
}
for _, f := range frames {
wire.LogFrame(s.logger, f.Frame, true)
}
for _, f := range streamFrames {
wire.LogFrame(s.logger, f.Frame, true)
}
}
// tracing
if s.tracer != nil && s.tracer.SentShortHeaderPacket != nil {
fs := make([]logging.Frame, 0, len(frames)+len(streamFrames))
for _, f := range frames {
fs = append(fs, logutils.ConvertFrame(f.Frame))
}
for _, f := range streamFrames {
fs = append(fs, logutils.ConvertFrame(f.Frame))
}
var ack *logging.AckFrame
if ackFrame != nil {
ack = logutils.ConvertAckFrame(ackFrame)
}
s.tracer.SentShortHeaderPacket(
&logging.ShortHeader{
DestConnectionID: destConnID,
PacketNumber: pn,
PacketNumberLen: pnLen,
KeyPhase: kp,
},
size,
ecn,
ack,
fs,
)
}
}
func (s *connection) logCoalescedPacket(packet *coalescedPacket, ecn protocol.ECN) {
if s.logger.Debug() {
// There's a short period between dropping both Initial and Handshake keys and completion of the handshake,
// during which we might call PackCoalescedPacket but just pack a short header packet.
if len(packet.longHdrPackets) == 0 && packet.shortHdrPacket != nil {
s.logShortHeaderPacket(
packet.shortHdrPacket.DestConnID,
packet.shortHdrPacket.Ack,
packet.shortHdrPacket.Frames,
packet.shortHdrPacket.StreamFrames,
packet.shortHdrPacket.PacketNumber,
packet.shortHdrPacket.PacketNumberLen,
packet.shortHdrPacket.KeyPhase,
ecn,
packet.shortHdrPacket.Length,
false,
)
return
}
if len(packet.longHdrPackets) > 1 {
s.logger.Debugf("-> Sending coalesced packet (%d parts, %d bytes) for connection %s", len(packet.longHdrPackets), packet.buffer.Len(), s.logID)
} else {
s.logger.Debugf("-> Sending packet %d (%d bytes) for connection %s, %s", packet.longHdrPackets[0].header.PacketNumber, packet.buffer.Len(), s.logID, packet.longHdrPackets[0].EncryptionLevel())
}
}
for _, p := range packet.longHdrPackets {
s.logLongHeaderPacket(p, ecn)
}
if p := packet.shortHdrPacket; p != nil {
s.logShortHeaderPacket(p.DestConnID, p.Ack, p.Frames, p.StreamFrames, p.PacketNumber, p.PacketNumberLen, p.KeyPhase, ecn, p.Length, true)
}
}
// AcceptStream returns the next stream openend by the peer
func (s *connection) AcceptStream(ctx context.Context) (Stream, error) {
return s.streamsMap.AcceptStream(ctx)
}
func (s *connection) AcceptUniStream(ctx context.Context) (ReceiveStream, error) {
return s.streamsMap.AcceptUniStream(ctx)
}
// OpenStream opens a stream
func (s *connection) OpenStream() (Stream, error) {
return s.streamsMap.OpenStream()
}
func (s *connection) OpenStreamSync(ctx context.Context) (Stream, error) {
return s.streamsMap.OpenStreamSync(ctx)
}
func (s *connection) OpenUniStream() (SendStream, error) {
return s.streamsMap.OpenUniStream()
}
func (s *connection) OpenUniStreamSync(ctx context.Context) (SendStream, error) {
return s.streamsMap.OpenUniStreamSync(ctx)
}
func (s *connection) newFlowController(id protocol.StreamID) flowcontrol.StreamFlowController {
initialSendWindow := s.peerParams.InitialMaxStreamDataUni
if id.Type() == protocol.StreamTypeBidi {
if id.InitiatedBy() == s.perspective {
initialSendWindow = s.peerParams.InitialMaxStreamDataBidiRemote
} else {
initialSendWindow = s.peerParams.InitialMaxStreamDataBidiLocal
}
}
return flowcontrol.NewStreamFlowController(
id,
s.connFlowController,
protocol.ByteCount(s.config.InitialStreamReceiveWindow),
protocol.ByteCount(s.config.MaxStreamReceiveWindow),
initialSendWindow,
s.onHasStreamWindowUpdate,
s.rttStats,
s.logger,
)
}
// scheduleSending signals that we have data for sending
func (s *connection) scheduleSending() {
select {
case s.sendingScheduled <- struct{}{}:
default:
}
}
// tryQueueingUndecryptablePacket queues a packet for which we're missing the decryption keys.
// The logging.PacketType is only used for logging purposes.
func (s *connection) tryQueueingUndecryptablePacket(p receivedPacket, pt logging.PacketType) {
if s.handshakeComplete {
panic("shouldn't queue undecryptable packets after handshake completion")
}
if len(s.undecryptablePackets)+1 > protocol.MaxUndecryptablePackets {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(pt, protocol.InvalidPacketNumber, p.Size(), logging.PacketDropDOSPrevention)
}
s.logger.Infof("Dropping undecryptable packet (%d bytes). Undecryptable packet queue full.", p.Size())
return
}
s.logger.Infof("Queueing packet (%d bytes) for later decryption", p.Size())
if s.tracer != nil && s.tracer.BufferedPacket != nil {
s.tracer.BufferedPacket(pt, p.Size())
}
s.undecryptablePackets = append(s.undecryptablePackets, p)
}
func (s *connection) queueControlFrame(f wire.Frame) {
s.framer.QueueControlFrame(f)
s.scheduleSending()
}
func (s *connection) onHasStreamWindowUpdate(id protocol.StreamID) {
s.windowUpdateQueue.AddStream(id)
s.scheduleSending()
}
func (s *connection) onHasConnectionWindowUpdate() {
s.windowUpdateQueue.AddConnection()
s.scheduleSending()
}
func (s *connection) onHasStreamData(id protocol.StreamID) {
s.framer.AddActiveStream(id)
s.scheduleSending()
}
func (s *connection) onStreamCompleted(id protocol.StreamID) {
if err := s.streamsMap.DeleteStream(id); err != nil {
s.closeLocal(err)
}
}
func (s *connection) SendDatagram(p []byte) error {
if !s.supportsDatagrams() {
return errors.New("datagram support disabled")
}
f := &wire.DatagramFrame{DataLenPresent: true}
if protocol.ByteCount(len(p)) > f.MaxDataLen(s.peerParams.MaxDatagramFrameSize, s.version) {
return &DatagramTooLargeError{
PeerMaxDatagramFrameSize: int64(s.peerParams.MaxDatagramFrameSize),
}
}
f.Data = make([]byte, len(p))
copy(f.Data, p)
return s.datagramQueue.Add(f)
}
func (s *connection) ReceiveDatagram(ctx context.Context) ([]byte, error) {
if !s.config.EnableDatagrams {
return nil, errors.New("datagram support disabled")
}
return s.datagramQueue.Receive(ctx)
}
func (s *connection) LocalAddr() net.Addr {
return s.conn.LocalAddr()
}
func (s *connection) RemoteAddr() net.Addr {
return s.conn.RemoteAddr()
}
func (s *connection) GetVersion() protocol.Version {
return s.version
}
func (s *connection) NextConnection() Connection {
<-s.HandshakeComplete()
s.streamsMap.UseResetMaps()
return s
}