uquic/connection.go

2427 lines
79 KiB
Go

package quic
import (
"bytes"
"context"
"crypto/tls"
"errors"
"fmt"
"io"
"net"
"reflect"
"sync"
"sync/atomic"
"time"
"github.com/quic-go/quic-go/internal/ackhandler"
"github.com/quic-go/quic-go/internal/flowcontrol"
"github.com/quic-go/quic-go/internal/handshake"
"github.com/quic-go/quic-go/internal/protocol"
"github.com/quic-go/quic-go/internal/qerr"
"github.com/quic-go/quic-go/internal/utils"
"github.com/quic-go/quic-go/internal/utils/ringbuffer"
"github.com/quic-go/quic-go/internal/wire"
"github.com/quic-go/quic-go/logging"
)
type unpacker interface {
UnpackLongHeader(hdr *wire.Header, data []byte) (*unpackedPacket, error)
UnpackShortHeader(rcvTime time.Time, data []byte) (protocol.PacketNumber, protocol.PacketNumberLen, protocol.KeyPhaseBit, []byte, error)
}
type streamManager interface {
GetOrOpenSendStream(protocol.StreamID) (sendStreamI, error)
GetOrOpenReceiveStream(protocol.StreamID) (receiveStreamI, error)
OpenStream() (Stream, error)
OpenUniStream() (SendStream, error)
OpenStreamSync(context.Context) (Stream, error)
OpenUniStreamSync(context.Context) (SendStream, error)
AcceptStream(context.Context) (Stream, error)
AcceptUniStream(context.Context) (ReceiveStream, error)
DeleteStream(protocol.StreamID) error
UpdateLimits(*wire.TransportParameters)
HandleMaxStreamsFrame(*wire.MaxStreamsFrame)
CloseWithError(error)
ResetFor0RTT()
UseResetMaps()
}
type cryptoStreamHandler interface {
StartHandshake(context.Context) error
ChangeConnectionID(protocol.ConnectionID)
SetLargest1RTTAcked(protocol.PacketNumber) error
SetHandshakeConfirmed()
GetSessionTicket() ([]byte, error)
NextEvent() handshake.Event
DiscardInitialKeys()
HandleMessage([]byte, protocol.EncryptionLevel) error
io.Closer
ConnectionState() handshake.ConnectionState
}
type receivedPacket struct {
buffer *packetBuffer
remoteAddr net.Addr
rcvTime time.Time
data []byte
ecn protocol.ECN
info packetInfo // only valid if the contained IP address is valid
}
func (p *receivedPacket) Size() protocol.ByteCount { return protocol.ByteCount(len(p.data)) }
func (p *receivedPacket) Clone() *receivedPacket {
return &receivedPacket{
remoteAddr: p.remoteAddr,
rcvTime: p.rcvTime,
data: p.data,
buffer: p.buffer,
ecn: p.ecn,
info: p.info,
}
}
type connRunner interface {
Add(protocol.ConnectionID, packetHandler) bool
Retire(protocol.ConnectionID)
Remove(protocol.ConnectionID)
ReplaceWithClosed([]protocol.ConnectionID, []byte)
AddResetToken(protocol.StatelessResetToken, packetHandler)
RemoveResetToken(protocol.StatelessResetToken)
}
type closeError struct {
err error
immediate bool
}
type errCloseForRecreating struct {
nextPacketNumber protocol.PacketNumber
nextVersion protocol.Version
}
func (e *errCloseForRecreating) Error() string {
return "closing connection in order to recreate it"
}
var connTracingID atomic.Uint64 // to be accessed atomically
func nextConnTracingID() ConnectionTracingID { return ConnectionTracingID(connTracingID.Add(1)) }
// A Connection is a QUIC connection
type connection struct {
// Destination connection ID used during the handshake.
// Used to check source connection ID on incoming packets.
handshakeDestConnID protocol.ConnectionID
// Set for the client. Destination connection ID used on the first Initial sent.
origDestConnID protocol.ConnectionID
retrySrcConnID *protocol.ConnectionID // only set for the client (and if a Retry was performed)
srcConnIDLen int
perspective protocol.Perspective
version protocol.Version
config *Config
conn sendConn
sendQueue sender
streamsMap streamManager
connIDManager *connIDManager
connIDGenerator *connIDGenerator
rttStats *utils.RTTStats
cryptoStreamManager *cryptoStreamManager
sentPacketHandler ackhandler.SentPacketHandler
receivedPacketHandler ackhandler.ReceivedPacketHandler
retransmissionQueue *retransmissionQueue
framer *framer
connFlowController flowcontrol.ConnectionFlowController
tokenStoreKey string // only set for the client
tokenGenerator *handshake.TokenGenerator // only set for the server
unpacker unpacker
frameParser wire.FrameParser
packer packer
mtuDiscoverer mtuDiscoverer // initialized when the transport parameters are received
currentMTUEstimate atomic.Uint32
initialStream *cryptoStream
handshakeStream *cryptoStream
oneRTTStream *cryptoStream // only set for the server
cryptoStreamHandler cryptoStreamHandler
notifyReceivedPacket chan struct{}
sendingScheduled chan struct{}
receivedPacketMx sync.Mutex
receivedPackets ringbuffer.RingBuffer[receivedPacket]
// closeChan is used to notify the run loop that it should terminate
closeChan chan struct{}
closeErr atomic.Pointer[closeError]
ctx context.Context
ctxCancel context.CancelCauseFunc
handshakeCompleteChan chan struct{}
undecryptablePackets []receivedPacket // undecryptable packets, waiting for a change in encryption level
undecryptablePacketsToProcess []receivedPacket
earlyConnReadyChan chan struct{}
sentFirstPacket bool
droppedInitialKeys bool
handshakeComplete bool
handshakeConfirmed bool
receivedRetry bool
versionNegotiated bool
receivedFirstPacket bool
// the minimum of the max_idle_timeout values advertised by both endpoints
idleTimeout time.Duration
creationTime time.Time
// The idle timeout is set based on the max of the time we received the last packet...
lastPacketReceivedTime time.Time
// ... and the time we sent a new ack-eliciting packet after receiving a packet.
firstAckElicitingPacketAfterIdleSentTime time.Time
// pacingDeadline is the time when the next packet should be sent
pacingDeadline time.Time
peerParams *wire.TransportParameters
timer connectionTimer
// keepAlivePingSent stores whether a keep alive PING is in flight.
// It is reset as soon as we receive a packet from the peer.
keepAlivePingSent bool
keepAliveInterval time.Duration
datagramQueue *datagramQueue
connStateMutex sync.Mutex
connState ConnectionState
logID string
tracer *logging.ConnectionTracer
logger utils.Logger
}
var (
_ Connection = &connection{}
_ EarlyConnection = &connection{}
_ streamSender = &connection{}
)
var newConnection = func(
ctx context.Context,
ctxCancel context.CancelCauseFunc,
conn sendConn,
runner connRunner,
origDestConnID protocol.ConnectionID,
retrySrcConnID *protocol.ConnectionID,
clientDestConnID protocol.ConnectionID,
destConnID protocol.ConnectionID,
srcConnID protocol.ConnectionID,
connIDGenerator ConnectionIDGenerator,
statelessResetter *statelessResetter,
conf *Config,
tlsConf *tls.Config,
tokenGenerator *handshake.TokenGenerator,
clientAddressValidated bool,
tracer *logging.ConnectionTracer,
logger utils.Logger,
v protocol.Version,
) quicConn {
s := &connection{
ctx: ctx,
ctxCancel: ctxCancel,
conn: conn,
config: conf,
handshakeDestConnID: destConnID,
srcConnIDLen: srcConnID.Len(),
tokenGenerator: tokenGenerator,
oneRTTStream: newCryptoStream(),
perspective: protocol.PerspectiveServer,
tracer: tracer,
logger: logger,
version: v,
}
if origDestConnID.Len() > 0 {
s.logID = origDestConnID.String()
} else {
s.logID = destConnID.String()
}
s.connIDManager = newConnIDManager(
destConnID,
func(token protocol.StatelessResetToken) { runner.AddResetToken(token, s) },
runner.RemoveResetToken,
s.queueControlFrame,
)
s.connIDGenerator = newConnIDGenerator(
srcConnID,
&clientDestConnID,
func(connID protocol.ConnectionID) { runner.Add(connID, s) },
statelessResetter,
runner.Remove,
runner.Retire,
runner.ReplaceWithClosed,
s.queueControlFrame,
connIDGenerator,
)
s.preSetup()
s.sentPacketHandler, s.receivedPacketHandler = ackhandler.NewAckHandler(
0,
protocol.ByteCount(s.config.InitialPacketSize),
s.rttStats,
clientAddressValidated,
s.conn.capabilities().ECN,
s.perspective,
s.tracer,
s.logger,
)
s.currentMTUEstimate.Store(uint32(estimateMaxPayloadSize(protocol.ByteCount(s.config.InitialPacketSize))))
statelessResetToken := statelessResetter.GetStatelessResetToken(srcConnID)
params := &wire.TransportParameters{
InitialMaxStreamDataBidiLocal: protocol.ByteCount(s.config.InitialStreamReceiveWindow),
InitialMaxStreamDataBidiRemote: protocol.ByteCount(s.config.InitialStreamReceiveWindow),
InitialMaxStreamDataUni: protocol.ByteCount(s.config.InitialStreamReceiveWindow),
InitialMaxData: protocol.ByteCount(s.config.InitialConnectionReceiveWindow),
MaxIdleTimeout: s.config.MaxIdleTimeout,
MaxBidiStreamNum: protocol.StreamNum(s.config.MaxIncomingStreams),
MaxUniStreamNum: protocol.StreamNum(s.config.MaxIncomingUniStreams),
MaxAckDelay: protocol.MaxAckDelayInclGranularity,
AckDelayExponent: protocol.AckDelayExponent,
MaxUDPPayloadSize: protocol.MaxPacketBufferSize,
DisableActiveMigration: true,
StatelessResetToken: &statelessResetToken,
OriginalDestinationConnectionID: origDestConnID,
// For interoperability with quic-go versions before May 2023, this value must be set to a value
// different from protocol.DefaultActiveConnectionIDLimit.
// If set to the default value, it will be omitted from the transport parameters, which will make
// old quic-go versions interpret it as 0, instead of the default value of 2.
// See https://github.com/quic-go/quic-go/pull/3806.
ActiveConnectionIDLimit: protocol.MaxActiveConnectionIDs,
InitialSourceConnectionID: srcConnID,
RetrySourceConnectionID: retrySrcConnID,
}
if s.config.EnableDatagrams {
params.MaxDatagramFrameSize = wire.MaxDatagramSize
} else {
params.MaxDatagramFrameSize = protocol.InvalidByteCount
}
if s.tracer != nil && s.tracer.SentTransportParameters != nil {
s.tracer.SentTransportParameters(params)
}
cs := handshake.NewCryptoSetupServer(
clientDestConnID,
conn.LocalAddr(),
conn.RemoteAddr(),
params,
tlsConf,
conf.Allow0RTT,
s.rttStats,
tracer,
logger,
s.version,
)
s.cryptoStreamHandler = cs
s.packer = newPacketPacker(srcConnID, s.connIDManager.Get, s.initialStream, s.handshakeStream, s.sentPacketHandler, s.retransmissionQueue, cs, s.framer, s.receivedPacketHandler, s.datagramQueue, s.perspective)
s.unpacker = newPacketUnpacker(cs, s.srcConnIDLen)
s.cryptoStreamManager = newCryptoStreamManager(s.initialStream, s.handshakeStream, s.oneRTTStream)
return s
}
// declare this as a variable, such that we can it mock it in the tests
var newClientConnection = func(
ctx context.Context,
conn sendConn,
runner connRunner,
destConnID protocol.ConnectionID,
srcConnID protocol.ConnectionID,
connIDGenerator ConnectionIDGenerator,
statelessResetter *statelessResetter,
conf *Config,
tlsConf *tls.Config,
initialPacketNumber protocol.PacketNumber,
enable0RTT bool,
hasNegotiatedVersion bool,
tracer *logging.ConnectionTracer,
logger utils.Logger,
v protocol.Version,
) quicConn {
s := &connection{
conn: conn,
config: conf,
origDestConnID: destConnID,
handshakeDestConnID: destConnID,
srcConnIDLen: srcConnID.Len(),
perspective: protocol.PerspectiveClient,
logID: destConnID.String(),
logger: logger,
tracer: tracer,
versionNegotiated: hasNegotiatedVersion,
version: v,
}
s.connIDManager = newConnIDManager(
destConnID,
func(token protocol.StatelessResetToken) { runner.AddResetToken(token, s) },
runner.RemoveResetToken,
s.queueControlFrame,
)
s.connIDGenerator = newConnIDGenerator(
srcConnID,
nil,
func(connID protocol.ConnectionID) { runner.Add(connID, s) },
statelessResetter,
runner.Remove,
runner.Retire,
runner.ReplaceWithClosed,
s.queueControlFrame,
connIDGenerator,
)
s.ctx, s.ctxCancel = context.WithCancelCause(ctx)
s.preSetup()
s.sentPacketHandler, s.receivedPacketHandler = ackhandler.NewAckHandler(
initialPacketNumber,
protocol.ByteCount(s.config.InitialPacketSize),
s.rttStats,
false, // has no effect
s.conn.capabilities().ECN,
s.perspective,
s.tracer,
s.logger,
)
s.currentMTUEstimate.Store(uint32(estimateMaxPayloadSize(protocol.ByteCount(s.config.InitialPacketSize))))
oneRTTStream := newCryptoStream()
params := &wire.TransportParameters{
InitialMaxStreamDataBidiRemote: protocol.ByteCount(s.config.InitialStreamReceiveWindow),
InitialMaxStreamDataBidiLocal: protocol.ByteCount(s.config.InitialStreamReceiveWindow),
InitialMaxStreamDataUni: protocol.ByteCount(s.config.InitialStreamReceiveWindow),
InitialMaxData: protocol.ByteCount(s.config.InitialConnectionReceiveWindow),
MaxIdleTimeout: s.config.MaxIdleTimeout,
MaxBidiStreamNum: protocol.StreamNum(s.config.MaxIncomingStreams),
MaxUniStreamNum: protocol.StreamNum(s.config.MaxIncomingUniStreams),
MaxAckDelay: protocol.MaxAckDelayInclGranularity,
MaxUDPPayloadSize: protocol.MaxPacketBufferSize,
AckDelayExponent: protocol.AckDelayExponent,
DisableActiveMigration: true,
// For interoperability with quic-go versions before May 2023, this value must be set to a value
// different from protocol.DefaultActiveConnectionIDLimit.
// If set to the default value, it will be omitted from the transport parameters, which will make
// old quic-go versions interpret it as 0, instead of the default value of 2.
// See https://github.com/quic-go/quic-go/pull/3806.
ActiveConnectionIDLimit: protocol.MaxActiveConnectionIDs,
InitialSourceConnectionID: srcConnID,
}
if s.config.EnableDatagrams {
params.MaxDatagramFrameSize = wire.MaxDatagramSize
} else {
params.MaxDatagramFrameSize = protocol.InvalidByteCount
}
if s.tracer != nil && s.tracer.SentTransportParameters != nil {
s.tracer.SentTransportParameters(params)
}
cs := handshake.NewCryptoSetupClient(
destConnID,
params,
tlsConf,
enable0RTT,
s.rttStats,
tracer,
logger,
s.version,
)
s.cryptoStreamHandler = cs
s.cryptoStreamManager = newCryptoStreamManager(s.initialStream, s.handshakeStream, oneRTTStream)
s.unpacker = newPacketUnpacker(cs, s.srcConnIDLen)
s.packer = newPacketPacker(srcConnID, s.connIDManager.Get, s.initialStream, s.handshakeStream, s.sentPacketHandler, s.retransmissionQueue, cs, s.framer, s.receivedPacketHandler, s.datagramQueue, s.perspective)
if len(tlsConf.ServerName) > 0 {
s.tokenStoreKey = tlsConf.ServerName
} else {
s.tokenStoreKey = conn.RemoteAddr().String()
}
if s.config.TokenStore != nil {
if token := s.config.TokenStore.Pop(s.tokenStoreKey); token != nil {
s.packer.SetToken(token.data)
}
}
return s
}
func (s *connection) preSetup() {
s.initialStream = newCryptoStream()
s.handshakeStream = newCryptoStream()
s.sendQueue = newSendQueue(s.conn)
s.retransmissionQueue = newRetransmissionQueue()
s.frameParser = *wire.NewFrameParser(s.config.EnableDatagrams)
s.rttStats = &utils.RTTStats{}
s.connFlowController = flowcontrol.NewConnectionFlowController(
protocol.ByteCount(s.config.InitialConnectionReceiveWindow),
protocol.ByteCount(s.config.MaxConnectionReceiveWindow),
func(size protocol.ByteCount) bool {
if s.config.AllowConnectionWindowIncrease == nil {
return true
}
return s.config.AllowConnectionWindowIncrease(s, uint64(size))
},
s.rttStats,
s.logger,
)
s.earlyConnReadyChan = make(chan struct{})
s.streamsMap = newStreamsMap(
s.ctx,
s,
s.queueControlFrame,
s.newFlowController,
uint64(s.config.MaxIncomingStreams),
uint64(s.config.MaxIncomingUniStreams),
s.perspective,
)
s.framer = newFramer(s.connFlowController)
s.receivedPackets.Init(8)
s.notifyReceivedPacket = make(chan struct{}, 1)
s.closeChan = make(chan struct{}, 1)
s.sendingScheduled = make(chan struct{}, 1)
s.handshakeCompleteChan = make(chan struct{})
now := time.Now()
s.lastPacketReceivedTime = now
s.creationTime = now
s.datagramQueue = newDatagramQueue(s.scheduleSending, s.logger)
s.connState.Version = s.version
}
// run the connection main loop
func (s *connection) run() (err error) {
defer func() { s.ctxCancel(err) }()
defer func() {
// drain queued packets that will never be processed
s.receivedPacketMx.Lock()
defer s.receivedPacketMx.Unlock()
for !s.receivedPackets.Empty() {
p := s.receivedPackets.PopFront()
p.buffer.Decrement()
p.buffer.MaybeRelease()
}
}()
s.timer = *newTimer()
if err := s.cryptoStreamHandler.StartHandshake(s.ctx); err != nil {
return err
}
if err := s.handleHandshakeEvents(time.Now()); err != nil {
return err
}
go func() {
if err := s.sendQueue.Run(); err != nil {
s.destroyImpl(err)
}
}()
if s.perspective == protocol.PerspectiveClient {
s.scheduleSending() // so the ClientHello actually gets sent
}
var sendQueueAvailable <-chan struct{}
runLoop:
for {
if s.framer.QueuedTooManyControlFrames() {
s.setCloseError(&closeError{err: &qerr.TransportError{ErrorCode: InternalError}})
break runLoop
}
// Close immediately if requested
select {
case <-s.closeChan:
break runLoop
default:
}
// no need to set a timer if we can send packets immediately
if s.pacingDeadline != deadlineSendImmediately {
s.maybeResetTimer()
}
// 1st: handle undecryptable packets, if any.
// This can only occur before completion of the handshake.
if len(s.undecryptablePacketsToProcess) > 0 {
var processedUndecryptablePacket bool
queue := s.undecryptablePacketsToProcess
s.undecryptablePacketsToProcess = nil
for _, p := range queue {
processed, err := s.handleOnePacket(p)
if err != nil {
s.setCloseError(&closeError{err: err})
break runLoop
}
if processed {
processedUndecryptablePacket = true
}
}
if processedUndecryptablePacket {
// if we processed any undecryptable packets, jump to the resetting of the timers directly
continue
}
}
// 2nd: receive packets.
processed, err := s.handlePackets() // don't check receivedPackets.Len() in the run loop to avoid locking the mutex
if err != nil {
s.setCloseError(&closeError{err: err})
break runLoop
}
// We don't need to wait for new events if:
// * we processed packets: we probably need to send an ACK, and potentially more data
// * the pacer allows us to send more packets immediately
shouldProceedImmediately := sendQueueAvailable == nil && (processed || s.pacingDeadline == deadlineSendImmediately)
if !shouldProceedImmediately {
// 3rd: wait for something to happen:
// * closing of the connection
// * timer firing
// * sending scheduled
// * send queue available
// * received packets
select {
case <-s.closeChan:
break runLoop
case <-s.timer.Chan():
s.timer.SetRead()
case <-s.sendingScheduled:
case <-sendQueueAvailable:
case <-s.notifyReceivedPacket:
wasProcessed, err := s.handlePackets()
if err != nil {
s.setCloseError(&closeError{err: err})
break runLoop
}
// if we processed any undecryptable packets, jump to the resetting of the timers directly
if !wasProcessed {
continue
}
}
}
// Check for loss detection timeout.
// This could cause packets to be declared lost, and retransmissions to be enqueued.
now := time.Now()
if timeout := s.sentPacketHandler.GetLossDetectionTimeout(); !timeout.IsZero() && timeout.Before(now) {
if err := s.sentPacketHandler.OnLossDetectionTimeout(now); err != nil {
s.setCloseError(&closeError{err: err})
break runLoop
}
}
if keepAliveTime := s.nextKeepAliveTime(); !keepAliveTime.IsZero() && !now.Before(keepAliveTime) {
// send a PING frame since there is no activity in the connection
s.logger.Debugf("Sending a keep-alive PING to keep the connection alive.")
s.framer.QueueControlFrame(&wire.PingFrame{})
s.keepAlivePingSent = true
} else if !s.handshakeComplete && now.Sub(s.creationTime) >= s.config.handshakeTimeout() {
s.destroyImpl(qerr.ErrHandshakeTimeout)
break runLoop
} else {
idleTimeoutStartTime := s.idleTimeoutStartTime()
if (!s.handshakeComplete && now.Sub(idleTimeoutStartTime) >= s.config.HandshakeIdleTimeout) ||
(s.handshakeComplete && now.After(s.nextIdleTimeoutTime())) {
s.destroyImpl(qerr.ErrIdleTimeout)
break runLoop
}
}
if s.sendQueue.WouldBlock() {
// The send queue is still busy sending out packets. Wait until there's space to enqueue new packets.
sendQueueAvailable = s.sendQueue.Available()
// Cancel the pacing timer, as we can't send any more packets until the send queue is available again.
s.pacingDeadline = time.Time{}
continue
}
if s.closeErr.Load() != nil {
break runLoop
}
if err := s.triggerSending(now); err != nil {
s.setCloseError(&closeError{err: err})
break runLoop
}
if s.sendQueue.WouldBlock() {
// The send queue is still busy sending out packets. Wait until there's space to enqueue new packets.
sendQueueAvailable = s.sendQueue.Available()
// Cancel the pacing timer, as we can't send any more packets until the send queue is available again.
s.pacingDeadline = time.Time{}
} else {
sendQueueAvailable = nil
}
}
closeErr := s.closeErr.Load()
s.cryptoStreamHandler.Close()
s.sendQueue.Close() // close the send queue before sending the CONNECTION_CLOSE
s.handleCloseError(closeErr)
if s.tracer != nil && s.tracer.Close != nil {
if e := (&errCloseForRecreating{}); !errors.As(closeErr.err, &e) {
s.tracer.Close()
}
}
s.logger.Infof("Connection %s closed.", s.logID)
s.timer.Stop()
return closeErr.err
}
// blocks until the early connection can be used
func (s *connection) earlyConnReady() <-chan struct{} {
return s.earlyConnReadyChan
}
func (s *connection) HandshakeComplete() <-chan struct{} {
return s.handshakeCompleteChan
}
func (s *connection) Context() context.Context {
return s.ctx
}
func (s *connection) supportsDatagrams() bool {
return s.peerParams.MaxDatagramFrameSize > 0
}
func (s *connection) ConnectionState() ConnectionState {
s.connStateMutex.Lock()
defer s.connStateMutex.Unlock()
cs := s.cryptoStreamHandler.ConnectionState()
s.connState.TLS = cs.ConnectionState
s.connState.Used0RTT = cs.Used0RTT
s.connState.GSO = s.conn.capabilities().GSO
return s.connState
}
// Time when the connection should time out
func (s *connection) nextIdleTimeoutTime() time.Time {
idleTimeout := max(s.idleTimeout, s.rttStats.PTO(true)*3)
return s.idleTimeoutStartTime().Add(idleTimeout)
}
// Time when the next keep-alive packet should be sent.
// It returns a zero time if no keep-alive should be sent.
func (s *connection) nextKeepAliveTime() time.Time {
if s.config.KeepAlivePeriod == 0 || s.keepAlivePingSent {
return time.Time{}
}
keepAliveInterval := max(s.keepAliveInterval, s.rttStats.PTO(true)*3/2)
return s.lastPacketReceivedTime.Add(keepAliveInterval)
}
func (s *connection) maybeResetTimer() {
var deadline time.Time
if !s.handshakeComplete {
deadline = s.creationTime.Add(s.config.handshakeTimeout())
if t := s.idleTimeoutStartTime().Add(s.config.HandshakeIdleTimeout); t.Before(deadline) {
deadline = t
}
} else {
if keepAliveTime := s.nextKeepAliveTime(); !keepAliveTime.IsZero() {
deadline = keepAliveTime
} else {
deadline = s.nextIdleTimeoutTime()
}
}
s.timer.SetTimer(
deadline,
s.receivedPacketHandler.GetAlarmTimeout(),
s.sentPacketHandler.GetLossDetectionTimeout(),
s.pacingDeadline,
)
}
func (s *connection) idleTimeoutStartTime() time.Time {
startTime := s.lastPacketReceivedTime
if t := s.firstAckElicitingPacketAfterIdleSentTime; t.After(startTime) {
startTime = t
}
return startTime
}
func (s *connection) handleHandshakeComplete(now time.Time) error {
defer close(s.handshakeCompleteChan)
// Once the handshake completes, we have derived 1-RTT keys.
// There's no point in queueing undecryptable packets for later decryption anymore.
s.undecryptablePackets = nil
s.connIDManager.SetHandshakeComplete()
s.connIDGenerator.SetHandshakeComplete()
if s.tracer != nil && s.tracer.ChoseALPN != nil {
s.tracer.ChoseALPN(s.cryptoStreamHandler.ConnectionState().NegotiatedProtocol)
}
// The server applies transport parameters right away, but the client side has to wait for handshake completion.
// During a 0-RTT connection, the client is only allowed to use the new transport parameters for 1-RTT packets.
if s.perspective == protocol.PerspectiveClient {
s.applyTransportParameters()
return nil
}
// All these only apply to the server side.
if err := s.handleHandshakeConfirmed(now); err != nil {
return err
}
ticket, err := s.cryptoStreamHandler.GetSessionTicket()
if err != nil {
return err
}
if ticket != nil { // may be nil if session tickets are disabled via tls.Config.SessionTicketsDisabled
s.oneRTTStream.Write(ticket)
for s.oneRTTStream.HasData() {
s.queueControlFrame(s.oneRTTStream.PopCryptoFrame(protocol.MaxPostHandshakeCryptoFrameSize))
}
}
token, err := s.tokenGenerator.NewToken(s.conn.RemoteAddr())
if err != nil {
return err
}
s.queueControlFrame(&wire.NewTokenFrame{Token: token})
s.queueControlFrame(&wire.HandshakeDoneFrame{})
return nil
}
func (s *connection) handleHandshakeConfirmed(now time.Time) error {
if err := s.dropEncryptionLevel(protocol.EncryptionHandshake, now); err != nil {
return err
}
s.handshakeConfirmed = true
s.cryptoStreamHandler.SetHandshakeConfirmed()
if !s.config.DisablePathMTUDiscovery && s.conn.capabilities().DF {
s.mtuDiscoverer.Start(now)
}
return nil
}
func (s *connection) handlePackets() (wasProcessed bool, _ error) {
// Now process all packets in the receivedPackets channel.
// Limit the number of packets to the length of the receivedPackets channel,
// so we eventually get a chance to send out an ACK when receiving a lot of packets.
s.receivedPacketMx.Lock()
numPackets := s.receivedPackets.Len()
if numPackets == 0 {
s.receivedPacketMx.Unlock()
return false, nil
}
var hasMorePackets bool
for i := 0; i < numPackets; i++ {
if i > 0 {
s.receivedPacketMx.Lock()
}
p := s.receivedPackets.PopFront()
hasMorePackets = !s.receivedPackets.Empty()
s.receivedPacketMx.Unlock()
processed, err := s.handleOnePacket(p)
if err != nil {
return false, err
}
if processed {
wasProcessed = true
}
if !hasMorePackets {
break
}
// only process a single packet at a time before handshake completion
if !s.handshakeComplete {
break
}
}
if hasMorePackets {
select {
case s.notifyReceivedPacket <- struct{}{}:
default:
}
}
return wasProcessed, nil
}
func (s *connection) handleOnePacket(rp receivedPacket) (wasProcessed bool, _ error) {
s.sentPacketHandler.ReceivedBytes(rp.Size(), rp.rcvTime)
if wire.IsVersionNegotiationPacket(rp.data) {
s.handleVersionNegotiationPacket(rp)
return false, nil
}
var counter uint8
var lastConnID protocol.ConnectionID
data := rp.data
p := rp
for len(data) > 0 {
if counter > 0 {
p = *(p.Clone())
p.data = data
destConnID, err := wire.ParseConnectionID(p.data, s.srcConnIDLen)
if err != nil {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeNotDetermined, protocol.InvalidPacketNumber, protocol.ByteCount(len(data)), logging.PacketDropHeaderParseError)
}
s.logger.Debugf("error parsing packet, couldn't parse connection ID: %s", err)
break
}
if destConnID != lastConnID {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeNotDetermined, protocol.InvalidPacketNumber, protocol.ByteCount(len(data)), logging.PacketDropUnknownConnectionID)
}
s.logger.Debugf("coalesced packet has different destination connection ID: %s, expected %s", destConnID, lastConnID)
break
}
}
if wire.IsLongHeaderPacket(p.data[0]) {
hdr, packetData, rest, err := wire.ParsePacket(p.data)
if err != nil {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
dropReason := logging.PacketDropHeaderParseError
if err == wire.ErrUnsupportedVersion {
dropReason = logging.PacketDropUnsupportedVersion
}
s.tracer.DroppedPacket(logging.PacketTypeNotDetermined, protocol.InvalidPacketNumber, protocol.ByteCount(len(data)), dropReason)
}
s.logger.Debugf("error parsing packet: %s", err)
break
}
lastConnID = hdr.DestConnectionID
if hdr.Version != s.version {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeFromHeader(hdr), protocol.InvalidPacketNumber, protocol.ByteCount(len(data)), logging.PacketDropUnexpectedVersion)
}
s.logger.Debugf("Dropping packet with version %x. Expected %x.", hdr.Version, s.version)
break
}
if counter > 0 {
p.buffer.Split()
}
counter++
// only log if this actually a coalesced packet
if s.logger.Debug() && (counter > 1 || len(rest) > 0) {
s.logger.Debugf("Parsed a coalesced packet. Part %d: %d bytes. Remaining: %d bytes.", counter, len(packetData), len(rest))
}
p.data = packetData
processed, err := s.handleLongHeaderPacket(p, hdr)
if err != nil {
return false, err
}
if processed {
wasProcessed = true
}
data = rest
} else {
if counter > 0 {
p.buffer.Split()
}
processed, err := s.handleShortHeaderPacket(p)
if err != nil {
return false, err
}
if processed {
wasProcessed = true
}
break
}
}
p.buffer.MaybeRelease()
return wasProcessed, nil
}
func (s *connection) handleShortHeaderPacket(p receivedPacket) (wasProcessed bool, _ error) {
var wasQueued bool
defer func() {
// Put back the packet buffer if the packet wasn't queued for later decryption.
if !wasQueued {
p.buffer.Decrement()
}
}()
destConnID, err := wire.ParseConnectionID(p.data, s.srcConnIDLen)
if err != nil {
s.tracer.DroppedPacket(logging.PacketType1RTT, protocol.InvalidPacketNumber, protocol.ByteCount(len(p.data)), logging.PacketDropHeaderParseError)
return false, nil
}
pn, pnLen, keyPhase, data, err := s.unpacker.UnpackShortHeader(p.rcvTime, p.data)
if err != nil {
wasQueued, err = s.handleUnpackError(err, p, logging.PacketType1RTT)
return false, err
}
if s.logger.Debug() {
s.logger.Debugf("<- Reading packet %d (%d bytes) for connection %s, 1-RTT", pn, p.Size(), destConnID)
wire.LogShortHeader(s.logger, destConnID, pn, pnLen, keyPhase)
}
if s.receivedPacketHandler.IsPotentiallyDuplicate(pn, protocol.Encryption1RTT) {
s.logger.Debugf("Dropping (potentially) duplicate packet.")
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketType1RTT, pn, p.Size(), logging.PacketDropDuplicate)
}
return false, nil
}
var log func([]logging.Frame)
if s.tracer != nil && s.tracer.ReceivedShortHeaderPacket != nil {
log = func(frames []logging.Frame) {
s.tracer.ReceivedShortHeaderPacket(
&logging.ShortHeader{
DestConnectionID: destConnID,
PacketNumber: pn,
PacketNumberLen: pnLen,
KeyPhase: keyPhase,
},
p.Size(),
p.ecn,
frames,
)
}
}
if err := s.handleUnpackedShortHeaderPacket(destConnID, pn, data, p.ecn, p.rcvTime, log); err != nil {
return false, err
}
return true, nil
}
func (s *connection) handleLongHeaderPacket(p receivedPacket, hdr *wire.Header) (wasProcessed bool, _ error) {
var wasQueued bool
defer func() {
// Put back the packet buffer if the packet wasn't queued for later decryption.
if !wasQueued {
p.buffer.Decrement()
}
}()
if hdr.Type == protocol.PacketTypeRetry {
return s.handleRetryPacket(hdr, p.data, p.rcvTime), nil
}
// The server can change the source connection ID with the first Handshake packet.
// After this, all packets with a different source connection have to be ignored.
if s.receivedFirstPacket && hdr.Type == protocol.PacketTypeInitial && hdr.SrcConnectionID != s.handshakeDestConnID {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeInitial, protocol.InvalidPacketNumber, p.Size(), logging.PacketDropUnknownConnectionID)
}
s.logger.Debugf("Dropping Initial packet (%d bytes) with unexpected source connection ID: %s (expected %s)", p.Size(), hdr.SrcConnectionID, s.handshakeDestConnID)
return false, nil
}
// drop 0-RTT packets, if we are a client
if s.perspective == protocol.PerspectiveClient && hdr.Type == protocol.PacketType0RTT {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketType0RTT, protocol.InvalidPacketNumber, p.Size(), logging.PacketDropUnexpectedPacket)
}
return false, nil
}
packet, err := s.unpacker.UnpackLongHeader(hdr, p.data)
if err != nil {
wasQueued, err = s.handleUnpackError(err, p, logging.PacketTypeFromHeader(hdr))
return false, err
}
if s.logger.Debug() {
s.logger.Debugf("<- Reading packet %d (%d bytes) for connection %s, %s", packet.hdr.PacketNumber, p.Size(), hdr.DestConnectionID, packet.encryptionLevel)
packet.hdr.Log(s.logger)
}
if pn := packet.hdr.PacketNumber; s.receivedPacketHandler.IsPotentiallyDuplicate(pn, packet.encryptionLevel) {
s.logger.Debugf("Dropping (potentially) duplicate packet.")
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeFromHeader(hdr), pn, p.Size(), logging.PacketDropDuplicate)
}
return false, nil
}
if err := s.handleUnpackedLongHeaderPacket(packet, p.ecn, p.rcvTime, p.Size()); err != nil {
return false, err
}
return true, nil
}
func (s *connection) handleUnpackError(err error, p receivedPacket, pt logging.PacketType) (wasQueued bool, _ error) {
switch err {
case handshake.ErrKeysDropped:
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(pt, protocol.InvalidPacketNumber, p.Size(), logging.PacketDropKeyUnavailable)
}
s.logger.Debugf("Dropping %s packet (%d bytes) because we already dropped the keys.", pt, p.Size())
return false, nil
case handshake.ErrKeysNotYetAvailable:
// Sealer for this encryption level not yet available.
// Try again later.
s.tryQueueingUndecryptablePacket(p, pt)
return true, nil
case wire.ErrInvalidReservedBits:
return false, &qerr.TransportError{
ErrorCode: qerr.ProtocolViolation,
ErrorMessage: err.Error(),
}
case handshake.ErrDecryptionFailed:
// This might be a packet injected by an attacker. Drop it.
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(pt, protocol.InvalidPacketNumber, p.Size(), logging.PacketDropPayloadDecryptError)
}
s.logger.Debugf("Dropping %s packet (%d bytes) that could not be unpacked. Error: %s", pt, p.Size(), err)
return false, nil
default:
var headerErr *headerParseError
if errors.As(err, &headerErr) {
// This might be a packet injected by an attacker. Drop it.
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(pt, protocol.InvalidPacketNumber, p.Size(), logging.PacketDropHeaderParseError)
}
s.logger.Debugf("Dropping %s packet (%d bytes) for which we couldn't unpack the header. Error: %s", pt, p.Size(), err)
return false, nil
}
// This is an error returned by the AEAD (other than ErrDecryptionFailed).
// For example, a PROTOCOL_VIOLATION due to key updates.
return false, err
}
}
func (s *connection) handleRetryPacket(hdr *wire.Header, data []byte, rcvTime time.Time) bool /* was this a valid Retry */ {
if s.perspective == protocol.PerspectiveServer {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeRetry, protocol.InvalidPacketNumber, protocol.ByteCount(len(data)), logging.PacketDropUnexpectedPacket)
}
s.logger.Debugf("Ignoring Retry.")
return false
}
if s.receivedFirstPacket {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeRetry, protocol.InvalidPacketNumber, protocol.ByteCount(len(data)), logging.PacketDropUnexpectedPacket)
}
s.logger.Debugf("Ignoring Retry, since we already received a packet.")
return false
}
destConnID := s.connIDManager.Get()
if hdr.SrcConnectionID == destConnID {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeRetry, protocol.InvalidPacketNumber, protocol.ByteCount(len(data)), logging.PacketDropUnexpectedPacket)
}
s.logger.Debugf("Ignoring Retry, since the server didn't change the Source Connection ID.")
return false
}
// If a token is already set, this means that we already received a Retry from the server.
// Ignore this Retry packet.
if s.receivedRetry {
s.logger.Debugf("Ignoring Retry, since a Retry was already received.")
return false
}
tag := handshake.GetRetryIntegrityTag(data[:len(data)-16], destConnID, hdr.Version)
if !bytes.Equal(data[len(data)-16:], tag[:]) {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeRetry, protocol.InvalidPacketNumber, protocol.ByteCount(len(data)), logging.PacketDropPayloadDecryptError)
}
s.logger.Debugf("Ignoring spoofed Retry. Integrity Tag doesn't match.")
return false
}
newDestConnID := hdr.SrcConnectionID
s.receivedRetry = true
s.sentPacketHandler.ResetForRetry(rcvTime)
s.handshakeDestConnID = newDestConnID
s.retrySrcConnID = &newDestConnID
s.cryptoStreamHandler.ChangeConnectionID(newDestConnID)
s.packer.SetToken(hdr.Token)
s.connIDManager.ChangeInitialConnID(newDestConnID)
if s.logger.Debug() {
s.logger.Debugf("<- Received Retry:")
(&wire.ExtendedHeader{Header: *hdr}).Log(s.logger)
s.logger.Debugf("Switching destination connection ID to: %s", hdr.SrcConnectionID)
}
if s.tracer != nil && s.tracer.ReceivedRetry != nil {
s.tracer.ReceivedRetry(hdr)
}
s.scheduleSending()
return true
}
func (s *connection) handleVersionNegotiationPacket(p receivedPacket) {
if s.perspective == protocol.PerspectiveServer || // servers never receive version negotiation packets
s.receivedFirstPacket || s.versionNegotiated { // ignore delayed / duplicated version negotiation packets
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeVersionNegotiation, protocol.InvalidPacketNumber, p.Size(), logging.PacketDropUnexpectedPacket)
}
return
}
src, dest, supportedVersions, err := wire.ParseVersionNegotiationPacket(p.data)
if err != nil {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeVersionNegotiation, protocol.InvalidPacketNumber, p.Size(), logging.PacketDropHeaderParseError)
}
s.logger.Debugf("Error parsing Version Negotiation packet: %s", err)
return
}
for _, v := range supportedVersions {
if v == s.version {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeVersionNegotiation, protocol.InvalidPacketNumber, p.Size(), logging.PacketDropUnexpectedVersion)
}
// The Version Negotiation packet contains the version that we offered.
// This might be a packet sent by an attacker, or it was corrupted.
return
}
}
s.logger.Infof("Received a Version Negotiation packet. Supported Versions: %s", supportedVersions)
if s.tracer != nil && s.tracer.ReceivedVersionNegotiationPacket != nil {
s.tracer.ReceivedVersionNegotiationPacket(dest, src, supportedVersions)
}
newVersion, ok := protocol.ChooseSupportedVersion(s.config.Versions, supportedVersions)
if !ok {
s.destroyImpl(&VersionNegotiationError{
Ours: s.config.Versions,
Theirs: supportedVersions,
})
s.logger.Infof("No compatible QUIC version found.")
return
}
if s.tracer != nil && s.tracer.NegotiatedVersion != nil {
s.tracer.NegotiatedVersion(newVersion, s.config.Versions, supportedVersions)
}
s.logger.Infof("Switching to QUIC version %s.", newVersion)
nextPN, _ := s.sentPacketHandler.PeekPacketNumber(protocol.EncryptionInitial)
s.destroyImpl(&errCloseForRecreating{
nextPacketNumber: nextPN,
nextVersion: newVersion,
})
}
func (s *connection) handleUnpackedLongHeaderPacket(
packet *unpackedPacket,
ecn protocol.ECN,
rcvTime time.Time,
packetSize protocol.ByteCount, // only for logging
) error {
if !s.receivedFirstPacket {
s.receivedFirstPacket = true
if !s.versionNegotiated && s.tracer != nil && s.tracer.NegotiatedVersion != nil {
var clientVersions, serverVersions []protocol.Version
switch s.perspective {
case protocol.PerspectiveClient:
clientVersions = s.config.Versions
case protocol.PerspectiveServer:
serverVersions = s.config.Versions
}
s.tracer.NegotiatedVersion(s.version, clientVersions, serverVersions)
}
// The server can change the source connection ID with the first Handshake packet.
if s.perspective == protocol.PerspectiveClient && packet.hdr.SrcConnectionID != s.handshakeDestConnID {
cid := packet.hdr.SrcConnectionID
s.logger.Debugf("Received first packet. Switching destination connection ID to: %s", cid)
s.handshakeDestConnID = cid
s.connIDManager.ChangeInitialConnID(cid)
}
// We create the connection as soon as we receive the first packet from the client.
// We do that before authenticating the packet.
// That means that if the source connection ID was corrupted,
// we might have created a connection with an incorrect source connection ID.
// Once we authenticate the first packet, we need to update it.
if s.perspective == protocol.PerspectiveServer {
if packet.hdr.SrcConnectionID != s.handshakeDestConnID {
s.handshakeDestConnID = packet.hdr.SrcConnectionID
s.connIDManager.ChangeInitialConnID(packet.hdr.SrcConnectionID)
}
if s.tracer != nil && s.tracer.StartedConnection != nil {
s.tracer.StartedConnection(
s.conn.LocalAddr(),
s.conn.RemoteAddr(),
packet.hdr.SrcConnectionID,
packet.hdr.DestConnectionID,
)
}
}
}
if s.perspective == protocol.PerspectiveServer && packet.encryptionLevel == protocol.EncryptionHandshake &&
!s.droppedInitialKeys {
// On the server side, Initial keys are dropped as soon as the first Handshake packet is received.
// See Section 4.9.1 of RFC 9001.
if err := s.dropEncryptionLevel(protocol.EncryptionInitial, rcvTime); err != nil {
return err
}
}
s.lastPacketReceivedTime = rcvTime
s.firstAckElicitingPacketAfterIdleSentTime = time.Time{}
s.keepAlivePingSent = false
var log func([]logging.Frame)
if s.tracer != nil && s.tracer.ReceivedLongHeaderPacket != nil {
log = func(frames []logging.Frame) {
s.tracer.ReceivedLongHeaderPacket(packet.hdr, packetSize, ecn, frames)
}
}
isAckEliciting, err := s.handleFrames(packet.data, packet.hdr.DestConnectionID, packet.encryptionLevel, log, rcvTime)
if err != nil {
return err
}
return s.receivedPacketHandler.ReceivedPacket(packet.hdr.PacketNumber, ecn, packet.encryptionLevel, rcvTime, isAckEliciting)
}
func (s *connection) handleUnpackedShortHeaderPacket(
destConnID protocol.ConnectionID,
pn protocol.PacketNumber,
data []byte,
ecn protocol.ECN,
rcvTime time.Time,
log func([]logging.Frame),
) error {
s.lastPacketReceivedTime = rcvTime
s.firstAckElicitingPacketAfterIdleSentTime = time.Time{}
s.keepAlivePingSent = false
isAckEliciting, err := s.handleFrames(data, destConnID, protocol.Encryption1RTT, log, rcvTime)
if err != nil {
return err
}
return s.receivedPacketHandler.ReceivedPacket(pn, ecn, protocol.Encryption1RTT, rcvTime, isAckEliciting)
}
func (s *connection) handleFrames(
data []byte,
destConnID protocol.ConnectionID,
encLevel protocol.EncryptionLevel,
log func([]logging.Frame),
rcvTime time.Time,
) (isAckEliciting bool, _ error) {
// Only used for tracing.
// If we're not tracing, this slice will always remain empty.
var frames []logging.Frame
if log != nil {
frames = make([]logging.Frame, 0, 4)
}
handshakeWasComplete := s.handshakeComplete
var handleErr error
for len(data) > 0 {
l, frame, err := s.frameParser.ParseNext(data, encLevel, s.version)
if err != nil {
return false, err
}
data = data[l:]
if frame == nil {
break
}
if ackhandler.IsFrameAckEliciting(frame) {
isAckEliciting = true
}
if log != nil {
frames = append(frames, toLoggingFrame(frame))
}
// An error occurred handling a previous frame.
// Don't handle the current frame.
if handleErr != nil {
continue
}
if err := s.handleFrame(frame, encLevel, destConnID, rcvTime); err != nil {
if log == nil {
return false, err
}
// If we're logging, we need to keep parsing (but not handling) all frames.
handleErr = err
}
}
if log != nil {
log(frames)
if handleErr != nil {
return false, handleErr
}
}
// Handle completion of the handshake after processing all the frames.
// This ensures that we correctly handle the following case on the server side:
// We receive a Handshake packet that contains the CRYPTO frame that allows us to complete the handshake,
// and an ACK serialized after that CRYPTO frame. In this case, we still want to process the ACK frame.
if !handshakeWasComplete && s.handshakeComplete {
if err := s.handleHandshakeComplete(rcvTime); err != nil {
return false, err
}
}
return
}
func (s *connection) handleFrame(
f wire.Frame,
encLevel protocol.EncryptionLevel,
destConnID protocol.ConnectionID,
rcvTime time.Time,
) error {
var err error
wire.LogFrame(s.logger, f, false)
switch frame := f.(type) {
case *wire.CryptoFrame:
err = s.handleCryptoFrame(frame, encLevel, rcvTime)
case *wire.StreamFrame:
err = s.handleStreamFrame(frame, rcvTime)
case *wire.AckFrame:
err = s.handleAckFrame(frame, encLevel, rcvTime)
case *wire.ConnectionCloseFrame:
err = s.handleConnectionCloseFrame(frame)
case *wire.ResetStreamFrame:
err = s.handleResetStreamFrame(frame, rcvTime)
case *wire.MaxDataFrame:
s.handleMaxDataFrame(frame)
case *wire.MaxStreamDataFrame:
err = s.handleMaxStreamDataFrame(frame)
case *wire.MaxStreamsFrame:
s.handleMaxStreamsFrame(frame)
case *wire.DataBlockedFrame:
case *wire.StreamDataBlockedFrame:
err = s.handleStreamDataBlockedFrame(frame)
case *wire.StreamsBlockedFrame:
case *wire.StopSendingFrame:
err = s.handleStopSendingFrame(frame)
case *wire.PingFrame:
case *wire.PathChallengeFrame:
s.handlePathChallengeFrame(frame)
case *wire.PathResponseFrame:
// since we don't send PATH_CHALLENGEs, we don't expect PATH_RESPONSEs
err = &qerr.TransportError{
ErrorCode: qerr.ProtocolViolation,
ErrorMessage: "unexpected PATH_RESPONSE frame",
}
case *wire.NewTokenFrame:
err = s.handleNewTokenFrame(frame)
case *wire.NewConnectionIDFrame:
err = s.handleNewConnectionIDFrame(frame)
case *wire.RetireConnectionIDFrame:
err = s.handleRetireConnectionIDFrame(frame, destConnID)
case *wire.HandshakeDoneFrame:
err = s.handleHandshakeDoneFrame(rcvTime)
case *wire.DatagramFrame:
err = s.handleDatagramFrame(frame)
default:
err = fmt.Errorf("unexpected frame type: %s", reflect.ValueOf(&frame).Elem().Type().Name())
}
return err
}
// handlePacket is called by the server with a new packet
func (s *connection) handlePacket(p receivedPacket) {
s.receivedPacketMx.Lock()
// Discard packets once the amount of queued packets is larger than
// the channel size, protocol.MaxConnUnprocessedPackets
if s.receivedPackets.Len() >= protocol.MaxConnUnprocessedPackets {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(logging.PacketTypeNotDetermined, protocol.InvalidPacketNumber, p.Size(), logging.PacketDropDOSPrevention)
}
s.receivedPacketMx.Unlock()
return
}
s.receivedPackets.PushBack(p)
s.receivedPacketMx.Unlock()
select {
case s.notifyReceivedPacket <- struct{}{}:
default:
}
}
func (s *connection) handleConnectionCloseFrame(frame *wire.ConnectionCloseFrame) error {
if frame.IsApplicationError {
return &qerr.ApplicationError{
Remote: true,
ErrorCode: qerr.ApplicationErrorCode(frame.ErrorCode),
ErrorMessage: frame.ReasonPhrase,
}
}
return &qerr.TransportError{
Remote: true,
ErrorCode: qerr.TransportErrorCode(frame.ErrorCode),
FrameType: frame.FrameType,
ErrorMessage: frame.ReasonPhrase,
}
}
func (s *connection) handleCryptoFrame(frame *wire.CryptoFrame, encLevel protocol.EncryptionLevel, rcvTime time.Time) error {
if err := s.cryptoStreamManager.HandleCryptoFrame(frame, encLevel); err != nil {
return err
}
for {
data := s.cryptoStreamManager.GetCryptoData(encLevel)
if data == nil {
break
}
if err := s.cryptoStreamHandler.HandleMessage(data, encLevel); err != nil {
return err
}
}
return s.handleHandshakeEvents(rcvTime)
}
func (s *connection) handleHandshakeEvents(now time.Time) error {
for {
ev := s.cryptoStreamHandler.NextEvent()
var err error
switch ev.Kind {
case handshake.EventNoEvent:
return nil
case handshake.EventHandshakeComplete:
// Don't call handleHandshakeComplete yet.
// It's advantageous to process ACK frames that might be serialized after the CRYPTO frame first.
s.handshakeComplete = true
case handshake.EventReceivedTransportParameters:
err = s.handleTransportParameters(ev.TransportParameters)
case handshake.EventRestoredTransportParameters:
s.restoreTransportParameters(ev.TransportParameters)
close(s.earlyConnReadyChan)
case handshake.EventReceivedReadKeys:
// Queue all packets for decryption that have been undecryptable so far.
s.undecryptablePacketsToProcess = s.undecryptablePackets
s.undecryptablePackets = nil
case handshake.EventDiscard0RTTKeys:
err = s.dropEncryptionLevel(protocol.Encryption0RTT, now)
case handshake.EventWriteInitialData:
_, err = s.initialStream.Write(ev.Data)
case handshake.EventWriteHandshakeData:
_, err = s.handshakeStream.Write(ev.Data)
}
if err != nil {
return err
}
}
}
func (s *connection) handleStreamFrame(frame *wire.StreamFrame, rcvTime time.Time) error {
str, err := s.streamsMap.GetOrOpenReceiveStream(frame.StreamID)
if err != nil {
return err
}
if str == nil { // stream was already closed and garbage collected
return nil
}
return str.handleStreamFrame(frame, rcvTime)
}
func (s *connection) handleMaxDataFrame(frame *wire.MaxDataFrame) {
s.connFlowController.UpdateSendWindow(frame.MaximumData)
}
func (s *connection) handleMaxStreamDataFrame(frame *wire.MaxStreamDataFrame) error {
str, err := s.streamsMap.GetOrOpenSendStream(frame.StreamID)
if err != nil {
return err
}
if str == nil {
// stream is closed and already garbage collected
return nil
}
str.updateSendWindow(frame.MaximumStreamData)
return nil
}
func (s *connection) handleStreamDataBlockedFrame(frame *wire.StreamDataBlockedFrame) error {
// We don't need to do anything in response to a STREAM_DATA_BLOCKED frame,
// but we need to make sure that the stream ID is valid.
_, err := s.streamsMap.GetOrOpenReceiveStream(frame.StreamID)
return err
}
func (s *connection) handleMaxStreamsFrame(frame *wire.MaxStreamsFrame) {
s.streamsMap.HandleMaxStreamsFrame(frame)
}
func (s *connection) handleResetStreamFrame(frame *wire.ResetStreamFrame, rcvTime time.Time) error {
str, err := s.streamsMap.GetOrOpenReceiveStream(frame.StreamID)
if err != nil {
return err
}
if str == nil {
// stream is closed and already garbage collected
return nil
}
return str.handleResetStreamFrame(frame, rcvTime)
}
func (s *connection) handleStopSendingFrame(frame *wire.StopSendingFrame) error {
str, err := s.streamsMap.GetOrOpenSendStream(frame.StreamID)
if err != nil {
return err
}
if str == nil {
// stream is closed and already garbage collected
return nil
}
str.handleStopSendingFrame(frame)
return nil
}
func (s *connection) handlePathChallengeFrame(frame *wire.PathChallengeFrame) {
s.queueControlFrame(&wire.PathResponseFrame{Data: frame.Data})
}
func (s *connection) handleNewTokenFrame(frame *wire.NewTokenFrame) error {
if s.perspective == protocol.PerspectiveServer {
return &qerr.TransportError{
ErrorCode: qerr.ProtocolViolation,
ErrorMessage: "received NEW_TOKEN frame from the client",
}
}
if s.config.TokenStore != nil {
s.config.TokenStore.Put(s.tokenStoreKey, &ClientToken{data: frame.Token})
}
return nil
}
func (s *connection) handleNewConnectionIDFrame(f *wire.NewConnectionIDFrame) error {
return s.connIDManager.Add(f)
}
func (s *connection) handleRetireConnectionIDFrame(f *wire.RetireConnectionIDFrame, destConnID protocol.ConnectionID) error {
return s.connIDGenerator.Retire(f.SequenceNumber, destConnID)
}
func (s *connection) handleHandshakeDoneFrame(rcvTime time.Time) error {
if s.perspective == protocol.PerspectiveServer {
return &qerr.TransportError{
ErrorCode: qerr.ProtocolViolation,
ErrorMessage: "received a HANDSHAKE_DONE frame",
}
}
if !s.handshakeConfirmed {
return s.handleHandshakeConfirmed(rcvTime)
}
return nil
}
func (s *connection) handleAckFrame(frame *wire.AckFrame, encLevel protocol.EncryptionLevel, rcvTime time.Time) error {
acked1RTTPacket, err := s.sentPacketHandler.ReceivedAck(frame, encLevel, s.lastPacketReceivedTime)
if err != nil {
return err
}
if !acked1RTTPacket {
return nil
}
// On the client side: If the packet acknowledged a 1-RTT packet, this confirms the handshake.
// This is only possible if the ACK was sent in a 1-RTT packet.
// This is an optimization over simply waiting for a HANDSHAKE_DONE frame, see section 4.1.2 of RFC 9001.
if s.perspective == protocol.PerspectiveClient && !s.handshakeConfirmed {
if err := s.handleHandshakeConfirmed(rcvTime); err != nil {
return err
}
}
// If one of the acknowledged packets was a Path MTU probe packet, this might have increased the Path MTU estimate.
if s.mtuDiscoverer != nil {
if mtu := s.mtuDiscoverer.CurrentSize(); mtu > protocol.ByteCount(s.currentMTUEstimate.Load()) {
s.currentMTUEstimate.Store(uint32(mtu))
s.sentPacketHandler.SetMaxDatagramSize(mtu)
}
}
return s.cryptoStreamHandler.SetLargest1RTTAcked(frame.LargestAcked())
}
func (s *connection) handleDatagramFrame(f *wire.DatagramFrame) error {
if f.Length(s.version) > wire.MaxDatagramSize {
return &qerr.TransportError{
ErrorCode: qerr.ProtocolViolation,
ErrorMessage: "DATAGRAM frame too large",
}
}
s.datagramQueue.HandleDatagramFrame(f)
return nil
}
func (s *connection) setCloseError(e *closeError) {
s.closeErr.CompareAndSwap(nil, e)
select {
case s.closeChan <- struct{}{}:
default:
}
}
// closeLocal closes the connection and send a CONNECTION_CLOSE containing the error
func (s *connection) closeLocal(e error) {
s.setCloseError(&closeError{err: e, immediate: false})
}
// destroy closes the connection without sending the error on the wire
func (s *connection) destroy(e error) {
s.destroyImpl(e)
<-s.ctx.Done()
}
func (s *connection) destroyImpl(e error) {
s.setCloseError(&closeError{err: e, immediate: true})
}
func (s *connection) CloseWithError(code ApplicationErrorCode, desc string) error {
s.closeLocal(&qerr.ApplicationError{
ErrorCode: code,
ErrorMessage: desc,
})
<-s.ctx.Done()
return nil
}
func (s *connection) closeWithTransportError(code TransportErrorCode) {
s.closeLocal(&qerr.TransportError{ErrorCode: code})
<-s.ctx.Done()
}
func (s *connection) handleCloseError(closeErr *closeError) {
if closeErr.immediate {
if nerr, ok := closeErr.err.(net.Error); ok && nerr.Timeout() {
s.logger.Errorf("Destroying connection: %s", closeErr.err)
} else {
s.logger.Errorf("Destroying connection with error: %s", closeErr.err)
}
} else {
if closeErr.err == nil {
s.logger.Infof("Closing connection.")
} else {
s.logger.Errorf("Closing connection with error: %s", closeErr.err)
}
}
e := closeErr.err
if e == nil {
e = &qerr.ApplicationError{}
} else {
defer func() { closeErr.err = e }()
}
var (
statelessResetErr *StatelessResetError
versionNegotiationErr *VersionNegotiationError
recreateErr *errCloseForRecreating
applicationErr *ApplicationError
transportErr *TransportError
)
var isRemoteClose bool
switch {
case errors.Is(e, qerr.ErrIdleTimeout),
errors.Is(e, qerr.ErrHandshakeTimeout),
errors.As(e, &statelessResetErr),
errors.As(e, &versionNegotiationErr),
errors.As(e, &recreateErr):
case errors.As(e, &applicationErr):
isRemoteClose = applicationErr.Remote
case errors.As(e, &transportErr):
isRemoteClose = transportErr.Remote
case closeErr.immediate:
e = closeErr.err
default:
e = &qerr.TransportError{
ErrorCode: qerr.InternalError,
ErrorMessage: e.Error(),
}
}
s.streamsMap.CloseWithError(e)
if s.datagramQueue != nil {
s.datagramQueue.CloseWithError(e)
}
// In rare instances, the connection ID manager might switch to a new connection ID
// when sending the CONNECTION_CLOSE frame.
// The connection ID manager removes the active stateless reset token from the packet
// handler map when it is closed, so we need to make sure that this happens last.
defer s.connIDManager.Close()
if s.tracer != nil && s.tracer.ClosedConnection != nil && !errors.As(e, &recreateErr) {
s.tracer.ClosedConnection(e)
}
// If this is a remote close we're done here
if isRemoteClose {
s.connIDGenerator.ReplaceWithClosed(nil)
return
}
if closeErr.immediate {
s.connIDGenerator.RemoveAll()
return
}
// Don't send out any CONNECTION_CLOSE if this is an error that occurred
// before we even sent out the first packet.
if s.perspective == protocol.PerspectiveClient && !s.sentFirstPacket {
s.connIDGenerator.RemoveAll()
return
}
connClosePacket, err := s.sendConnectionClose(e)
if err != nil {
s.logger.Debugf("Error sending CONNECTION_CLOSE: %s", err)
}
s.connIDGenerator.ReplaceWithClosed(connClosePacket)
}
func (s *connection) dropEncryptionLevel(encLevel protocol.EncryptionLevel, now time.Time) error {
if s.tracer != nil && s.tracer.DroppedEncryptionLevel != nil {
s.tracer.DroppedEncryptionLevel(encLevel)
}
s.sentPacketHandler.DropPackets(encLevel, now)
s.receivedPacketHandler.DropPackets(encLevel)
//nolint:exhaustive // only Initial and 0-RTT need special treatment
switch encLevel {
case protocol.EncryptionInitial:
s.droppedInitialKeys = true
s.cryptoStreamHandler.DiscardInitialKeys()
case protocol.Encryption0RTT:
s.streamsMap.ResetFor0RTT()
s.framer.Handle0RTTRejection()
return s.connFlowController.Reset()
}
return s.cryptoStreamManager.Drop(encLevel)
}
// is called for the client, when restoring transport parameters saved for 0-RTT
func (s *connection) restoreTransportParameters(params *wire.TransportParameters) {
if s.logger.Debug() {
s.logger.Debugf("Restoring Transport Parameters: %s", params)
}
s.peerParams = params
s.connIDGenerator.SetMaxActiveConnIDs(params.ActiveConnectionIDLimit)
s.connFlowController.UpdateSendWindow(params.InitialMaxData)
s.streamsMap.UpdateLimits(params)
s.connStateMutex.Lock()
s.connState.SupportsDatagrams = s.supportsDatagrams()
s.connStateMutex.Unlock()
}
func (s *connection) handleTransportParameters(params *wire.TransportParameters) error {
if s.tracer != nil && s.tracer.ReceivedTransportParameters != nil {
s.tracer.ReceivedTransportParameters(params)
}
if err := s.checkTransportParameters(params); err != nil {
return &qerr.TransportError{
ErrorCode: qerr.TransportParameterError,
ErrorMessage: err.Error(),
}
}
if s.perspective == protocol.PerspectiveClient && s.peerParams != nil && s.ConnectionState().Used0RTT && !params.ValidForUpdate(s.peerParams) {
return &qerr.TransportError{
ErrorCode: qerr.ProtocolViolation,
ErrorMessage: "server sent reduced limits after accepting 0-RTT data",
}
}
s.peerParams = params
// On the client side we have to wait for handshake completion.
// During a 0-RTT connection, we are only allowed to use the new transport parameters for 1-RTT packets.
if s.perspective == protocol.PerspectiveServer {
s.applyTransportParameters()
// On the server side, the early connection is ready as soon as we processed
// the client's transport parameters.
close(s.earlyConnReadyChan)
}
s.connStateMutex.Lock()
s.connState.SupportsDatagrams = s.supportsDatagrams()
s.connStateMutex.Unlock()
return nil
}
func (s *connection) checkTransportParameters(params *wire.TransportParameters) error {
if s.logger.Debug() {
s.logger.Debugf("Processed Transport Parameters: %s", params)
}
// check the initial_source_connection_id
if params.InitialSourceConnectionID != s.handshakeDestConnID {
return fmt.Errorf("expected initial_source_connection_id to equal %s, is %s", s.handshakeDestConnID, params.InitialSourceConnectionID)
}
if s.perspective == protocol.PerspectiveServer {
return nil
}
// check the original_destination_connection_id
if params.OriginalDestinationConnectionID != s.origDestConnID {
return fmt.Errorf("expected original_destination_connection_id to equal %s, is %s", s.origDestConnID, params.OriginalDestinationConnectionID)
}
if s.retrySrcConnID != nil { // a Retry was performed
if params.RetrySourceConnectionID == nil {
return errors.New("missing retry_source_connection_id")
}
if *params.RetrySourceConnectionID != *s.retrySrcConnID {
return fmt.Errorf("expected retry_source_connection_id to equal %s, is %s", s.retrySrcConnID, *params.RetrySourceConnectionID)
}
} else if params.RetrySourceConnectionID != nil {
return errors.New("received retry_source_connection_id, although no Retry was performed")
}
return nil
}
func (s *connection) applyTransportParameters() {
params := s.peerParams
// Our local idle timeout will always be > 0.
s.idleTimeout = s.config.MaxIdleTimeout
// If the peer advertised an idle timeout, take the minimum of the values.
if params.MaxIdleTimeout > 0 {
s.idleTimeout = min(s.idleTimeout, params.MaxIdleTimeout)
}
s.keepAliveInterval = min(s.config.KeepAlivePeriod, s.idleTimeout/2)
s.streamsMap.UpdateLimits(params)
s.frameParser.SetAckDelayExponent(params.AckDelayExponent)
s.connFlowController.UpdateSendWindow(params.InitialMaxData)
s.rttStats.SetMaxAckDelay(params.MaxAckDelay)
s.connIDGenerator.SetMaxActiveConnIDs(params.ActiveConnectionIDLimit)
if params.StatelessResetToken != nil {
s.connIDManager.SetStatelessResetToken(*params.StatelessResetToken)
}
// We don't support connection migration yet, so we don't have any use for the preferred_address.
if params.PreferredAddress != nil {
// Retire the connection ID.
s.connIDManager.AddFromPreferredAddress(params.PreferredAddress.ConnectionID, params.PreferredAddress.StatelessResetToken)
}
maxPacketSize := protocol.ByteCount(protocol.MaxPacketBufferSize)
if params.MaxUDPPayloadSize > 0 && params.MaxUDPPayloadSize < maxPacketSize {
maxPacketSize = params.MaxUDPPayloadSize
}
s.mtuDiscoverer = newMTUDiscoverer(
s.rttStats,
protocol.ByteCount(s.config.InitialPacketSize),
maxPacketSize,
s.tracer,
)
}
func (s *connection) triggerSending(now time.Time) error {
s.pacingDeadline = time.Time{}
sendMode := s.sentPacketHandler.SendMode(now)
//nolint:exhaustive // No need to handle pacing limited here.
switch sendMode {
case ackhandler.SendAny:
return s.sendPackets(now)
case ackhandler.SendNone:
return nil
case ackhandler.SendPacingLimited:
deadline := s.sentPacketHandler.TimeUntilSend()
if deadline.IsZero() {
deadline = deadlineSendImmediately
}
s.pacingDeadline = deadline
// Allow sending of an ACK if we're pacing limit.
// This makes sure that a peer that is mostly receiving data (and thus has an inaccurate cwnd estimate)
// sends enough ACKs to allow its peer to utilize the bandwidth.
fallthrough
case ackhandler.SendAck:
// We can at most send a single ACK only packet.
// There will only be a new ACK after receiving new packets.
// SendAck is only returned when we're congestion limited, so we don't need to set the pacing timer.
return s.maybeSendAckOnlyPacket(now)
case ackhandler.SendPTOInitial, ackhandler.SendPTOHandshake, ackhandler.SendPTOAppData:
if err := s.sendProbePacket(sendMode, now); err != nil {
return err
}
if s.sendQueue.WouldBlock() {
s.scheduleSending()
return nil
}
return s.triggerSending(now)
default:
return fmt.Errorf("BUG: invalid send mode %d", sendMode)
}
}
func (s *connection) sendPackets(now time.Time) error {
// Path MTU Discovery
// Can't use GSO, since we need to send a single packet that's larger than our current maximum size.
// Performance-wise, this doesn't matter, since we only send a very small (<10) number of
// MTU probe packets per connection.
if s.handshakeConfirmed && s.mtuDiscoverer != nil && s.mtuDiscoverer.ShouldSendProbe(now) {
ping, size := s.mtuDiscoverer.GetPing(now)
p, buf, err := s.packer.PackMTUProbePacket(ping, size, s.version)
if err != nil {
return err
}
ecn := s.sentPacketHandler.ECNMode(true)
s.logShortHeaderPacket(p.DestConnID, p.Ack, p.Frames, p.StreamFrames, p.PacketNumber, p.PacketNumberLen, p.KeyPhase, ecn, buf.Len(), false)
s.registerPackedShortHeaderPacket(p, ecn, now)
s.sendQueue.Send(buf, 0, ecn)
// There's (likely) more data to send. Loop around again.
s.scheduleSending()
return nil
}
if offset := s.connFlowController.GetWindowUpdate(now); offset > 0 {
s.framer.QueueControlFrame(&wire.MaxDataFrame{MaximumData: offset})
}
if cf := s.cryptoStreamManager.GetPostHandshakeData(protocol.MaxPostHandshakeCryptoFrameSize); cf != nil {
s.queueControlFrame(cf)
}
if !s.handshakeConfirmed {
packet, err := s.packer.PackCoalescedPacket(false, s.maxPacketSize(), now, s.version)
if err != nil || packet == nil {
return err
}
s.sentFirstPacket = true
if err := s.sendPackedCoalescedPacket(packet, s.sentPacketHandler.ECNMode(packet.IsOnlyShortHeaderPacket()), now); err != nil {
return err
}
sendMode := s.sentPacketHandler.SendMode(now)
if sendMode == ackhandler.SendPacingLimited {
s.resetPacingDeadline()
} else if sendMode == ackhandler.SendAny {
s.pacingDeadline = deadlineSendImmediately
}
return nil
}
if s.conn.capabilities().GSO {
return s.sendPacketsWithGSO(now)
}
return s.sendPacketsWithoutGSO(now)
}
func (s *connection) sendPacketsWithoutGSO(now time.Time) error {
for {
buf := getPacketBuffer()
ecn := s.sentPacketHandler.ECNMode(true)
if _, err := s.appendOneShortHeaderPacket(buf, s.maxPacketSize(), ecn, now); err != nil {
if err == errNothingToPack {
buf.Release()
return nil
}
return err
}
s.sendQueue.Send(buf, 0, ecn)
if s.sendQueue.WouldBlock() {
return nil
}
sendMode := s.sentPacketHandler.SendMode(now)
if sendMode == ackhandler.SendPacingLimited {
s.resetPacingDeadline()
return nil
}
if sendMode != ackhandler.SendAny {
return nil
}
// Prioritize receiving of packets over sending out more packets.
s.receivedPacketMx.Lock()
hasPackets := !s.receivedPackets.Empty()
s.receivedPacketMx.Unlock()
if hasPackets {
s.pacingDeadline = deadlineSendImmediately
return nil
}
}
}
func (s *connection) sendPacketsWithGSO(now time.Time) error {
buf := getLargePacketBuffer()
maxSize := s.maxPacketSize()
ecn := s.sentPacketHandler.ECNMode(true)
for {
var dontSendMore bool
size, err := s.appendOneShortHeaderPacket(buf, maxSize, ecn, now)
if err != nil {
if err != errNothingToPack {
return err
}
if buf.Len() == 0 {
buf.Release()
return nil
}
dontSendMore = true
}
if !dontSendMore {
sendMode := s.sentPacketHandler.SendMode(now)
if sendMode == ackhandler.SendPacingLimited {
s.resetPacingDeadline()
}
if sendMode != ackhandler.SendAny {
dontSendMore = true
}
}
// Don't send more packets in this batch if they require a different ECN marking than the previous ones.
nextECN := s.sentPacketHandler.ECNMode(true)
// Append another packet if
// 1. The congestion controller and pacer allow sending more
// 2. The last packet appended was a full-size packet
// 3. The next packet will have the same ECN marking
// 4. We still have enough space for another full-size packet in the buffer
if !dontSendMore && size == maxSize && nextECN == ecn && buf.Len()+maxSize <= buf.Cap() {
continue
}
s.sendQueue.Send(buf, uint16(maxSize), ecn)
if dontSendMore {
return nil
}
if s.sendQueue.WouldBlock() {
return nil
}
// Prioritize receiving of packets over sending out more packets.
s.receivedPacketMx.Lock()
hasPackets := !s.receivedPackets.Empty()
s.receivedPacketMx.Unlock()
if hasPackets {
s.pacingDeadline = deadlineSendImmediately
return nil
}
ecn = nextECN
buf = getLargePacketBuffer()
}
}
func (s *connection) resetPacingDeadline() {
deadline := s.sentPacketHandler.TimeUntilSend()
if deadline.IsZero() {
deadline = deadlineSendImmediately
}
s.pacingDeadline = deadline
}
func (s *connection) maybeSendAckOnlyPacket(now time.Time) error {
if !s.handshakeConfirmed {
ecn := s.sentPacketHandler.ECNMode(false)
packet, err := s.packer.PackCoalescedPacket(true, s.maxPacketSize(), now, s.version)
if err != nil {
return err
}
if packet == nil {
return nil
}
return s.sendPackedCoalescedPacket(packet, ecn, now)
}
ecn := s.sentPacketHandler.ECNMode(true)
p, buf, err := s.packer.PackAckOnlyPacket(s.maxPacketSize(), now, s.version)
if err != nil {
if err == errNothingToPack {
return nil
}
return err
}
s.logShortHeaderPacket(p.DestConnID, p.Ack, p.Frames, p.StreamFrames, p.PacketNumber, p.PacketNumberLen, p.KeyPhase, ecn, buf.Len(), false)
s.registerPackedShortHeaderPacket(p, ecn, now)
s.sendQueue.Send(buf, 0, ecn)
return nil
}
func (s *connection) sendProbePacket(sendMode ackhandler.SendMode, now time.Time) error {
var encLevel protocol.EncryptionLevel
//nolint:exhaustive // We only need to handle the PTO send modes here.
switch sendMode {
case ackhandler.SendPTOInitial:
encLevel = protocol.EncryptionInitial
case ackhandler.SendPTOHandshake:
encLevel = protocol.EncryptionHandshake
case ackhandler.SendPTOAppData:
encLevel = protocol.Encryption1RTT
default:
return fmt.Errorf("connection BUG: unexpected send mode: %d", sendMode)
}
// Queue probe packets until we actually send out a packet,
// or until there are no more packets to queue.
var packet *coalescedPacket
for {
if wasQueued := s.sentPacketHandler.QueueProbePacket(encLevel); !wasQueued {
break
}
var err error
packet, err = s.packer.MaybePackPTOProbePacket(encLevel, s.maxPacketSize(), now, s.version)
if err != nil {
return err
}
if packet != nil {
break
}
}
if packet == nil {
s.retransmissionQueue.AddPing(encLevel)
var err error
packet, err = s.packer.MaybePackPTOProbePacket(encLevel, s.maxPacketSize(), now, s.version)
if err != nil {
return err
}
}
if packet == nil || (len(packet.longHdrPackets) == 0 && packet.shortHdrPacket == nil) {
return fmt.Errorf("connection BUG: couldn't pack %s probe packet", encLevel)
}
return s.sendPackedCoalescedPacket(packet, s.sentPacketHandler.ECNMode(packet.IsOnlyShortHeaderPacket()), now)
}
// appendOneShortHeaderPacket appends a new packet to the given packetBuffer.
// If there was nothing to pack, the returned size is 0.
func (s *connection) appendOneShortHeaderPacket(buf *packetBuffer, maxSize protocol.ByteCount, ecn protocol.ECN, now time.Time) (protocol.ByteCount, error) {
startLen := buf.Len()
p, err := s.packer.AppendPacket(buf, maxSize, now, s.version)
if err != nil {
return 0, err
}
size := buf.Len() - startLen
s.logShortHeaderPacket(p.DestConnID, p.Ack, p.Frames, p.StreamFrames, p.PacketNumber, p.PacketNumberLen, p.KeyPhase, ecn, size, false)
s.registerPackedShortHeaderPacket(p, ecn, now)
return size, nil
}
func (s *connection) registerPackedShortHeaderPacket(p shortHeaderPacket, ecn protocol.ECN, now time.Time) {
if s.firstAckElicitingPacketAfterIdleSentTime.IsZero() && (len(p.StreamFrames) > 0 || ackhandler.HasAckElicitingFrames(p.Frames)) {
s.firstAckElicitingPacketAfterIdleSentTime = now
}
largestAcked := protocol.InvalidPacketNumber
if p.Ack != nil {
largestAcked = p.Ack.LargestAcked()
}
s.sentPacketHandler.SentPacket(now, p.PacketNumber, largestAcked, p.StreamFrames, p.Frames, protocol.Encryption1RTT, ecn, p.Length, p.IsPathMTUProbePacket, false)
s.connIDManager.SentPacket()
}
func (s *connection) sendPackedCoalescedPacket(packet *coalescedPacket, ecn protocol.ECN, now time.Time) error {
s.logCoalescedPacket(packet, ecn)
for _, p := range packet.longHdrPackets {
if s.firstAckElicitingPacketAfterIdleSentTime.IsZero() && p.IsAckEliciting() {
s.firstAckElicitingPacketAfterIdleSentTime = now
}
largestAcked := protocol.InvalidPacketNumber
if p.ack != nil {
largestAcked = p.ack.LargestAcked()
}
s.sentPacketHandler.SentPacket(now, p.header.PacketNumber, largestAcked, p.streamFrames, p.frames, p.EncryptionLevel(), ecn, p.length, false, false)
if s.perspective == protocol.PerspectiveClient && p.EncryptionLevel() == protocol.EncryptionHandshake &&
!s.droppedInitialKeys {
// On the client side, Initial keys are dropped as soon as the first Handshake packet is sent.
// See Section 4.9.1 of RFC 9001.
if err := s.dropEncryptionLevel(protocol.EncryptionInitial, now); err != nil {
return err
}
}
}
if p := packet.shortHdrPacket; p != nil {
if s.firstAckElicitingPacketAfterIdleSentTime.IsZero() && p.IsAckEliciting() {
s.firstAckElicitingPacketAfterIdleSentTime = now
}
largestAcked := protocol.InvalidPacketNumber
if p.Ack != nil {
largestAcked = p.Ack.LargestAcked()
}
s.sentPacketHandler.SentPacket(now, p.PacketNumber, largestAcked, p.StreamFrames, p.Frames, protocol.Encryption1RTT, ecn, p.Length, p.IsPathMTUProbePacket, false)
}
s.connIDManager.SentPacket()
s.sendQueue.Send(packet.buffer, 0, ecn)
return nil
}
func (s *connection) sendConnectionClose(e error) ([]byte, error) {
var packet *coalescedPacket
var err error
var transportErr *qerr.TransportError
var applicationErr *qerr.ApplicationError
if errors.As(e, &transportErr) {
packet, err = s.packer.PackConnectionClose(transportErr, s.maxPacketSize(), s.version)
} else if errors.As(e, &applicationErr) {
packet, err = s.packer.PackApplicationClose(applicationErr, s.maxPacketSize(), s.version)
} else {
packet, err = s.packer.PackConnectionClose(&qerr.TransportError{
ErrorCode: qerr.InternalError,
ErrorMessage: fmt.Sprintf("connection BUG: unspecified error type (msg: %s)", e.Error()),
}, s.maxPacketSize(), s.version)
}
if err != nil {
return nil, err
}
ecn := s.sentPacketHandler.ECNMode(packet.IsOnlyShortHeaderPacket())
s.logCoalescedPacket(packet, ecn)
return packet.buffer.Data, s.conn.Write(packet.buffer.Data, 0, ecn)
}
func (s *connection) maxPacketSize() protocol.ByteCount {
if s.mtuDiscoverer == nil {
// Use the configured packet size on the client side.
// If the server sends a max_udp_payload_size that's smaller than this size, we can ignore this:
// Apparently the server still processed the (fully padded) Initial packet anyway.
if s.perspective == protocol.PerspectiveClient {
return protocol.ByteCount(s.config.InitialPacketSize)
}
// On the server side, there's no downside to using 1200 bytes until we received the client's transport
// parameters:
// * If the first packet didn't contain the entire ClientHello, all we can do is ACK that packet. We don't
// need a lot of bytes for that.
// * If it did, we will have processed the transport parameters and initialized the MTU discoverer.
return protocol.MinInitialPacketSize
}
return s.mtuDiscoverer.CurrentSize()
}
// AcceptStream returns the next stream openend by the peer
func (s *connection) AcceptStream(ctx context.Context) (Stream, error) {
return s.streamsMap.AcceptStream(ctx)
}
func (s *connection) AcceptUniStream(ctx context.Context) (ReceiveStream, error) {
return s.streamsMap.AcceptUniStream(ctx)
}
// OpenStream opens a stream
func (s *connection) OpenStream() (Stream, error) {
return s.streamsMap.OpenStream()
}
func (s *connection) OpenStreamSync(ctx context.Context) (Stream, error) {
return s.streamsMap.OpenStreamSync(ctx)
}
func (s *connection) OpenUniStream() (SendStream, error) {
return s.streamsMap.OpenUniStream()
}
func (s *connection) OpenUniStreamSync(ctx context.Context) (SendStream, error) {
return s.streamsMap.OpenUniStreamSync(ctx)
}
func (s *connection) newFlowController(id protocol.StreamID) flowcontrol.StreamFlowController {
initialSendWindow := s.peerParams.InitialMaxStreamDataUni
if id.Type() == protocol.StreamTypeBidi {
if id.InitiatedBy() == s.perspective {
initialSendWindow = s.peerParams.InitialMaxStreamDataBidiRemote
} else {
initialSendWindow = s.peerParams.InitialMaxStreamDataBidiLocal
}
}
return flowcontrol.NewStreamFlowController(
id,
s.connFlowController,
protocol.ByteCount(s.config.InitialStreamReceiveWindow),
protocol.ByteCount(s.config.MaxStreamReceiveWindow),
initialSendWindow,
s.rttStats,
s.logger,
)
}
// scheduleSending signals that we have data for sending
func (s *connection) scheduleSending() {
select {
case s.sendingScheduled <- struct{}{}:
default:
}
}
// tryQueueingUndecryptablePacket queues a packet for which we're missing the decryption keys.
// The logging.PacketType is only used for logging purposes.
func (s *connection) tryQueueingUndecryptablePacket(p receivedPacket, pt logging.PacketType) {
if s.handshakeComplete {
panic("shouldn't queue undecryptable packets after handshake completion")
}
if len(s.undecryptablePackets)+1 > protocol.MaxUndecryptablePackets {
if s.tracer != nil && s.tracer.DroppedPacket != nil {
s.tracer.DroppedPacket(pt, protocol.InvalidPacketNumber, p.Size(), logging.PacketDropDOSPrevention)
}
s.logger.Infof("Dropping undecryptable packet (%d bytes). Undecryptable packet queue full.", p.Size())
return
}
s.logger.Infof("Queueing packet (%d bytes) for later decryption", p.Size())
if s.tracer != nil && s.tracer.BufferedPacket != nil {
s.tracer.BufferedPacket(pt, p.Size())
}
s.undecryptablePackets = append(s.undecryptablePackets, p)
}
func (s *connection) queueControlFrame(f wire.Frame) {
s.framer.QueueControlFrame(f)
s.scheduleSending()
}
func (s *connection) onHasConnectionData() { s.scheduleSending() }
func (s *connection) onHasStreamData(id protocol.StreamID, str sendStreamI) {
s.framer.AddActiveStream(id, str)
s.scheduleSending()
}
func (s *connection) onHasStreamControlFrame(id protocol.StreamID, str streamControlFrameGetter) {
s.framer.AddStreamWithControlFrames(id, str)
s.scheduleSending()
}
func (s *connection) onStreamCompleted(id protocol.StreamID) {
if err := s.streamsMap.DeleteStream(id); err != nil {
s.closeLocal(err)
}
s.framer.RemoveActiveStream(id)
}
func (s *connection) SendDatagram(p []byte) error {
if !s.supportsDatagrams() {
return errors.New("datagram support disabled")
}
f := &wire.DatagramFrame{DataLenPresent: true}
// The payload size estimate is conservative.
// Under many circumstances we could send a few more bytes.
maxDataLen := min(
f.MaxDataLen(s.peerParams.MaxDatagramFrameSize, s.version),
protocol.ByteCount(s.currentMTUEstimate.Load()),
)
if protocol.ByteCount(len(p)) > maxDataLen {
return &DatagramTooLargeError{MaxDatagramPayloadSize: int64(maxDataLen)}
}
f.Data = make([]byte, len(p))
copy(f.Data, p)
return s.datagramQueue.Add(f)
}
func (s *connection) ReceiveDatagram(ctx context.Context) ([]byte, error) {
if !s.config.EnableDatagrams {
return nil, errors.New("datagram support disabled")
}
return s.datagramQueue.Receive(ctx)
}
func (s *connection) LocalAddr() net.Addr { return s.conn.LocalAddr() }
func (s *connection) RemoteAddr() net.Addr { return s.conn.RemoteAddr() }
func (s *connection) NextConnection(ctx context.Context) (Connection, error) {
// The handshake might fail after the server rejected 0-RTT.
// This could happen if the Finished message is malformed or never received.
select {
case <-ctx.Done():
return nil, context.Cause(ctx)
case <-s.Context().Done():
case <-s.HandshakeComplete():
s.streamsMap.UseResetMaps()
}
return s, nil
}
// estimateMaxPayloadSize estimates the maximum payload size for short header packets.
// It is not very sophisticated: it just subtracts the size of header (assuming the maximum
// connection ID length), and the size of the encryption tag.
func estimateMaxPayloadSize(mtu protocol.ByteCount) protocol.ByteCount {
return mtu - 1 /* type byte */ - 20 /* maximum connection ID length */ - 16 /* tag size */
}