uquic/crypto_stream.go

149 lines
4.4 KiB
Go

package quic
import (
"bytes"
"encoding/binary"
"errors"
"sort"
)
// A Tag in the QUIC crypto
type Tag uint32
const (
// TagCHLO is a client hello
TagCHLO Tag = 'C' + 'H'<<8 + 'L'<<16 + 'O'<<24
// TagREJ is a server hello rejection
TagREJ Tag = 'R' + 'E'<<8 + 'J'<<16
// TagSCFG is a server config
TagSCFG Tag = 'S' + 'C'<<8 + 'F'<<16 + 'G'<<24
// TagPAD is padding
TagPAD Tag = 'P' + 'A'<<8 + 'D'<<16
// TagSNI is the server name indication
TagSNI Tag = 'S' + 'N'<<8 + 'I'<<16
// TagVER is the QUIC version
TagVER Tag = 'V' + 'E'<<8 + 'R'<<16
// TagCCS is the hash of the common certificate sets
TagCCS Tag = 'C' + 'C'<<8 + 'S'<<16
// TagMSPC is max streams per connection
TagMSPC Tag = 'M' + 'S'<<8 + 'P'<<16 + 'C'<<24
// TagUAID is the user agent ID
TagUAID Tag = 'U' + 'A'<<8 + 'I'<<16 + 'D'<<24
// TagTCID is truncation of the connection ID
TagTCID Tag = 'T' + 'C'<<8 + 'I'<<16 + 'D'<<24
// TagPDMD is the proof demand
TagPDMD Tag = 'P' + 'D'<<8 + 'M'<<16 + 'D'<<24
// TagSRBF is the socket receive buffer
TagSRBF Tag = 'S' + 'R'<<8 + 'B'<<16 + 'F'<<24
// TagICSL is the idle connection state lifetime
TagICSL Tag = 'I' + 'C'<<8 + 'S'<<16 + 'L'<<24
// TagNONP is the client proof nonce
TagNONP Tag = 'N' + 'O'<<8 + 'N'<<16 + 'P'<<24
// TagSCLS is the silently close timeout
TagSCLS Tag = 'S' + 'C'<<8 + 'L'<<16 + 'S'<<24
// TagCSCT is the signed cert timestamp (RFC6962) of leaf cert
TagCSCT Tag = 'C' + 'S'<<8 + 'C'<<16 + 'T'<<24
// TagCOPT are the connection options
TagCOPT Tag = 'C' + 'O'<<8 + 'P'<<16 + 'T'<<24
// TagCFCW is the initial session/connection flow control receive window
TagCFCW Tag = 'C' + 'F'<<8 + 'C'<<16 + 'W'<<24
// TagSFCW is the initial stream flow control receive window.
TagSFCW Tag = 'S' + 'F'<<8 + 'C'<<16 + 'W'<<24
// TagSTK is the source-address token
TagSTK Tag = 'S' + 'T'<<8 + 'K'<<16
// TagSNO is the server nonce
TagSNO Tag = 'S' + 'N'<<8 + 'O'<<16
// TagPROF is the server proof
TagPROF Tag = 'P' + 'R'<<8 + 'O'<<16 + 'F'<<24
// TagSCID is the server config ID
TagSCID Tag = 'S' + 'C'<<8 + 'I'<<16 + 'D'<<24
// TagKEXS is the list of key exchange algos
TagKEXS Tag = 'K' + 'E'<<8 + 'X'<<16 + 'S'<<24
// TagAEAD is the list of AEAD algos
TagAEAD Tag = 'A' + 'E'<<8 + 'A'<<16 + 'D'<<24
// TagPUBS is the public value for the KEX
TagPUBS Tag = 'P' + 'U'<<8 + 'B'<<16 + 'S'<<24
// TagORBT is the client orbit
TagORBT Tag = 'O' + 'R'<<8 + 'B'<<16 + 'T'<<24
// TagEXPY is the server config expiry
TagEXPY Tag = 'E' + 'X'<<8 + 'P'<<16 + 'Y'<<24
)
var (
errCryptoMessageEOF = errors.New("ParseCryptoMessage: Unexpected EOF")
)
// ParseCryptoMessage reads a crypto message
func ParseCryptoMessage(data []byte) (Tag, map[Tag][]byte, error) {
if len(data) < 8 {
return 0, nil, errCryptoMessageEOF
}
messageTag := Tag(binary.LittleEndian.Uint32(data[0:4]))
nPairs := int(binary.LittleEndian.Uint16(data[4:6]))
data = data[8:]
// We need space for at least nPairs * 8 bytes
if len(data) < int(nPairs)*8 {
return 0, nil, errCryptoMessageEOF
}
resultMap := map[Tag][]byte{}
dataStart := 0
for indexPos := 0; indexPos < nPairs*8; indexPos += 8 {
// We know from the check above that data is long enough for the index
tag := Tag(binary.LittleEndian.Uint32(data[indexPos : indexPos+4]))
dataEnd := int(binary.LittleEndian.Uint32(data[indexPos+4 : indexPos+8]))
if dataEnd > len(data) {
return 0, nil, errCryptoMessageEOF
}
if dataEnd < dataStart {
return 0, nil, errors.New("invalid end offset in crypto message")
}
resultMap[tag] = data[nPairs*8+dataStart : nPairs*8+dataEnd]
dataStart = dataEnd
}
return messageTag, resultMap, nil
}
// WriteCryptoMessage writes a crypto message
func WriteCryptoMessage(b *bytes.Buffer, messageTag Tag, data map[Tag][]byte) {
writeUint32(b, uint32(messageTag))
writeUint16(b, uint16(len(data)))
writeUint16(b, 0)
// Save current position in the buffer, so that we can update the index in-place later
indexStart := b.Len()
indexData := make([]byte, 8*len(data))
b.Write(indexData) // Will be updated later
// Sort the tags
tags := make([]uint32, len(data))
i := 0
for t := range data {
tags[i] = uint32(t)
i++
}
sort.Sort(Uint32Slice(tags))
offset := uint32(0)
for i, t := range tags {
v := data[Tag(t)]
b.Write(v)
offset += uint32(len(v))
binary.LittleEndian.PutUint32(indexData[i*8:], t)
binary.LittleEndian.PutUint32(indexData[i*8+4:], offset)
}
// Now we write the index data for real
copy(b.Bytes()[indexStart:], indexData)
}