uquic/ackhandler/sent_packet_handler.go
Marten Seemann fbeba1f73a make sure that at least every 20th ACK is retransmittable
This is important because we need to make sure that we can remove old
ACK ranges from the received packet history. The logic we implemented
before was not correct, since we only made sure that every 20th packet
would be retransmittable, but we didn't have any guarantee that this
packet would also contain an ACK frame.
2018-02-01 17:11:05 +08:00

477 lines
15 KiB
Go

package ackhandler
import (
"errors"
"fmt"
"math"
"time"
"github.com/lucas-clemente/quic-go/congestion"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/lucas-clemente/quic-go/internal/wire"
"github.com/lucas-clemente/quic-go/qerr"
)
const (
// Maximum reordering in time space before time based loss detection considers a packet lost.
// In fraction of an RTT.
timeReorderingFraction = 1.0 / 8
// The default RTT used before an RTT sample is taken.
// Note: This constant is also defined in the congestion package.
defaultInitialRTT = 100 * time.Millisecond
// defaultRTOTimeout is the RTO time on new connections
defaultRTOTimeout = 500 * time.Millisecond
// Minimum time in the future a tail loss probe alarm may be set for.
minTPLTimeout = 10 * time.Millisecond
// Minimum time in the future an RTO alarm may be set for.
minRTOTimeout = 200 * time.Millisecond
// maxRTOTimeout is the maximum RTO time
maxRTOTimeout = 60 * time.Second
)
// ErrDuplicateOrOutOfOrderAck occurs when a duplicate or an out-of-order ACK is received
var ErrDuplicateOrOutOfOrderAck = errors.New("SentPacketHandler: Duplicate or out-of-order ACK")
type sentPacketHandler struct {
lastSentPacketNumber protocol.PacketNumber
nextPacketSendTime time.Time
skippedPackets []protocol.PacketNumber
largestAcked protocol.PacketNumber
largestReceivedPacketWithAck protocol.PacketNumber
// lowestPacketNotConfirmedAcked is the lowest packet number that we sent an ACK for, but haven't received confirmation, that this ACK actually arrived
// example: we send an ACK for packets 90-100 with packet number 20
// once we receive an ACK from the peer for packet 20, the lowestPacketNotConfirmedAcked is 101
lowestPacketNotConfirmedAcked protocol.PacketNumber
packetHistory *PacketList
stopWaitingManager stopWaitingManager
retransmissionQueue []*Packet
bytesInFlight protocol.ByteCount
congestion congestion.SendAlgorithm
rttStats *congestion.RTTStats
handshakeComplete bool
// The number of times the handshake packets have been retransmitted without receiving an ack.
handshakeCount uint32
// The number of times an RTO has been sent without receiving an ack.
rtoCount uint32
// The time at which the next packet will be considered lost based on early transmit or exceeding the reordering window in time.
lossTime time.Time
// The alarm timeout
alarm time.Time
}
// NewSentPacketHandler creates a new sentPacketHandler
func NewSentPacketHandler(rttStats *congestion.RTTStats) SentPacketHandler {
congestion := congestion.NewCubicSender(
congestion.DefaultClock{},
rttStats,
false, /* don't use reno since chromium doesn't (why?) */
protocol.InitialCongestionWindow,
protocol.DefaultMaxCongestionWindow,
)
return &sentPacketHandler{
packetHistory: NewPacketList(),
stopWaitingManager: stopWaitingManager{},
rttStats: rttStats,
congestion: congestion,
}
}
func (h *sentPacketHandler) lowestUnacked() protocol.PacketNumber {
if f := h.packetHistory.Front(); f != nil {
return f.Value.PacketNumber
}
return h.largestAcked + 1
}
func (h *sentPacketHandler) SetHandshakeComplete() {
var queue []*Packet
for _, packet := range h.retransmissionQueue {
if packet.EncryptionLevel == protocol.EncryptionForwardSecure {
queue = append(queue, packet)
}
}
h.retransmissionQueue = queue
h.handshakeComplete = true
}
func (h *sentPacketHandler) SentPacket(packet *Packet) error {
if protocol.PacketNumber(len(h.retransmissionQueue)+h.packetHistory.Len()+1) > protocol.MaxTrackedSentPackets {
return errors.New("Too many outstanding non-acked and non-retransmitted packets")
}
for p := h.lastSentPacketNumber + 1; p < packet.PacketNumber; p++ {
h.skippedPackets = append(h.skippedPackets, p)
if len(h.skippedPackets) > protocol.MaxTrackedSkippedPackets {
h.skippedPackets = h.skippedPackets[1:]
}
}
now := time.Now()
h.lastSentPacketNumber = packet.PacketNumber
var largestAcked protocol.PacketNumber
if len(packet.Frames) > 0 {
if ackFrame, ok := packet.Frames[0].(*wire.AckFrame); ok {
largestAcked = ackFrame.LargestAcked
}
}
packet.Frames = stripNonRetransmittableFrames(packet.Frames)
isRetransmittable := len(packet.Frames) != 0
if isRetransmittable {
packet.sendTime = now
packet.largestAcked = largestAcked
h.bytesInFlight += packet.Length
h.packetHistory.PushBack(*packet)
}
h.congestion.OnPacketSent(
now,
h.bytesInFlight,
packet.PacketNumber,
packet.Length,
isRetransmittable,
)
h.nextPacketSendTime = utils.MaxTime(h.nextPacketSendTime, now).Add(h.congestion.TimeUntilSend(h.bytesInFlight))
h.updateLossDetectionAlarm(now)
return nil
}
func (h *sentPacketHandler) ReceivedAck(ackFrame *wire.AckFrame, withPacketNumber protocol.PacketNumber, encLevel protocol.EncryptionLevel, rcvTime time.Time) error {
if ackFrame.LargestAcked > h.lastSentPacketNumber {
return qerr.Error(qerr.InvalidAckData, "Received ACK for an unsent package")
}
// duplicate or out-of-order ACK
// if withPacketNumber <= h.largestReceivedPacketWithAck && withPacketNumber != 0 {
if withPacketNumber <= h.largestReceivedPacketWithAck {
return ErrDuplicateOrOutOfOrderAck
}
h.largestReceivedPacketWithAck = withPacketNumber
// ignore repeated ACK (ACKs that don't have a higher LargestAcked than the last ACK)
if ackFrame.LargestAcked < h.lowestUnacked() {
return nil
}
h.largestAcked = ackFrame.LargestAcked
if h.skippedPacketsAcked(ackFrame) {
return qerr.Error(qerr.InvalidAckData, "Received an ACK for a skipped packet number")
}
rttUpdated := h.maybeUpdateRTT(ackFrame.LargestAcked, ackFrame.DelayTime, rcvTime)
if rttUpdated {
h.congestion.MaybeExitSlowStart()
}
ackedPackets, err := h.determineNewlyAckedPackets(ackFrame)
if err != nil {
return err
}
if len(ackedPackets) > 0 {
for _, p := range ackedPackets {
if encLevel < p.Value.EncryptionLevel {
return fmt.Errorf("Received ACK with encryption level %s that acks a packet %d (encryption level %s)", encLevel, p.Value.PacketNumber, p.Value.EncryptionLevel)
}
// largestAcked == 0 either means that the packet didn't contain an ACK, or it just acked packet 0
// It is safe to ignore the corner case of packets that just acked packet 0, because
// the lowestPacketNotConfirmedAcked is only used to limit the number of ACK ranges we will send.
if p.Value.largestAcked != 0 {
h.lowestPacketNotConfirmedAcked = utils.MaxPacketNumber(h.lowestPacketNotConfirmedAcked, p.Value.largestAcked+1)
}
h.onPacketAcked(p)
h.congestion.OnPacketAcked(p.Value.PacketNumber, p.Value.Length, h.bytesInFlight)
}
}
h.detectLostPackets(rcvTime)
h.updateLossDetectionAlarm(rcvTime)
h.garbageCollectSkippedPackets()
h.stopWaitingManager.ReceivedAck(ackFrame)
return nil
}
func (h *sentPacketHandler) GetLowestPacketNotConfirmedAcked() protocol.PacketNumber {
return h.lowestPacketNotConfirmedAcked
}
func (h *sentPacketHandler) determineNewlyAckedPackets(ackFrame *wire.AckFrame) ([]*PacketElement, error) {
var ackedPackets []*PacketElement
ackRangeIndex := 0
for el := h.packetHistory.Front(); el != nil; el = el.Next() {
packet := el.Value
packetNumber := packet.PacketNumber
// Ignore packets below the LowestAcked
if packetNumber < ackFrame.LowestAcked {
continue
}
// Break after LargestAcked is reached
if packetNumber > ackFrame.LargestAcked {
break
}
if ackFrame.HasMissingRanges() {
ackRange := ackFrame.AckRanges[len(ackFrame.AckRanges)-1-ackRangeIndex]
for packetNumber > ackRange.Last && ackRangeIndex < len(ackFrame.AckRanges)-1 {
ackRangeIndex++
ackRange = ackFrame.AckRanges[len(ackFrame.AckRanges)-1-ackRangeIndex]
}
if packetNumber >= ackRange.First { // packet i contained in ACK range
if packetNumber > ackRange.Last {
return nil, fmt.Errorf("BUG: ackhandler would have acked wrong packet 0x%x, while evaluating range 0x%x -> 0x%x", packetNumber, ackRange.First, ackRange.Last)
}
ackedPackets = append(ackedPackets, el)
}
} else {
ackedPackets = append(ackedPackets, el)
}
}
return ackedPackets, nil
}
func (h *sentPacketHandler) maybeUpdateRTT(largestAcked protocol.PacketNumber, ackDelay time.Duration, rcvTime time.Time) bool {
for el := h.packetHistory.Front(); el != nil; el = el.Next() {
packet := el.Value
if packet.PacketNumber == largestAcked {
h.rttStats.UpdateRTT(rcvTime.Sub(packet.sendTime), ackDelay, rcvTime)
return true
}
// Packets are sorted by number, so we can stop searching
if packet.PacketNumber > largestAcked {
break
}
}
return false
}
func (h *sentPacketHandler) updateLossDetectionAlarm(now time.Time) {
// Cancel the alarm if no packets are outstanding
if h.packetHistory.Len() == 0 {
h.alarm = time.Time{}
return
}
// TODO(#497): TLP
if !h.handshakeComplete {
h.alarm = now.Add(h.computeHandshakeTimeout())
} else if !h.lossTime.IsZero() {
// Early retransmit timer or time loss detection.
h.alarm = h.lossTime
} else {
// RTO
h.alarm = now.Add(h.computeRTOTimeout())
}
}
func (h *sentPacketHandler) detectLostPackets(now time.Time) {
h.lossTime = time.Time{}
maxRTT := float64(utils.MaxDuration(h.rttStats.LatestRTT(), h.rttStats.SmoothedRTT()))
delayUntilLost := time.Duration((1.0 + timeReorderingFraction) * maxRTT)
var lostPackets []*PacketElement
for el := h.packetHistory.Front(); el != nil; el = el.Next() {
packet := el.Value
if packet.PacketNumber > h.largestAcked {
break
}
timeSinceSent := now.Sub(packet.sendTime)
if timeSinceSent > delayUntilLost {
lostPackets = append(lostPackets, el)
} else if h.lossTime.IsZero() {
// Note: This conditional is only entered once per call
h.lossTime = now.Add(delayUntilLost - timeSinceSent)
}
}
if len(lostPackets) > 0 {
for _, p := range lostPackets {
h.queuePacketForRetransmission(p)
h.congestion.OnPacketLost(p.Value.PacketNumber, p.Value.Length, h.bytesInFlight)
}
}
}
func (h *sentPacketHandler) OnAlarm() {
now := time.Now()
// TODO(#497): TLP
if !h.handshakeComplete {
h.queueHandshakePacketsForRetransmission()
h.handshakeCount++
} else if !h.lossTime.IsZero() {
// Early retransmit or time loss detection
h.detectLostPackets(now)
} else {
// RTO
h.retransmitOldestTwoPackets()
h.rtoCount++
}
h.updateLossDetectionAlarm(now)
}
func (h *sentPacketHandler) GetAlarmTimeout() time.Time {
return h.alarm
}
func (h *sentPacketHandler) onPacketAcked(packetElement *PacketElement) {
h.bytesInFlight -= packetElement.Value.Length
h.rtoCount = 0
h.handshakeCount = 0
// TODO(#497): h.tlpCount = 0
h.packetHistory.Remove(packetElement)
}
func (h *sentPacketHandler) DequeuePacketForRetransmission() *Packet {
if len(h.retransmissionQueue) == 0 {
return nil
}
packet := h.retransmissionQueue[0]
// Shift the slice and don't retain anything that isn't needed.
copy(h.retransmissionQueue, h.retransmissionQueue[1:])
h.retransmissionQueue[len(h.retransmissionQueue)-1] = nil
h.retransmissionQueue = h.retransmissionQueue[:len(h.retransmissionQueue)-1]
return packet
}
func (h *sentPacketHandler) GetLeastUnacked() protocol.PacketNumber {
return h.lowestUnacked()
}
func (h *sentPacketHandler) GetStopWaitingFrame(force bool) *wire.StopWaitingFrame {
return h.stopWaitingManager.GetStopWaitingFrame(force)
}
func (h *sentPacketHandler) SendingAllowed() bool {
cwnd := h.congestion.GetCongestionWindow()
congestionLimited := h.bytesInFlight > cwnd
maxTrackedLimited := protocol.PacketNumber(len(h.retransmissionQueue)+h.packetHistory.Len()) >= protocol.MaxTrackedSentPackets
if congestionLimited {
utils.Debugf("Congestion limited: bytes in flight %d, window %d", h.bytesInFlight, cwnd)
}
// Workaround for #555:
// Always allow sending of retransmissions. This should probably be limited
// to RTOs, but we currently don't have a nice way of distinguishing them.
haveRetransmissions := len(h.retransmissionQueue) > 0
return !maxTrackedLimited && (!congestionLimited || haveRetransmissions)
}
func (h *sentPacketHandler) TimeUntilSend() time.Time {
return h.nextPacketSendTime
}
func (h *sentPacketHandler) ShouldSendNumPackets() int {
delay := h.congestion.TimeUntilSend(h.bytesInFlight)
if delay == 0 || delay > protocol.MinPacingDelay {
return 1
}
return int(math.Ceil(float64(protocol.MinPacingDelay) / float64(delay)))
}
func (h *sentPacketHandler) retransmitOldestTwoPackets() {
if p := h.packetHistory.Front(); p != nil {
h.queueRTO(p)
}
if p := h.packetHistory.Front(); p != nil {
h.queueRTO(p)
}
}
func (h *sentPacketHandler) queueRTO(el *PacketElement) {
packet := &el.Value
utils.Debugf(
"\tQueueing packet 0x%x for retransmission (RTO), %d outstanding",
packet.PacketNumber,
h.packetHistory.Len(),
)
h.queuePacketForRetransmission(el)
h.congestion.OnPacketLost(packet.PacketNumber, packet.Length, h.bytesInFlight)
h.congestion.OnRetransmissionTimeout(true)
}
func (h *sentPacketHandler) queueHandshakePacketsForRetransmission() {
var handshakePackets []*PacketElement
for el := h.packetHistory.Front(); el != nil; el = el.Next() {
if el.Value.EncryptionLevel < protocol.EncryptionForwardSecure {
handshakePackets = append(handshakePackets, el)
}
}
for _, el := range handshakePackets {
h.queuePacketForRetransmission(el)
}
}
func (h *sentPacketHandler) queuePacketForRetransmission(packetElement *PacketElement) {
packet := &packetElement.Value
h.bytesInFlight -= packet.Length
h.retransmissionQueue = append(h.retransmissionQueue, packet)
h.packetHistory.Remove(packetElement)
h.stopWaitingManager.QueuedRetransmissionForPacketNumber(packet.PacketNumber)
}
func (h *sentPacketHandler) computeHandshakeTimeout() time.Duration {
duration := 2 * h.rttStats.SmoothedRTT()
if duration == 0 {
duration = 2 * defaultInitialRTT
}
duration = utils.MaxDuration(duration, minTPLTimeout)
// exponential backoff
// There's an implicit limit to this set by the handshake timeout.
return duration << h.handshakeCount
}
func (h *sentPacketHandler) computeRTOTimeout() time.Duration {
rto := h.congestion.RetransmissionDelay()
if rto == 0 {
rto = defaultRTOTimeout
}
rto = utils.MaxDuration(rto, minRTOTimeout)
// Exponential backoff
rto = rto << h.rtoCount
return utils.MinDuration(rto, maxRTOTimeout)
}
func (h *sentPacketHandler) skippedPacketsAcked(ackFrame *wire.AckFrame) bool {
for _, p := range h.skippedPackets {
if ackFrame.AcksPacket(p) {
return true
}
}
return false
}
func (h *sentPacketHandler) garbageCollectSkippedPackets() {
lowestUnacked := h.lowestUnacked()
deleteIndex := 0
for i, p := range h.skippedPackets {
if p < lowestUnacked {
deleteIndex = i + 1
}
}
h.skippedPackets = h.skippedPackets[deleteIndex:]
}