mirror of
https://github.com/refraction-networking/utls.git
synced 2025-04-03 20:17:36 +03:00
sync: merge changes from go 1.23.4
This commit is contained in:
commit
cefe226467
98 changed files with 8089 additions and 4530 deletions
886
internal/mlkem768/mlkem768.go
Normal file
886
internal/mlkem768/mlkem768.go
Normal file
|
@ -0,0 +1,886 @@
|
|||
// Copyright 2023 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package mlkem768 implements the quantum-resistant key encapsulation method
|
||||
// ML-KEM (formerly known as Kyber).
|
||||
//
|
||||
// Only the recommended ML-KEM-768 parameter set is provided.
|
||||
//
|
||||
// The version currently implemented is the one specified by [NIST FIPS 203 ipd],
|
||||
// with the unintentional transposition of the matrix A reverted to match the
|
||||
// behavior of [Kyber version 3.0]. Future versions of this package might
|
||||
// introduce backwards incompatible changes to implement changes to FIPS 203.
|
||||
//
|
||||
// [Kyber version 3.0]: https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
|
||||
// [NIST FIPS 203 ipd]: https://doi.org/10.6028/NIST.FIPS.203.ipd
|
||||
package mlkem768
|
||||
|
||||
// This package targets security, correctness, simplicity, readability, and
|
||||
// reviewability as its primary goals. All critical operations are performed in
|
||||
// constant time.
|
||||
//
|
||||
// Variable and function names, as well as code layout, are selected to
|
||||
// facilitate reviewing the implementation against the NIST FIPS 203 ipd
|
||||
// document.
|
||||
//
|
||||
// Reviewers unfamiliar with polynomials or linear algebra might find the
|
||||
// background at https://words.filippo.io/kyber-math/ useful.
|
||||
|
||||
import (
|
||||
"crypto/rand"
|
||||
"crypto/subtle"
|
||||
"errors"
|
||||
|
||||
"github.com/refraction-networking/utls/internal/byteorder"
|
||||
"golang.org/x/crypto/sha3"
|
||||
)
|
||||
|
||||
const (
|
||||
// ML-KEM global constants.
|
||||
n = 256
|
||||
q = 3329
|
||||
|
||||
log2q = 12
|
||||
|
||||
// ML-KEM-768 parameters. The code makes assumptions based on these values,
|
||||
// they can't be changed blindly.
|
||||
k = 3
|
||||
η = 2
|
||||
du = 10
|
||||
dv = 4
|
||||
|
||||
// encodingSizeX is the byte size of a ringElement or nttElement encoded
|
||||
// by ByteEncode_X (FIPS 203 (DRAFT), Algorithm 4).
|
||||
encodingSize12 = n * log2q / 8
|
||||
encodingSize10 = n * du / 8
|
||||
encodingSize4 = n * dv / 8
|
||||
encodingSize1 = n * 1 / 8
|
||||
|
||||
messageSize = encodingSize1
|
||||
decryptionKeySize = k * encodingSize12
|
||||
encryptionKeySize = k*encodingSize12 + 32
|
||||
|
||||
CiphertextSize = k*encodingSize10 + encodingSize4
|
||||
EncapsulationKeySize = encryptionKeySize
|
||||
DecapsulationKeySize = decryptionKeySize + encryptionKeySize + 32 + 32
|
||||
SharedKeySize = 32
|
||||
SeedSize = 32 + 32
|
||||
)
|
||||
|
||||
// A DecapsulationKey is the secret key used to decapsulate a shared key from a
|
||||
// ciphertext. It includes various precomputed values.
|
||||
type DecapsulationKey struct {
|
||||
dk [DecapsulationKeySize]byte
|
||||
encryptionKey
|
||||
decryptionKey
|
||||
}
|
||||
|
||||
// Bytes returns the extended encoding of the decapsulation key, according to
|
||||
// FIPS 203 (DRAFT).
|
||||
func (dk *DecapsulationKey) Bytes() []byte {
|
||||
var b [DecapsulationKeySize]byte
|
||||
copy(b[:], dk.dk[:])
|
||||
return b[:]
|
||||
}
|
||||
|
||||
// EncapsulationKey returns the public encapsulation key necessary to produce
|
||||
// ciphertexts.
|
||||
func (dk *DecapsulationKey) EncapsulationKey() []byte {
|
||||
var b [EncapsulationKeySize]byte
|
||||
copy(b[:], dk.dk[decryptionKeySize:])
|
||||
return b[:]
|
||||
}
|
||||
|
||||
// encryptionKey is the parsed and expanded form of a PKE encryption key.
|
||||
type encryptionKey struct {
|
||||
t [k]nttElement // ByteDecode₁₂(ek[:384k])
|
||||
A [k * k]nttElement // A[i*k+j] = sampleNTT(ρ, j, i)
|
||||
}
|
||||
|
||||
// decryptionKey is the parsed and expanded form of a PKE decryption key.
|
||||
type decryptionKey struct {
|
||||
s [k]nttElement // ByteDecode₁₂(dk[:decryptionKeySize])
|
||||
}
|
||||
|
||||
// GenerateKey generates a new decapsulation key, drawing random bytes from
|
||||
// crypto/rand. The decapsulation key must be kept secret.
|
||||
func GenerateKey() (*DecapsulationKey, error) {
|
||||
// The actual logic is in a separate function to outline this allocation.
|
||||
dk := &DecapsulationKey{}
|
||||
return generateKey(dk)
|
||||
}
|
||||
|
||||
func generateKey(dk *DecapsulationKey) (*DecapsulationKey, error) {
|
||||
var d [32]byte
|
||||
if _, err := rand.Read(d[:]); err != nil {
|
||||
return nil, errors.New("mlkem768: crypto/rand Read failed: " + err.Error())
|
||||
}
|
||||
var z [32]byte
|
||||
if _, err := rand.Read(z[:]); err != nil {
|
||||
return nil, errors.New("mlkem768: crypto/rand Read failed: " + err.Error())
|
||||
}
|
||||
return kemKeyGen(dk, &d, &z), nil
|
||||
}
|
||||
|
||||
// NewKeyFromSeed deterministically generates a decapsulation key from a 64-byte
|
||||
// seed in the "d || z" form. The seed must be uniformly random.
|
||||
func NewKeyFromSeed(seed []byte) (*DecapsulationKey, error) {
|
||||
// The actual logic is in a separate function to outline this allocation.
|
||||
dk := &DecapsulationKey{}
|
||||
return newKeyFromSeed(dk, seed)
|
||||
}
|
||||
|
||||
func newKeyFromSeed(dk *DecapsulationKey, seed []byte) (*DecapsulationKey, error) {
|
||||
if len(seed) != SeedSize {
|
||||
return nil, errors.New("mlkem768: invalid seed length")
|
||||
}
|
||||
d := (*[32]byte)(seed[:32])
|
||||
z := (*[32]byte)(seed[32:])
|
||||
return kemKeyGen(dk, d, z), nil
|
||||
}
|
||||
|
||||
// NewKeyFromExtendedEncoding parses a decapsulation key from its FIPS 203
|
||||
// (DRAFT) extended encoding.
|
||||
func NewKeyFromExtendedEncoding(decapsulationKey []byte) (*DecapsulationKey, error) {
|
||||
// The actual logic is in a separate function to outline this allocation.
|
||||
dk := &DecapsulationKey{}
|
||||
return newKeyFromExtendedEncoding(dk, decapsulationKey)
|
||||
}
|
||||
|
||||
func newKeyFromExtendedEncoding(dk *DecapsulationKey, dkBytes []byte) (*DecapsulationKey, error) {
|
||||
if len(dkBytes) != DecapsulationKeySize {
|
||||
return nil, errors.New("mlkem768: invalid decapsulation key length")
|
||||
}
|
||||
|
||||
// Note that we don't check that H(ek) matches ekPKE, as that's not
|
||||
// specified in FIPS 203 (DRAFT). This is one reason to prefer the seed
|
||||
// private key format.
|
||||
dk.dk = [DecapsulationKeySize]byte(dkBytes)
|
||||
|
||||
dkPKE := dkBytes[:decryptionKeySize]
|
||||
if err := parseDK(&dk.decryptionKey, dkPKE); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ekPKE := dkBytes[decryptionKeySize : decryptionKeySize+encryptionKeySize]
|
||||
if err := parseEK(&dk.encryptionKey, ekPKE); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return dk, nil
|
||||
}
|
||||
|
||||
// kemKeyGen generates a decapsulation key.
|
||||
//
|
||||
// It implements ML-KEM.KeyGen according to FIPS 203 (DRAFT), Algorithm 15, and
|
||||
// K-PKE.KeyGen according to FIPS 203 (DRAFT), Algorithm 12. The two are merged
|
||||
// to save copies and allocations.
|
||||
func kemKeyGen(dk *DecapsulationKey, d, z *[32]byte) *DecapsulationKey {
|
||||
if dk == nil {
|
||||
dk = &DecapsulationKey{}
|
||||
}
|
||||
|
||||
G := sha3.Sum512(d[:])
|
||||
ρ, σ := G[:32], G[32:]
|
||||
|
||||
A := &dk.A
|
||||
for i := byte(0); i < k; i++ {
|
||||
for j := byte(0); j < k; j++ {
|
||||
// Note that this is consistent with Kyber round 3, rather than with
|
||||
// the initial draft of FIPS 203, because NIST signaled that the
|
||||
// change was involuntary and will be reverted.
|
||||
A[i*k+j] = sampleNTT(ρ, j, i)
|
||||
}
|
||||
}
|
||||
|
||||
var N byte
|
||||
s := &dk.s
|
||||
for i := range s {
|
||||
s[i] = ntt(samplePolyCBD(σ, N))
|
||||
N++
|
||||
}
|
||||
e := make([]nttElement, k)
|
||||
for i := range e {
|
||||
e[i] = ntt(samplePolyCBD(σ, N))
|
||||
N++
|
||||
}
|
||||
|
||||
t := &dk.t
|
||||
for i := range t { // t = A ◦ s + e
|
||||
t[i] = e[i]
|
||||
for j := range s {
|
||||
t[i] = polyAdd(t[i], nttMul(A[i*k+j], s[j]))
|
||||
}
|
||||
}
|
||||
|
||||
// dkPKE ← ByteEncode₁₂(s)
|
||||
// ekPKE ← ByteEncode₁₂(t) || ρ
|
||||
// ek ← ekPKE
|
||||
// dk ← dkPKE || ek || H(ek) || z
|
||||
dkB := dk.dk[:0]
|
||||
|
||||
for i := range s {
|
||||
dkB = polyByteEncode(dkB, s[i])
|
||||
}
|
||||
|
||||
for i := range t {
|
||||
dkB = polyByteEncode(dkB, t[i])
|
||||
}
|
||||
dkB = append(dkB, ρ...)
|
||||
|
||||
H := sha3.New256()
|
||||
H.Write(dkB[decryptionKeySize:])
|
||||
dkB = H.Sum(dkB)
|
||||
|
||||
dkB = append(dkB, z[:]...)
|
||||
|
||||
if len(dkB) != len(dk.dk) {
|
||||
panic("mlkem768: internal error: invalid decapsulation key size")
|
||||
}
|
||||
|
||||
return dk
|
||||
}
|
||||
|
||||
// Encapsulate generates a shared key and an associated ciphertext from an
|
||||
// encapsulation key, drawing random bytes from crypto/rand.
|
||||
// If the encapsulation key is not valid, Encapsulate returns an error.
|
||||
//
|
||||
// The shared key must be kept secret.
|
||||
func Encapsulate(encapsulationKey []byte) (ciphertext, sharedKey []byte, err error) {
|
||||
// The actual logic is in a separate function to outline this allocation.
|
||||
var cc [CiphertextSize]byte
|
||||
return encapsulate(&cc, encapsulationKey)
|
||||
}
|
||||
|
||||
func encapsulate(cc *[CiphertextSize]byte, encapsulationKey []byte) (ciphertext, sharedKey []byte, err error) {
|
||||
if len(encapsulationKey) != EncapsulationKeySize {
|
||||
return nil, nil, errors.New("mlkem768: invalid encapsulation key length")
|
||||
}
|
||||
var m [messageSize]byte
|
||||
if _, err := rand.Read(m[:]); err != nil {
|
||||
return nil, nil, errors.New("mlkem768: crypto/rand Read failed: " + err.Error())
|
||||
}
|
||||
return kemEncaps(cc, encapsulationKey, &m)
|
||||
}
|
||||
|
||||
// kemEncaps generates a shared key and an associated ciphertext.
|
||||
//
|
||||
// It implements ML-KEM.Encaps according to FIPS 203 (DRAFT), Algorithm 16.
|
||||
func kemEncaps(cc *[CiphertextSize]byte, ek []byte, m *[messageSize]byte) (c, K []byte, err error) {
|
||||
if cc == nil {
|
||||
cc = &[CiphertextSize]byte{}
|
||||
}
|
||||
|
||||
H := sha3.Sum256(ek[:])
|
||||
g := sha3.New512()
|
||||
g.Write(m[:])
|
||||
g.Write(H[:])
|
||||
G := g.Sum(nil)
|
||||
K, r := G[:SharedKeySize], G[SharedKeySize:]
|
||||
var ex encryptionKey
|
||||
if err := parseEK(&ex, ek[:]); err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
c = pkeEncrypt(cc, &ex, m, r)
|
||||
return c, K, nil
|
||||
}
|
||||
|
||||
// parseEK parses an encryption key from its encoded form.
|
||||
//
|
||||
// It implements the initial stages of K-PKE.Encrypt according to FIPS 203
|
||||
// (DRAFT), Algorithm 13.
|
||||
func parseEK(ex *encryptionKey, ekPKE []byte) error {
|
||||
if len(ekPKE) != encryptionKeySize {
|
||||
return errors.New("mlkem768: invalid encryption key length")
|
||||
}
|
||||
|
||||
for i := range ex.t {
|
||||
var err error
|
||||
ex.t[i], err = polyByteDecode[nttElement](ekPKE[:encodingSize12])
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
ekPKE = ekPKE[encodingSize12:]
|
||||
}
|
||||
ρ := ekPKE
|
||||
|
||||
for i := byte(0); i < k; i++ {
|
||||
for j := byte(0); j < k; j++ {
|
||||
// See the note in pkeKeyGen about the order of the indices being
|
||||
// consistent with Kyber round 3.
|
||||
ex.A[i*k+j] = sampleNTT(ρ, j, i)
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// pkeEncrypt encrypt a plaintext message.
|
||||
//
|
||||
// It implements K-PKE.Encrypt according to FIPS 203 (DRAFT), Algorithm 13,
|
||||
// although the computation of t and AT is done in parseEK.
|
||||
func pkeEncrypt(cc *[CiphertextSize]byte, ex *encryptionKey, m *[messageSize]byte, rnd []byte) []byte {
|
||||
var N byte
|
||||
r, e1 := make([]nttElement, k), make([]ringElement, k)
|
||||
for i := range r {
|
||||
r[i] = ntt(samplePolyCBD(rnd, N))
|
||||
N++
|
||||
}
|
||||
for i := range e1 {
|
||||
e1[i] = samplePolyCBD(rnd, N)
|
||||
N++
|
||||
}
|
||||
e2 := samplePolyCBD(rnd, N)
|
||||
|
||||
u := make([]ringElement, k) // NTT⁻¹(AT ◦ r) + e1
|
||||
for i := range u {
|
||||
u[i] = e1[i]
|
||||
for j := range r {
|
||||
// Note that i and j are inverted, as we need the transposed of A.
|
||||
u[i] = polyAdd(u[i], inverseNTT(nttMul(ex.A[j*k+i], r[j])))
|
||||
}
|
||||
}
|
||||
|
||||
μ := ringDecodeAndDecompress1(m)
|
||||
|
||||
var vNTT nttElement // t⊺ ◦ r
|
||||
for i := range ex.t {
|
||||
vNTT = polyAdd(vNTT, nttMul(ex.t[i], r[i]))
|
||||
}
|
||||
v := polyAdd(polyAdd(inverseNTT(vNTT), e2), μ)
|
||||
|
||||
c := cc[:0]
|
||||
for _, f := range u {
|
||||
c = ringCompressAndEncode10(c, f)
|
||||
}
|
||||
c = ringCompressAndEncode4(c, v)
|
||||
|
||||
return c
|
||||
}
|
||||
|
||||
// Decapsulate generates a shared key from a ciphertext and a decapsulation key.
|
||||
// If the ciphertext is not valid, Decapsulate returns an error.
|
||||
//
|
||||
// The shared key must be kept secret.
|
||||
func Decapsulate(dk *DecapsulationKey, ciphertext []byte) (sharedKey []byte, err error) {
|
||||
if len(ciphertext) != CiphertextSize {
|
||||
return nil, errors.New("mlkem768: invalid ciphertext length")
|
||||
}
|
||||
c := (*[CiphertextSize]byte)(ciphertext)
|
||||
return kemDecaps(dk, c), nil
|
||||
}
|
||||
|
||||
// kemDecaps produces a shared key from a ciphertext.
|
||||
//
|
||||
// It implements ML-KEM.Decaps according to FIPS 203 (DRAFT), Algorithm 17.
|
||||
func kemDecaps(dk *DecapsulationKey, c *[CiphertextSize]byte) (K []byte) {
|
||||
h := dk.dk[decryptionKeySize+encryptionKeySize : decryptionKeySize+encryptionKeySize+32]
|
||||
z := dk.dk[decryptionKeySize+encryptionKeySize+32:]
|
||||
|
||||
m := pkeDecrypt(&dk.decryptionKey, c)
|
||||
g := sha3.New512()
|
||||
g.Write(m[:])
|
||||
g.Write(h)
|
||||
G := g.Sum(nil)
|
||||
Kprime, r := G[:SharedKeySize], G[SharedKeySize:]
|
||||
J := sha3.NewShake256()
|
||||
J.Write(z)
|
||||
J.Write(c[:])
|
||||
Kout := make([]byte, SharedKeySize)
|
||||
J.Read(Kout)
|
||||
var cc [CiphertextSize]byte
|
||||
c1 := pkeEncrypt(&cc, &dk.encryptionKey, (*[32]byte)(m), r)
|
||||
|
||||
subtle.ConstantTimeCopy(subtle.ConstantTimeCompare(c[:], c1), Kout, Kprime)
|
||||
return Kout
|
||||
}
|
||||
|
||||
// parseDK parses a decryption key from its encoded form.
|
||||
//
|
||||
// It implements the computation of s from K-PKE.Decrypt according to FIPS 203
|
||||
// (DRAFT), Algorithm 14.
|
||||
func parseDK(dx *decryptionKey, dkPKE []byte) error {
|
||||
if len(dkPKE) != decryptionKeySize {
|
||||
return errors.New("mlkem768: invalid decryption key length")
|
||||
}
|
||||
|
||||
for i := range dx.s {
|
||||
f, err := polyByteDecode[nttElement](dkPKE[:encodingSize12])
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
dx.s[i] = f
|
||||
dkPKE = dkPKE[encodingSize12:]
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// pkeDecrypt decrypts a ciphertext.
|
||||
//
|
||||
// It implements K-PKE.Decrypt according to FIPS 203 (DRAFT), Algorithm 14,
|
||||
// although the computation of s is done in parseDK.
|
||||
func pkeDecrypt(dx *decryptionKey, c *[CiphertextSize]byte) []byte {
|
||||
u := make([]ringElement, k)
|
||||
for i := range u {
|
||||
b := (*[encodingSize10]byte)(c[encodingSize10*i : encodingSize10*(i+1)])
|
||||
u[i] = ringDecodeAndDecompress10(b)
|
||||
}
|
||||
|
||||
b := (*[encodingSize4]byte)(c[encodingSize10*k:])
|
||||
v := ringDecodeAndDecompress4(b)
|
||||
|
||||
var mask nttElement // s⊺ ◦ NTT(u)
|
||||
for i := range dx.s {
|
||||
mask = polyAdd(mask, nttMul(dx.s[i], ntt(u[i])))
|
||||
}
|
||||
w := polySub(v, inverseNTT(mask))
|
||||
|
||||
return ringCompressAndEncode1(nil, w)
|
||||
}
|
||||
|
||||
// fieldElement is an integer modulo q, an element of ℤ_q. It is always reduced.
|
||||
type fieldElement uint16
|
||||
|
||||
// fieldCheckReduced checks that a value a is < q.
|
||||
func fieldCheckReduced(a uint16) (fieldElement, error) {
|
||||
if a >= q {
|
||||
return 0, errors.New("unreduced field element")
|
||||
}
|
||||
return fieldElement(a), nil
|
||||
}
|
||||
|
||||
// fieldReduceOnce reduces a value a < 2q.
|
||||
func fieldReduceOnce(a uint16) fieldElement {
|
||||
x := a - q
|
||||
// If x underflowed, then x >= 2¹⁶ - q > 2¹⁵, so the top bit is set.
|
||||
x += (x >> 15) * q
|
||||
return fieldElement(x)
|
||||
}
|
||||
|
||||
func fieldAdd(a, b fieldElement) fieldElement {
|
||||
x := uint16(a + b)
|
||||
return fieldReduceOnce(x)
|
||||
}
|
||||
|
||||
func fieldSub(a, b fieldElement) fieldElement {
|
||||
x := uint16(a - b + q)
|
||||
return fieldReduceOnce(x)
|
||||
}
|
||||
|
||||
const (
|
||||
barrettMultiplier = 5039 // 2¹² * 2¹² / q
|
||||
barrettShift = 24 // log₂(2¹² * 2¹²)
|
||||
)
|
||||
|
||||
// fieldReduce reduces a value a < 2q² using Barrett reduction, to avoid
|
||||
// potentially variable-time division.
|
||||
func fieldReduce(a uint32) fieldElement {
|
||||
quotient := uint32((uint64(a) * barrettMultiplier) >> barrettShift)
|
||||
return fieldReduceOnce(uint16(a - quotient*q))
|
||||
}
|
||||
|
||||
func fieldMul(a, b fieldElement) fieldElement {
|
||||
x := uint32(a) * uint32(b)
|
||||
return fieldReduce(x)
|
||||
}
|
||||
|
||||
// fieldMulSub returns a * (b - c). This operation is fused to save a
|
||||
// fieldReduceOnce after the subtraction.
|
||||
func fieldMulSub(a, b, c fieldElement) fieldElement {
|
||||
x := uint32(a) * uint32(b-c+q)
|
||||
return fieldReduce(x)
|
||||
}
|
||||
|
||||
// fieldAddMul returns a * b + c * d. This operation is fused to save a
|
||||
// fieldReduceOnce and a fieldReduce.
|
||||
func fieldAddMul(a, b, c, d fieldElement) fieldElement {
|
||||
x := uint32(a) * uint32(b)
|
||||
x += uint32(c) * uint32(d)
|
||||
return fieldReduce(x)
|
||||
}
|
||||
|
||||
// compress maps a field element uniformly to the range 0 to 2ᵈ-1, according to
|
||||
// FIPS 203 (DRAFT), Definition 4.5.
|
||||
func compress(x fieldElement, d uint8) uint16 {
|
||||
// We want to compute (x * 2ᵈ) / q, rounded to nearest integer, with 1/2
|
||||
// rounding up (see FIPS 203 (DRAFT), Section 2.3).
|
||||
|
||||
// Barrett reduction produces a quotient and a remainder in the range [0, 2q),
|
||||
// such that dividend = quotient * q + remainder.
|
||||
dividend := uint32(x) << d // x * 2ᵈ
|
||||
quotient := uint32(uint64(dividend) * barrettMultiplier >> barrettShift)
|
||||
remainder := dividend - quotient*q
|
||||
|
||||
// Since the remainder is in the range [0, 2q), not [0, q), we need to
|
||||
// portion it into three spans for rounding.
|
||||
//
|
||||
// [ 0, q/2 ) -> round to 0
|
||||
// [ q/2, q + q/2 ) -> round to 1
|
||||
// [ q + q/2, 2q ) -> round to 2
|
||||
//
|
||||
// We can convert that to the following logic: add 1 if remainder > q/2,
|
||||
// then add 1 again if remainder > q + q/2.
|
||||
//
|
||||
// Note that if remainder > x, then ⌊x⌋ - remainder underflows, and the top
|
||||
// bit of the difference will be set.
|
||||
quotient += (q/2 - remainder) >> 31 & 1
|
||||
quotient += (q + q/2 - remainder) >> 31 & 1
|
||||
|
||||
// quotient might have overflowed at this point, so reduce it by masking.
|
||||
var mask uint32 = (1 << d) - 1
|
||||
return uint16(quotient & mask)
|
||||
}
|
||||
|
||||
// decompress maps a number x between 0 and 2ᵈ-1 uniformly to the full range of
|
||||
// field elements, according to FIPS 203 (DRAFT), Definition 4.6.
|
||||
func decompress(y uint16, d uint8) fieldElement {
|
||||
// We want to compute (y * q) / 2ᵈ, rounded to nearest integer, with 1/2
|
||||
// rounding up (see FIPS 203 (DRAFT), Section 2.3).
|
||||
|
||||
dividend := uint32(y) * q
|
||||
quotient := dividend >> d // (y * q) / 2ᵈ
|
||||
|
||||
// The d'th least-significant bit of the dividend (the most significant bit
|
||||
// of the remainder) is 1 for the top half of the values that divide to the
|
||||
// same quotient, which are the ones that round up.
|
||||
quotient += dividend >> (d - 1) & 1
|
||||
|
||||
// quotient is at most (2¹¹-1) * q / 2¹¹ + 1 = 3328, so it didn't overflow.
|
||||
return fieldElement(quotient)
|
||||
}
|
||||
|
||||
// ringElement is a polynomial, an element of R_q, represented as an array
|
||||
// according to FIPS 203 (DRAFT), Section 2.4.
|
||||
type ringElement [n]fieldElement
|
||||
|
||||
// polyAdd adds two ringElements or nttElements.
|
||||
func polyAdd[T ~[n]fieldElement](a, b T) (s T) {
|
||||
for i := range s {
|
||||
s[i] = fieldAdd(a[i], b[i])
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
// polySub subtracts two ringElements or nttElements.
|
||||
func polySub[T ~[n]fieldElement](a, b T) (s T) {
|
||||
for i := range s {
|
||||
s[i] = fieldSub(a[i], b[i])
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
// polyByteEncode appends the 384-byte encoding of f to b.
|
||||
//
|
||||
// It implements ByteEncode₁₂, according to FIPS 203 (DRAFT), Algorithm 4.
|
||||
func polyByteEncode[T ~[n]fieldElement](b []byte, f T) []byte {
|
||||
out, B := sliceForAppend(b, encodingSize12)
|
||||
for i := 0; i < n; i += 2 {
|
||||
x := uint32(f[i]) | uint32(f[i+1])<<12
|
||||
B[0] = uint8(x)
|
||||
B[1] = uint8(x >> 8)
|
||||
B[2] = uint8(x >> 16)
|
||||
B = B[3:]
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
// polyByteDecode decodes the 384-byte encoding of a polynomial, checking that
|
||||
// all the coefficients are properly reduced. This achieves the "Modulus check"
|
||||
// step of ML-KEM Encapsulation Input Validation.
|
||||
//
|
||||
// polyByteDecode is also used in ML-KEM Decapsulation, where the input
|
||||
// validation is not required, but implicitly allowed by the specification.
|
||||
//
|
||||
// It implements ByteDecode₁₂, according to FIPS 203 (DRAFT), Algorithm 5.
|
||||
func polyByteDecode[T ~[n]fieldElement](b []byte) (T, error) {
|
||||
if len(b) != encodingSize12 {
|
||||
return T{}, errors.New("mlkem768: invalid encoding length")
|
||||
}
|
||||
var f T
|
||||
for i := 0; i < n; i += 2 {
|
||||
d := uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16
|
||||
const mask12 = 0b1111_1111_1111
|
||||
var err error
|
||||
if f[i], err = fieldCheckReduced(uint16(d & mask12)); err != nil {
|
||||
return T{}, errors.New("mlkem768: invalid polynomial encoding")
|
||||
}
|
||||
if f[i+1], err = fieldCheckReduced(uint16(d >> 12)); err != nil {
|
||||
return T{}, errors.New("mlkem768: invalid polynomial encoding")
|
||||
}
|
||||
b = b[3:]
|
||||
}
|
||||
return f, nil
|
||||
}
|
||||
|
||||
// sliceForAppend takes a slice and a requested number of bytes. It returns a
|
||||
// slice with the contents of the given slice followed by that many bytes and a
|
||||
// second slice that aliases into it and contains only the extra bytes. If the
|
||||
// original slice has sufficient capacity then no allocation is performed.
|
||||
func sliceForAppend(in []byte, n int) (head, tail []byte) {
|
||||
if total := len(in) + n; cap(in) >= total {
|
||||
head = in[:total]
|
||||
} else {
|
||||
head = make([]byte, total)
|
||||
copy(head, in)
|
||||
}
|
||||
tail = head[len(in):]
|
||||
return
|
||||
}
|
||||
|
||||
// ringCompressAndEncode1 appends a 32-byte encoding of a ring element to s,
|
||||
// compressing one coefficients per bit.
|
||||
//
|
||||
// It implements Compress₁, according to FIPS 203 (DRAFT), Definition 4.5,
|
||||
// followed by ByteEncode₁, according to FIPS 203 (DRAFT), Algorithm 4.
|
||||
func ringCompressAndEncode1(s []byte, f ringElement) []byte {
|
||||
s, b := sliceForAppend(s, encodingSize1)
|
||||
for i := range b {
|
||||
b[i] = 0
|
||||
}
|
||||
for i := range f {
|
||||
b[i/8] |= uint8(compress(f[i], 1) << (i % 8))
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
// ringDecodeAndDecompress1 decodes a 32-byte slice to a ring element where each
|
||||
// bit is mapped to 0 or ⌈q/2⌋.
|
||||
//
|
||||
// It implements ByteDecode₁, according to FIPS 203 (DRAFT), Algorithm 5,
|
||||
// followed by Decompress₁, according to FIPS 203 (DRAFT), Definition 4.6.
|
||||
func ringDecodeAndDecompress1(b *[encodingSize1]byte) ringElement {
|
||||
var f ringElement
|
||||
for i := range f {
|
||||
b_i := b[i/8] >> (i % 8) & 1
|
||||
const halfQ = (q + 1) / 2 // ⌈q/2⌋, rounded up per FIPS 203 (DRAFT), Section 2.3
|
||||
f[i] = fieldElement(b_i) * halfQ // 0 decompresses to 0, and 1 to ⌈q/2⌋
|
||||
}
|
||||
return f
|
||||
}
|
||||
|
||||
// ringCompressAndEncode4 appends a 128-byte encoding of a ring element to s,
|
||||
// compressing two coefficients per byte.
|
||||
//
|
||||
// It implements Compress₄, according to FIPS 203 (DRAFT), Definition 4.5,
|
||||
// followed by ByteEncode₄, according to FIPS 203 (DRAFT), Algorithm 4.
|
||||
func ringCompressAndEncode4(s []byte, f ringElement) []byte {
|
||||
s, b := sliceForAppend(s, encodingSize4)
|
||||
for i := 0; i < n; i += 2 {
|
||||
b[i/2] = uint8(compress(f[i], 4) | compress(f[i+1], 4)<<4)
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
// ringDecodeAndDecompress4 decodes a 128-byte encoding of a ring element where
|
||||
// each four bits are mapped to an equidistant distribution.
|
||||
//
|
||||
// It implements ByteDecode₄, according to FIPS 203 (DRAFT), Algorithm 5,
|
||||
// followed by Decompress₄, according to FIPS 203 (DRAFT), Definition 4.6.
|
||||
func ringDecodeAndDecompress4(b *[encodingSize4]byte) ringElement {
|
||||
var f ringElement
|
||||
for i := 0; i < n; i += 2 {
|
||||
f[i] = fieldElement(decompress(uint16(b[i/2]&0b1111), 4))
|
||||
f[i+1] = fieldElement(decompress(uint16(b[i/2]>>4), 4))
|
||||
}
|
||||
return f
|
||||
}
|
||||
|
||||
// ringCompressAndEncode10 appends a 320-byte encoding of a ring element to s,
|
||||
// compressing four coefficients per five bytes.
|
||||
//
|
||||
// It implements Compress₁₀, according to FIPS 203 (DRAFT), Definition 4.5,
|
||||
// followed by ByteEncode₁₀, according to FIPS 203 (DRAFT), Algorithm 4.
|
||||
func ringCompressAndEncode10(s []byte, f ringElement) []byte {
|
||||
s, b := sliceForAppend(s, encodingSize10)
|
||||
for i := 0; i < n; i += 4 {
|
||||
var x uint64
|
||||
x |= uint64(compress(f[i+0], 10))
|
||||
x |= uint64(compress(f[i+1], 10)) << 10
|
||||
x |= uint64(compress(f[i+2], 10)) << 20
|
||||
x |= uint64(compress(f[i+3], 10)) << 30
|
||||
b[0] = uint8(x)
|
||||
b[1] = uint8(x >> 8)
|
||||
b[2] = uint8(x >> 16)
|
||||
b[3] = uint8(x >> 24)
|
||||
b[4] = uint8(x >> 32)
|
||||
b = b[5:]
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
// ringDecodeAndDecompress10 decodes a 320-byte encoding of a ring element where
|
||||
// each ten bits are mapped to an equidistant distribution.
|
||||
//
|
||||
// It implements ByteDecode₁₀, according to FIPS 203 (DRAFT), Algorithm 5,
|
||||
// followed by Decompress₁₀, according to FIPS 203 (DRAFT), Definition 4.6.
|
||||
func ringDecodeAndDecompress10(bb *[encodingSize10]byte) ringElement {
|
||||
b := bb[:]
|
||||
var f ringElement
|
||||
for i := 0; i < n; i += 4 {
|
||||
x := uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 | uint64(b[4])<<32
|
||||
b = b[5:]
|
||||
f[i] = fieldElement(decompress(uint16(x>>0&0b11_1111_1111), 10))
|
||||
f[i+1] = fieldElement(decompress(uint16(x>>10&0b11_1111_1111), 10))
|
||||
f[i+2] = fieldElement(decompress(uint16(x>>20&0b11_1111_1111), 10))
|
||||
f[i+3] = fieldElement(decompress(uint16(x>>30&0b11_1111_1111), 10))
|
||||
}
|
||||
return f
|
||||
}
|
||||
|
||||
// samplePolyCBD draws a ringElement from the special Dη distribution given a
|
||||
// stream of random bytes generated by the PRF function, according to FIPS 203
|
||||
// (DRAFT), Algorithm 7 and Definition 4.1.
|
||||
func samplePolyCBD(s []byte, b byte) ringElement {
|
||||
prf := sha3.NewShake256()
|
||||
prf.Write(s)
|
||||
prf.Write([]byte{b})
|
||||
B := make([]byte, 128)
|
||||
prf.Read(B)
|
||||
|
||||
// SamplePolyCBD simply draws four (2η) bits for each coefficient, and adds
|
||||
// the first two and subtracts the last two.
|
||||
|
||||
var f ringElement
|
||||
for i := 0; i < n; i += 2 {
|
||||
b := B[i/2]
|
||||
b_7, b_6, b_5, b_4 := b>>7, b>>6&1, b>>5&1, b>>4&1
|
||||
b_3, b_2, b_1, b_0 := b>>3&1, b>>2&1, b>>1&1, b&1
|
||||
f[i] = fieldSub(fieldElement(b_0+b_1), fieldElement(b_2+b_3))
|
||||
f[i+1] = fieldSub(fieldElement(b_4+b_5), fieldElement(b_6+b_7))
|
||||
}
|
||||
return f
|
||||
}
|
||||
|
||||
// nttElement is an NTT representation, an element of T_q, represented as an
|
||||
// array according to FIPS 203 (DRAFT), Section 2.4.
|
||||
type nttElement [n]fieldElement
|
||||
|
||||
// gammas are the values ζ^2BitRev7(i)+1 mod q for each index i.
|
||||
var gammas = [128]fieldElement{17, 3312, 2761, 568, 583, 2746, 2649, 680, 1637, 1692, 723, 2606, 2288, 1041, 1100, 2229, 1409, 1920, 2662, 667, 3281, 48, 233, 3096, 756, 2573, 2156, 1173, 3015, 314, 3050, 279, 1703, 1626, 1651, 1678, 2789, 540, 1789, 1540, 1847, 1482, 952, 2377, 1461, 1868, 2687, 642, 939, 2390, 2308, 1021, 2437, 892, 2388, 941, 733, 2596, 2337, 992, 268, 3061, 641, 2688, 1584, 1745, 2298, 1031, 2037, 1292, 3220, 109, 375, 2954, 2549, 780, 2090, 1239, 1645, 1684, 1063, 2266, 319, 3010, 2773, 556, 757, 2572, 2099, 1230, 561, 2768, 2466, 863, 2594, 735, 2804, 525, 1092, 2237, 403, 2926, 1026, 2303, 1143, 2186, 2150, 1179, 2775, 554, 886, 2443, 1722, 1607, 1212, 2117, 1874, 1455, 1029, 2300, 2110, 1219, 2935, 394, 885, 2444, 2154, 1175}
|
||||
|
||||
// nttMul multiplies two nttElements.
|
||||
//
|
||||
// It implements MultiplyNTTs, according to FIPS 203 (DRAFT), Algorithm 10.
|
||||
func nttMul(f, g nttElement) nttElement {
|
||||
var h nttElement
|
||||
// We use i += 2 for bounds check elimination. See https://go.dev/issue/66826.
|
||||
for i := 0; i < 256; i += 2 {
|
||||
a0, a1 := f[i], f[i+1]
|
||||
b0, b1 := g[i], g[i+1]
|
||||
h[i] = fieldAddMul(a0, b0, fieldMul(a1, b1), gammas[i/2])
|
||||
h[i+1] = fieldAddMul(a0, b1, a1, b0)
|
||||
}
|
||||
return h
|
||||
}
|
||||
|
||||
// zetas are the values ζ^BitRev7(k) mod q for each index k.
|
||||
var zetas = [128]fieldElement{1, 1729, 2580, 3289, 2642, 630, 1897, 848, 1062, 1919, 193, 797, 2786, 3260, 569, 1746, 296, 2447, 1339, 1476, 3046, 56, 2240, 1333, 1426, 2094, 535, 2882, 2393, 2879, 1974, 821, 289, 331, 3253, 1756, 1197, 2304, 2277, 2055, 650, 1977, 2513, 632, 2865, 33, 1320, 1915, 2319, 1435, 807, 452, 1438, 2868, 1534, 2402, 2647, 2617, 1481, 648, 2474, 3110, 1227, 910, 17, 2761, 583, 2649, 1637, 723, 2288, 1100, 1409, 2662, 3281, 233, 756, 2156, 3015, 3050, 1703, 1651, 2789, 1789, 1847, 952, 1461, 2687, 939, 2308, 2437, 2388, 733, 2337, 268, 641, 1584, 2298, 2037, 3220, 375, 2549, 2090, 1645, 1063, 319, 2773, 757, 2099, 561, 2466, 2594, 2804, 1092, 403, 1026, 1143, 2150, 2775, 886, 1722, 1212, 1874, 1029, 2110, 2935, 885, 2154}
|
||||
|
||||
// ntt maps a ringElement to its nttElement representation.
|
||||
//
|
||||
// It implements NTT, according to FIPS 203 (DRAFT), Algorithm 8.
|
||||
func ntt(f ringElement) nttElement {
|
||||
k := 1
|
||||
for len := 128; len >= 2; len /= 2 {
|
||||
for start := 0; start < 256; start += 2 * len {
|
||||
zeta := zetas[k]
|
||||
k++
|
||||
// Bounds check elimination hint.
|
||||
f, flen := f[start:start+len], f[start+len:start+len+len]
|
||||
for j := 0; j < len; j++ {
|
||||
t := fieldMul(zeta, flen[j])
|
||||
flen[j] = fieldSub(f[j], t)
|
||||
f[j] = fieldAdd(f[j], t)
|
||||
}
|
||||
}
|
||||
}
|
||||
return nttElement(f)
|
||||
}
|
||||
|
||||
// inverseNTT maps a nttElement back to the ringElement it represents.
|
||||
//
|
||||
// It implements NTT⁻¹, according to FIPS 203 (DRAFT), Algorithm 9.
|
||||
func inverseNTT(f nttElement) ringElement {
|
||||
k := 127
|
||||
for len := 2; len <= 128; len *= 2 {
|
||||
for start := 0; start < 256; start += 2 * len {
|
||||
zeta := zetas[k]
|
||||
k--
|
||||
// Bounds check elimination hint.
|
||||
f, flen := f[start:start+len], f[start+len:start+len+len]
|
||||
for j := 0; j < len; j++ {
|
||||
t := f[j]
|
||||
f[j] = fieldAdd(t, flen[j])
|
||||
flen[j] = fieldMulSub(zeta, flen[j], t)
|
||||
}
|
||||
}
|
||||
}
|
||||
for i := range f {
|
||||
f[i] = fieldMul(f[i], 3303) // 3303 = 128⁻¹ mod q
|
||||
}
|
||||
return ringElement(f)
|
||||
}
|
||||
|
||||
// sampleNTT draws a uniformly random nttElement from a stream of uniformly
|
||||
// random bytes generated by the XOF function, according to FIPS 203 (DRAFT),
|
||||
// Algorithm 6 and Definition 4.2.
|
||||
func sampleNTT(rho []byte, ii, jj byte) nttElement {
|
||||
B := sha3.NewShake128()
|
||||
B.Write(rho)
|
||||
B.Write([]byte{ii, jj})
|
||||
|
||||
// SampleNTT essentially draws 12 bits at a time from r, interprets them in
|
||||
// little-endian, and rejects values higher than q, until it drew 256
|
||||
// values. (The rejection rate is approximately 19%.)
|
||||
//
|
||||
// To do this from a bytes stream, it draws three bytes at a time, and
|
||||
// splits them into two uint16 appropriately masked.
|
||||
//
|
||||
// r₀ r₁ r₂
|
||||
// |- - - - - - - -|- - - - - - - -|- - - - - - - -|
|
||||
//
|
||||
// Uint16(r₀ || r₁)
|
||||
// |- - - - - - - - - - - - - - - -|
|
||||
// |- - - - - - - - - - - -|
|
||||
// d₁
|
||||
//
|
||||
// Uint16(r₁ || r₂)
|
||||
// |- - - - - - - - - - - - - - - -|
|
||||
// |- - - - - - - - - - - -|
|
||||
// d₂
|
||||
//
|
||||
// Note that in little-endian, the rightmost bits are the most significant
|
||||
// bits (dropped with a mask) and the leftmost bits are the least
|
||||
// significant bits (dropped with a right shift).
|
||||
|
||||
var a nttElement
|
||||
var j int // index into a
|
||||
var buf [24]byte // buffered reads from B
|
||||
off := len(buf) // index into buf, starts in a "buffer fully consumed" state
|
||||
for {
|
||||
if off >= len(buf) {
|
||||
B.Read(buf[:])
|
||||
off = 0
|
||||
}
|
||||
d1 := byteorder.LeUint16(buf[off:]) & 0b1111_1111_1111
|
||||
d2 := byteorder.LeUint16(buf[off+1:]) >> 4
|
||||
off += 3
|
||||
if d1 < q {
|
||||
a[j] = fieldElement(d1)
|
||||
j++
|
||||
}
|
||||
if j >= len(a) {
|
||||
break
|
||||
}
|
||||
if d2 < q {
|
||||
a[j] = fieldElement(d2)
|
||||
j++
|
||||
}
|
||||
if j >= len(a) {
|
||||
break
|
||||
}
|
||||
}
|
||||
return a
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue