(This relands commit a4dcc692011bf1ceca9b1a363fd83f3e59e399ee.)
https://tools.ietf.org/html/rfc6066#section-3 states:
“Literal IPv4 and IPv6 addresses are not permitted in "HostName".”
However, if an IP literal was set as Config.ServerName (which could
happen as easily as calling Dial with an IP address) then the code would
send the IP literal as the SNI value.
This change filters out IP literals, as recognised by net.ParseIP, from
being sent as the SNI value.
Fixes#13111.
Change-Id: I6e544a78a01388f8fe98150589d073b917087f75
Reviewed-on: https://go-review.googlesource.com/16776
Run-TryBot: Adam Langley <agl@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
https://tools.ietf.org/html/rfc6066#section-3 states:
“Literal IPv4 and IPv6 addresses are not permitted in "HostName".”
However, if an IP literal was set as Config.ServerName (which could
happen as easily as calling Dial with an IP address) then the code would
send the IP literal as the SNI value.
This change filters out IP literals, as recognised by net.ParseIP, from
being sent as the SNI value.
Fixes#13111.
Change-Id: Ie9ec7acc767ae172b48c9c6dd8d84fa27b1cf0de
Reviewed-on: https://go-review.googlesource.com/16742
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Run-TryBot: Adam Langley <agl@golang.org>
In Go 1.5, Config.Certificates is no longer required if
Config.GetCertificate has been set. This change updated four comments to
reflect that.
Change-Id: Id72cc22fc79e931b2d645a7c3960c3241042762c
Reviewed-on: https://go-review.googlesource.com/13800
Reviewed-by: Adam Langley <agl@golang.org>
Strengthening VerifyHostname exposed the fact that for resumed
connections, ConnectionState().VerifiedChains was not being saved
and restored during the ClientSessionCache operations.
Do that.
This change just saves the verified chains in the client's session
cache. It does not re-verify the certificates when resuming a
connection.
There are arguments both ways about this: we want fast, light-weight
resumption connections (thus suggesting that we shouldn't verify) but
it could also be a little surprising that, if the verification config
is changed, that would be ignored if the same session cache is used.
On the server side we do re-verify client-auth certificates, but the
situation is a little different there. The client session cache is an
object in memory that's reset each time the process restarts. But the
server's session cache is a conceptual object, held by the clients, so
can persist across server restarts. Thus the chance of a change in
verification config being surprisingly ignored is much higher in the
server case.
Fixes#12024.
Change-Id: I3081029623322ce3d9f4f3819659fdd9a381db16
Reviewed-on: https://go-review.googlesource.com/13164
Reviewed-by: Russ Cox <rsc@golang.org>
Run-TryBot: Russ Cox <rsc@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
This is the second in a two-part change. See https://golang.org/cl/9415
for details of the overall change.
This change updates the supported signature algorithms to include
SHA-384 and updates all the testdata/ files accordingly. Even some of
the testdata/ files named “TLS1.0” and “TLS1.1” have been updated
because they have TLS 1.2 ClientHello's even though the server picks a
lower version.
Fixes#9757.
Change-Id: Ia76de2b548d3b39cd4aa3f71132b0da7c917debd
Reviewed-on: https://go-review.googlesource.com/9472
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Prior to TLS 1.2, the handshake had a pleasing property that one could
incrementally hash it and, from that, get the needed hashes for both
the CertificateVerify and Finished messages.
TLS 1.2 introduced negotiation for the signature and hash and it became
possible for the handshake hash to be, say, SHA-384, but for the
CertificateVerify to sign the handshake with SHA-1. The problem is that
one doesn't know in advance which hashes will be needed and thus the
handshake needs to be buffered.
Go ignored this, always kept a single handshake hash, and any signatures
over the handshake had to use that hash.
However, there are a set of servers that inspect the client's offered
signature hash functions and will abort the handshake if one of the
server's certificates is signed with a hash function outside of that
set. https://robertsspaceindustries.com/ is an example of such a server.
Clearly not a lot of thought happened when that server code was written,
but its out there and we have to deal with it.
This change decouples the handshake hash from the CertificateVerify
hash. This lays the groundwork for advertising support for SHA-384 but
doesn't actually make that change in the interests of reviewability.
Updating the advertised hash functions will cause changes in many of the
testdata/ files and some errors might get lost in the noise. This change
only needs to update four testdata/ files: one because a SHA-384-based
handshake is now being signed with SHA-256 and the others because the
TLS 1.2 CertificateRequest message now includes SHA-1.
This change also has the effect of adding support for
client-certificates in SSLv3 servers. However, SSLv3 is now disabled by
default so this should be moot.
It would be possible to avoid much of this change and just support
SHA-384 for the ServerKeyExchange as the SKX only signs over the nonces
and SKX params (a design mistake in TLS). However, that would leave Go
in the odd situation where it advertised support for SHA-384, but would
only use the handshake hash when signing client certificates. I fear
that'll just cause problems in the future.
Much of this code was written by davidben@ for the purposes of testing
BoringSSL.
Partly addresses #9757
Change-Id: I5137a472b6076812af387a5a69fc62c7373cd485
Reviewed-on: https://go-review.googlesource.com/9415
Run-TryBot: Adam Langley <agl@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
This change causes the GetCertificate callback to be called if
Certificates is empty. Previously this configuration would result in an
error.
This allows people to have servers that depend entirely on dynamic
certificate selection, even when the client doesn't send SNI.
Fixes#9208.
Change-Id: I2f5a5551215958b88b154c64a114590300dfc461
Reviewed-on: https://go-review.googlesource.com/8792
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Run-TryBot: Adam Langley <agl@golang.org>
The OCSP response is currently only exposed via a method on Conn,
which makes it inaccessible when using wrappers like net/http. The
ConnectionState structure is typically available even when using
wrappers and contains many of the other handshake details, so this
change exposes the stapled OCSP response in that structure.
Change-Id: If8dab49292566912c615d816321b4353e711f71f
Reviewed-on: https://go-review.googlesource.com/9361
Reviewed-by: Adam Langley <agl@golang.org>
Run-TryBot: Adam Langley <agl@golang.org>
This change adds a new method to tls.Config, SetSessionTicketKeys, that
changes the key used to encrypt session tickets while the server is
running. Additional keys may be provided that will be used to maintain
continuity while rotating keys. If a ticket encrypted with an old key is
provided by the client, the server will resume the session and provide
the client with a ticket encrypted using the new key.
Fixes#9994
Change-Id: Idbc16b10ff39616109a51ed39a6fa208faad5b4e
Reviewed-on: https://go-review.googlesource.com/9072
Reviewed-by: Jonathan Rudenberg <jonathan@titanous.com>
Reviewed-by: Adam Langley <agl@golang.org>
This change adds support for serving and receiving Signed Certificate
Timestamps as described in RFC 6962.
The server is now capable of serving SCTs listed in the Certificate
structure. The client now asks for SCTs and, if any are received,
they are exposed in the ConnectionState structure.
Fixes#10201
Change-Id: Ib3adae98cb4f173bc85cec04d2bdd3aa0fec70bb
Reviewed-on: https://go-review.googlesource.com/8988
Reviewed-by: Adam Langley <agl@golang.org>
Run-TryBot: Adam Langley <agl@golang.org>
Reviewed-by: Jonathan Rudenberg <jonathan@titanous.com>
This is a follow on to 28f33b4a which removes one of the boolean flags
and adds a test for the key-driven cipher selection.
Change-Id: If2a400de807eb19110352912a9f467491cc8986c
Reviewed-on: https://go-review.googlesource.com/8428
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
Reviewed-by: Jacob Haven <jacob@cloudflare.com>
This change replaces all direct ECDSA/RSA sign and decrypt operations
with calls through the crypto.Signer and crypto.Decrypter interfaces.
This is a follow-up to https://go-review.googlesource.com/#/c/3900/
which added crypto.Decrypter and implemented it for RSA.
Change-Id: Ie0f3928448b285f329efcd3a93ca3fd5e3b3e42d
Reviewed-on: https://go-review.googlesource.com/7804
Reviewed-by: Adam Langley <agl@golang.org>
Commit 604fa4d5 made TLS 1.0 the default minimum version. This commit
amends a comment to reflect that.
This is where the default is used in the absence of an explicit version
being set:
edadffa2f3/src/crypto/tls/common.go (L391-L393)
Change-Id: I8f1117ecdddc85bb1cc76a6834026505a380b793
Reviewed-on: https://go-review.googlesource.com/5525
Reviewed-by: Mikio Hara <mikioh.mikioh@gmail.com>
Reviewed-by: Minux Ma <minux@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
Commit f1d669aee994b28e1afcfe974680565932d25b70 added support for
AES_256_GCM_SHA384 cipher suites as specified in RFC5289. However, it
did not take the arbitrary hash function into account in the TLS client
handshake when using client certificates.
The hashForClientCertificate method always returned SHA256 as its
hashing function, even if it actually used a different one to calculate
its digest. Setting up the connection would eventually fail with the
error "tls: failed to sign handshake with client certificate:
crypto/rsa: input must be hashed message".
Included is an additional test for this specific situation that uses the
SHA384 hash.
Fixes#9808
Change-Id: Iccbf4ab225633471ef897907c208ad31f92855a3
Reviewed-on: https://go-review.googlesource.com/7040
Reviewed-by: Adam Langley <agl@golang.org>
Run-TryBot: Adam Langley <agl@golang.org>
SSLv3 (the old minimum) is still supported and can be enabled via the
tls.Config, but this change increases the default minimum version to TLS
1.0. This is now common practice in light of the POODLE[1] attack
against SSLv3's CBC padding format.
[1] https://www.imperialviolet.org/2014/10/14/poodle.htmlFixes#9364.
Change-Id: Ibae6666ee038ceee0cb18c339c393155928c6510
Reviewed-on: https://go-review.googlesource.com/1791
Reviewed-by: Minux Ma <minux@golang.org>