Commit graph

70 commits

Author SHA1 Message Date
Filippo Valsorda
37bb5603bb [dev.boringcrypto] all: merge master into dev.boringcrypto
Change-Id: I0f610a900fcd5575ca12b34bc74fa63c2146b10b
2019-05-28 12:28:07 -04:00
Filippo Valsorda
28958b0da6 crypto/tls: add support for Ed25519 certificates in TLS 1.2 and 1.3
Support for Ed25519 certificates was added in CL 175478, this wires them
up into the TLS stack according to RFC 8422 (TLS 1.2) and RFC 8446 (TLS 1.3).

RFC 8422 also specifies support for TLS 1.0 and 1.1, and I initially
implemented that, but even OpenSSL doesn't take the complexity, so I
just dropped it. It would have required keeping a buffer of the
handshake transcript in order to do the direct Ed25519 signatures. We
effectively need to support TLS 1.2 because it shares ClientHello
signature algorithms with TLS 1.3.

While at it, reordered the advertised signature algorithms in the rough
order we would want to use them, also based on what curves have fast
constant-time implementations.

Client and client auth tests changed because of the change in advertised
signature algorithms in ClientHello and CertificateRequest.

Fixes #25355

Change-Id: I9fdd839afde4fd6b13fcbc5cc7017fd8c35085ee
Reviewed-on: https://go-review.googlesource.com/c/go/+/177698
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2019-05-17 16:13:45 +00:00
Filippo Valsorda
29e18da00d [dev.boringcrypto] all: merge master into dev.boringcrypto
This effectively reverts the golang.org/cl/161699 merge.

Change-Id: I7c982a97f3ae0015e2e148d4831912d058d682f8
2019-02-27 15:39:47 -05:00
Filippo Valsorda
96f0ccfb2d [dev.boringcrypto] all: merge master into dev.boringcrypto
Change-Id: I9246c8228d38559c40e69fa403fa946ac1b31dbe
2019-02-08 17:54:25 -05:00
Filippo Valsorda
034cff773b crypto/tls: send a "handshake failure" alert if the RSA key is too small
Fixes #29779

Change-Id: I7eb8b4db187597e07d8ec7d3ff651f008e2ca433
Reviewed-on: https://go-review.googlesource.com/c/158639
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2019-01-20 20:01:48 +00:00
Tobias Klauser
fc0c3c8003 all: use "reports whether" consistently instead of "returns whether"
Follow-up for CL 147037 and after Brad noticed the "returns whether"
pattern during the review of CL 150621.

Go documentation style for boolean funcs is to say:

    // Foo reports whether ...
    func Foo() bool

(rather than "returns whether")

Created with:

    $ perl -i -npe 's/returns whether/reports whether/' $(git grep -l "returns whether" | grep -v vendor)

Change-Id: I15fe9ff99180ad97750cd05a10eceafdb12dc0b4
Reviewed-on: https://go-review.googlesource.com/c/150918
Run-TryBot: Tobias Klauser <tobias.klauser@gmail.com>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2018-12-02 15:12:26 +00:00
Filippo Valsorda
e6d3a40b77 crypto/tls: improve error message for unsupported certificates in TLS 1.3
Fixes #28960

Change-Id: I0d049d4776dc42ef165a1da15f63de08677fbb85
Reviewed-on: https://go-review.googlesource.com/c/151661
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2018-11-30 19:11:39 +00:00
Filippo Valsorda
daa7ff8195 crypto/tls: fix client certificates support for legacy servers
signatureSchemesForCertificate was written to be used with TLS 1.3, but
ended up used for TLS 1.2 client certificates in a refactor. Since it
only supported TLS 1.3 signature algorithms, it would lead to no RSA
client certificates being sent to servers that didn't support RSA-PSS.

TestHandshakeClientCertRSAPKCS1v15 was testing *specifically* for this,
but alas the OpenSSL flag -verify accepts an empty certificates list as
valid, as opposed to -Verify...

Fixes #28925

Change-Id: I61afc02ca501d3d64ab4ad77bbb4cf10931e6f93
Reviewed-on: https://go-review.googlesource.com/c/151660
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2018-11-30 19:10:38 +00:00
Filippo Valsorda
7fdc251066 [dev.boringcrypto] crypto/tls: test for TLS 1.3 to be disabled in FIPS mode
Change-Id: I32b3e29a3e34f20cccc51666905fd36744ef00b2
Reviewed-on: https://go-review.googlesource.com/c/149602
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2018-11-14 20:35:41 +00:00
Filippo Valsorda
76b370b1b0 [dev.boringcrypto] all: merge master into dev.boringcrypto
Change-Id: I429a190472368dd88a2bf2f1be5adefa459d3087
2018-11-14 15:31:35 -05:00
Filippo Valsorda
b2d87ba63f [dev.boringcrypto] all: merge master into dev.boringcrypto
Change-Id: I81b64fe503bf07b4d7bd823286b83e663b5c0f76
2018-11-14 15:30:58 -05:00
Filippo Valsorda
5db23cd389 crypto/tls: enable TLS 1.3 and update tests
To disable TLS 1.3, simply remove VersionTLS13 from supportedVersions,
as tested by TestEscapeRoute, and amend documentation. To make it
opt-in, revert the change to (*Config).supportedVersions from this CL.

I did not have the heart to implement the early data skipping feature
when I realized that it did not offer a choice between two
abstraction-breaking options, but demanded them both (look for handshake
type in case of HelloRetryRequest, trial decryption otherwise). It's a
lot of complexity for an apparently small gain, but if anyone has strong
opinions about it let me know.

Note that in TLS 1.3 alerts are encrypted, so the close_notify peeking
to return (n > 0, io.EOF) from Read doesn't work. If we are lucky, those
servers that unexpectedly close connections after serving a single
request will have stopped (maybe thanks to H/2) before they got updated
to TLS 1.3.

Relatedly, session tickets are now provisioned on the client first Read
instead of at Handshake time, because they are, well, post-handshake
messages. If this proves to be a problem we might try to peek at them.

Doubled the tests that cover logic that's different in TLS 1.3.

The benchmarks for TLS 1.2 compared to be0f3c286b5 (before TLS 1.3 and
its refactors, after CL 142817 changed them to use real connections)
show little movement.

name                                       old time/op   new time/op   delta
HandshakeServer/RSA-8                        795µs ± 1%    798µs ± 1%    ~     (p=0.057 n=10+18)
HandshakeServer/ECDHE-P256-RSA-8             903µs ± 0%    909µs ± 1%  +0.68%  (p=0.000 n=8+17)
HandshakeServer/ECDHE-P256-ECDSA-P256-8      198µs ± 0%    204µs ± 1%  +3.24%  (p=0.000 n=9+18)
HandshakeServer/ECDHE-X25519-ECDSA-P256-8    202µs ± 3%    208µs ± 1%  +2.98%  (p=0.000 n=9+20)
HandshakeServer/ECDHE-P521-ECDSA-P521-8     15.5ms ± 1%   15.9ms ± 2%  +2.49%  (p=0.000 n=10+20)
Throughput/MaxPacket/1MB-8                  5.81ms ±23%   6.14ms ±44%    ~     (p=0.605 n=8+18)
Throughput/MaxPacket/2MB-8                  8.91ms ±22%   8.74ms ±33%    ~     (p=0.498 n=9+19)
Throughput/MaxPacket/4MB-8                  12.8ms ± 3%   14.0ms ±10%  +9.74%  (p=0.000 n=10+17)
Throughput/MaxPacket/8MB-8                  25.1ms ± 7%   24.6ms ±16%    ~     (p=0.129 n=9+19)
Throughput/MaxPacket/16MB-8                 46.3ms ± 4%   45.9ms ±12%    ~     (p=0.340 n=9+20)
Throughput/MaxPacket/32MB-8                 88.5ms ± 4%   86.0ms ± 4%  -2.82%  (p=0.004 n=10+20)
Throughput/MaxPacket/64MB-8                  173ms ± 2%    167ms ± 7%  -3.42%  (p=0.001 n=10+19)
Throughput/DynamicPacket/1MB-8              5.88ms ± 4%   6.59ms ±64%    ~     (p=0.232 n=9+18)
Throughput/DynamicPacket/2MB-8              9.08ms ±12%   8.73ms ±21%    ~     (p=0.408 n=10+18)
Throughput/DynamicPacket/4MB-8              14.2ms ± 5%   14.0ms ±11%    ~     (p=0.188 n=9+19)
Throughput/DynamicPacket/8MB-8              25.1ms ± 6%   24.0ms ± 7%  -4.39%  (p=0.000 n=10+18)
Throughput/DynamicPacket/16MB-8             45.6ms ± 3%   43.3ms ± 1%  -5.22%  (p=0.000 n=10+8)
Throughput/DynamicPacket/32MB-8             88.4ms ± 3%   84.8ms ± 2%  -4.06%  (p=0.000 n=10+10)
Throughput/DynamicPacket/64MB-8              175ms ± 3%    167ms ± 2%  -4.63%  (p=0.000 n=10+10)
Latency/MaxPacket/200kbps-8                  694ms ± 0%    694ms ± 0%  -0.02%  (p=0.000 n=9+9)
Latency/MaxPacket/500kbps-8                  279ms ± 0%    279ms ± 0%  -0.09%  (p=0.000 n=10+10)
Latency/MaxPacket/1000kbps-8                 140ms ± 0%    140ms ± 0%  -0.15%  (p=0.000 n=10+9)
Latency/MaxPacket/2000kbps-8                71.1ms ± 0%   71.0ms ± 0%  -0.09%  (p=0.001 n=8+9)
Latency/MaxPacket/5000kbps-8                30.5ms ± 6%   30.1ms ± 6%    ~     (p=0.905 n=10+9)
Latency/DynamicPacket/200kbps-8              134ms ± 0%    134ms ± 0%    ~     (p=0.796 n=9+9)
Latency/DynamicPacket/500kbps-8             54.8ms ± 0%   54.7ms ± 0%  -0.18%  (p=0.000 n=8+10)
Latency/DynamicPacket/1000kbps-8            28.5ms ± 0%   29.1ms ± 8%    ~     (p=0.173 n=8+10)
Latency/DynamicPacket/2000kbps-8            15.3ms ± 6%   15.9ms ±10%    ~     (p=0.905 n=9+10)
Latency/DynamicPacket/5000kbps-8            9.14ms ±21%   9.65ms ±82%    ~     (p=0.529 n=10+10)

name                                       old speed     new speed     delta
Throughput/MaxPacket/1MB-8                 175MB/s ±13%  167MB/s ±64%    ~     (p=0.646 n=7+20)
Throughput/MaxPacket/2MB-8                 241MB/s ±25%  241MB/s ±40%    ~     (p=0.660 n=9+20)
Throughput/MaxPacket/4MB-8                 328MB/s ± 3%  300MB/s ± 9%  -8.70%  (p=0.000 n=10+17)
Throughput/MaxPacket/8MB-8                 335MB/s ± 7%  340MB/s ±17%    ~     (p=0.212 n=9+20)
Throughput/MaxPacket/16MB-8                363MB/s ± 4%  367MB/s ±11%    ~     (p=0.340 n=9+20)
Throughput/MaxPacket/32MB-8                379MB/s ± 4%  390MB/s ± 4%  +2.93%  (p=0.004 n=10+20)
Throughput/MaxPacket/64MB-8                388MB/s ± 2%  401MB/s ± 7%  +3.25%  (p=0.004 n=10+20)
Throughput/DynamicPacket/1MB-8             178MB/s ± 4%  157MB/s ±73%    ~     (p=0.127 n=9+20)
Throughput/DynamicPacket/2MB-8             232MB/s ±11%  243MB/s ±18%    ~     (p=0.415 n=10+18)
Throughput/DynamicPacket/4MB-8             296MB/s ± 5%  299MB/s ±15%    ~     (p=0.295 n=9+20)
Throughput/DynamicPacket/8MB-8             334MB/s ± 6%  350MB/s ± 7%  +4.58%  (p=0.000 n=10+18)
Throughput/DynamicPacket/16MB-8            368MB/s ± 3%  388MB/s ± 1%  +5.48%  (p=0.000 n=10+8)
Throughput/DynamicPacket/32MB-8            380MB/s ± 3%  396MB/s ± 2%  +4.20%  (p=0.000 n=10+10)
Throughput/DynamicPacket/64MB-8            384MB/s ± 3%  403MB/s ± 2%  +4.83%  (p=0.000 n=10+10)

Comparing TLS 1.2 and TLS 1.3 at tip shows a slight (~5-10%) slowdown of
handshakes, which might be worth looking at next cycle, but the latency
improvements are expected to overshadow that.

name                                       old time/op   new time/op   delta
HandshakeServer/ECDHE-P256-RSA-8             909µs ± 1%    963µs ± 0%   +5.87%  (p=0.000 n=17+18)
HandshakeServer/ECDHE-P256-ECDSA-P256-8      204µs ± 1%    225µs ± 2%  +10.20%  (p=0.000 n=18+20)
HandshakeServer/ECDHE-X25519-ECDSA-P256-8    208µs ± 1%    230µs ± 2%  +10.35%  (p=0.000 n=20+18)
HandshakeServer/ECDHE-P521-ECDSA-P521-8     15.9ms ± 2%   15.9ms ± 1%     ~     (p=0.444 n=20+19)
Throughput/MaxPacket/1MB-8                  6.14ms ±44%   7.07ms ±46%     ~     (p=0.057 n=18+19)
Throughput/MaxPacket/2MB-8                  8.74ms ±33%   8.61ms ± 9%     ~     (p=0.552 n=19+17)
Throughput/MaxPacket/4MB-8                  14.0ms ±10%   14.1ms ±12%     ~     (p=0.707 n=17+20)
Throughput/MaxPacket/8MB-8                  24.6ms ±16%   25.6ms ±14%     ~     (p=0.107 n=19+20)
Throughput/MaxPacket/16MB-8                 45.9ms ±12%   44.7ms ± 6%     ~     (p=0.607 n=20+19)
Throughput/MaxPacket/32MB-8                 86.0ms ± 4%   87.9ms ± 8%     ~     (p=0.113 n=20+19)
Throughput/MaxPacket/64MB-8                  167ms ± 7%    169ms ± 2%   +1.26%  (p=0.011 n=19+19)
Throughput/DynamicPacket/1MB-8              6.59ms ±64%   6.79ms ±43%     ~     (p=0.480 n=18+19)
Throughput/DynamicPacket/2MB-8              8.73ms ±21%   9.58ms ±13%   +9.71%  (p=0.006 n=18+20)
Throughput/DynamicPacket/4MB-8              14.0ms ±11%   13.9ms ±10%     ~     (p=0.687 n=19+20)
Throughput/DynamicPacket/8MB-8              24.0ms ± 7%   24.6ms ± 8%   +2.36%  (p=0.045 n=18+17)
Throughput/DynamicPacket/16MB-8             43.3ms ± 1%   44.3ms ± 2%   +2.48%  (p=0.001 n=8+9)
Throughput/DynamicPacket/32MB-8             84.8ms ± 2%   86.7ms ± 2%   +2.27%  (p=0.000 n=10+10)
Throughput/DynamicPacket/64MB-8              167ms ± 2%    170ms ± 3%   +1.89%  (p=0.005 n=10+10)
Latency/MaxPacket/200kbps-8                  694ms ± 0%    699ms ± 0%   +0.65%  (p=0.000 n=9+10)
Latency/MaxPacket/500kbps-8                  279ms ± 0%    280ms ± 0%   +0.68%  (p=0.000 n=10+10)
Latency/MaxPacket/1000kbps-8                 140ms ± 0%    141ms ± 0%   +0.59%  (p=0.000 n=9+9)
Latency/MaxPacket/2000kbps-8                71.0ms ± 0%   71.3ms ± 0%   +0.42%  (p=0.000 n=9+9)
Latency/MaxPacket/5000kbps-8                30.1ms ± 6%   30.7ms ±10%   +1.93%  (p=0.019 n=9+9)
Latency/DynamicPacket/200kbps-8              134ms ± 0%    138ms ± 0%   +3.22%  (p=0.000 n=9+10)
Latency/DynamicPacket/500kbps-8             54.7ms ± 0%   56.3ms ± 0%   +3.03%  (p=0.000 n=10+8)
Latency/DynamicPacket/1000kbps-8            29.1ms ± 8%   29.1ms ± 0%     ~     (p=0.173 n=10+8)
Latency/DynamicPacket/2000kbps-8            15.9ms ±10%   16.4ms ±36%     ~     (p=0.633 n=10+8)
Latency/DynamicPacket/5000kbps-8            9.65ms ±82%   8.32ms ± 8%     ~     (p=0.573 n=10+8)

name                                       old speed     new speed     delta
Throughput/MaxPacket/1MB-8                 167MB/s ±64%  155MB/s ±55%     ~     (p=0.224 n=20+19)
Throughput/MaxPacket/2MB-8                 241MB/s ±40%  244MB/s ± 9%     ~     (p=0.407 n=20+17)
Throughput/MaxPacket/4MB-8                 300MB/s ± 9%  298MB/s ±11%     ~     (p=0.707 n=17+20)
Throughput/MaxPacket/8MB-8                 340MB/s ±17%  330MB/s ±13%     ~     (p=0.201 n=20+20)
Throughput/MaxPacket/16MB-8                367MB/s ±11%  375MB/s ± 5%     ~     (p=0.607 n=20+19)
Throughput/MaxPacket/32MB-8                390MB/s ± 4%  382MB/s ± 8%     ~     (p=0.113 n=20+19)
Throughput/MaxPacket/64MB-8                401MB/s ± 7%  397MB/s ± 2%   -0.96%  (p=0.030 n=20+19)
Throughput/DynamicPacket/1MB-8             157MB/s ±73%  156MB/s ±39%     ~     (p=0.738 n=20+20)
Throughput/DynamicPacket/2MB-8             243MB/s ±18%  220MB/s ±14%   -9.65%  (p=0.006 n=18+20)
Throughput/DynamicPacket/4MB-8             299MB/s ±15%  303MB/s ± 9%     ~     (p=0.512 n=20+20)
Throughput/DynamicPacket/8MB-8             350MB/s ± 7%  342MB/s ± 8%   -2.27%  (p=0.045 n=18+17)
Throughput/DynamicPacket/16MB-8            388MB/s ± 1%  378MB/s ± 2%   -2.41%  (p=0.001 n=8+9)
Throughput/DynamicPacket/32MB-8            396MB/s ± 2%  387MB/s ± 2%   -2.21%  (p=0.000 n=10+10)
Throughput/DynamicPacket/64MB-8            403MB/s ± 2%  396MB/s ± 3%   -1.84%  (p=0.005 n=10+10)

Fixes #9671

Change-Id: Ieb57c5140eb2c083b8be0d42b240cd2eeec0dcf6
Reviewed-on: https://go-review.googlesource.com/c/147638
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2018-11-12 20:44:39 +00:00
Filippo Valsorda
07b241c4b9 crypto/tls: set ServerName and unset TLSUnique in ConnectionState in TLS 1.3
Fix a couple overlooked ConnectionState fields noticed by net/http
tests, and add a test in crypto/tls. Spun off CL 147638 to keep that one
cleanly about enabling TLS 1.3.

Change-Id: I9a6c2e68d64518a44be2a5d7b0b7b8d78c98c95d
Reviewed-on: https://go-review.googlesource.com/c/148900
Run-TryBot: Filippo Valsorda <filippo@golang.org>
Reviewed-by: Andrew Bonventre <andybons@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2018-11-12 20:44:22 +00:00
Filippo Valsorda
fc44e85605 crypto/tls: implement TLS 1.3 downgrade protection
TLS_FALLBACK_SCSV is extremely fragile in the presence of sparse
supported_version, but gave it the best try I could.

Set the server random canaries but don't check them yet, waiting for the
browsers to clear the way of misbehaving middleboxes.

Updates #9671

Change-Id: Ie55efdec671d639cf1e716acef0c5f103e91a7ce
Reviewed-on: https://go-review.googlesource.com/c/147617
Reviewed-by: Adam Langley <agl@golang.org>
2018-11-12 20:44:07 +00:00
Filippo Valsorda
b523d280e4 crypto/tls: implement TLS 1.3 client authentication
Note that the SignatureSchemes passed to GetClientCertificate in TLS 1.2
are now filtered by the requested certificate type. This feels like an
improvement anyway, and the full list can be surfaced as well when
support for signature_algorithms_cert is added, which actually matches
the semantics of the CertificateRequest signature_algorithms in TLS 1.2.

Also, note a subtle behavior change in server side resumption: if a
certificate is requested but not required, and the resumed session did
not include one, it used not to invoke VerifyPeerCertificate. However,
if the resumed session did include a certificate, it would. (If a
certificate was required but not in the session, the session is rejected
in checkForResumption.) This inconsistency could be unexpected, even
dangerous, so now VerifyPeerCertificate is always invoked. Still not
consistent with the client behavior, which does not ever invoke
VerifyPeerCertificate on resumption, but it felt too surprising to
entirely change either.

Updates #9671

Change-Id: Ib2b0dbc30e659208dca3ac07d6c687a407d7aaaf
Reviewed-on: https://go-review.googlesource.com/c/147599
Reviewed-by: Adam Langley <agl@golang.org>
2018-11-12 20:43:55 +00:00
Filippo Valsorda
166c58b85c crypto/tls: implement TLS 1.3 PSK authentication (server side)
Added some assertions to testHandshake, but avoided checking the error
of one of the Close() because the one that would lose the race would
write the closeNotify to a connection closed on the other side which is
broken on js/wasm (#28650). Moved that Close() after the chan sync to
ensure it happens second.

Accepting a ticket with client certificates when NoClientCert is
configured is probably not a problem, and we could hide them to avoid
confusing the application, but the current behavior is to skip the
ticket, and I'd rather keep behavior changes to a minimum.

Updates #9671

Change-Id: I93b56e44ddfe3d48c2bef52c83285ba2f46f297a
Reviewed-on: https://go-review.googlesource.com/c/147445
Reviewed-by: Adam Langley <agl@golang.org>
2018-11-12 20:43:35 +00:00
Filippo Valsorda
dc9021e679 crypto/tls: implement TLS 1.3 PSK authentication (client side)
Also check original certificate validity when resuming TLS 1.0–1.2. Will
refuse to resume a session if the certificate is expired or if the
original connection had InsecureSkipVerify and the resumed one doesn't.

Support only PSK+DHE to protect forward secrecy even with lack of a
strong session ticket rotation story.

Tested with NSS because s_server does not provide any way of getting the
same session ticket key across invocations. Will self-test like TLS
1.0–1.2 once server side is implemented.

Incorporates CL 128477 by @santoshankr.

Fixes #24919
Updates #9671

Change-Id: Id3eaa5b6c77544a1357668bf9ff255f3420ecc34
Reviewed-on: https://go-review.googlesource.com/c/147420
Reviewed-by: Adam Langley <agl@golang.org>
2018-11-12 20:43:23 +00:00
Filippo Valsorda
5b79a7c982 crypto/tls: implement TLS 1.3 middlebox compatibility mode
Looks like the introduction of CCS records in the client second flight
gave time to s_server to send NewSessionTicket messages in between the
client application data and close_notify. There seems to be no way of
turning NewSessionTicket messages off, neither by not sending a
psk_key_exchange_modes extension, nor by command line flag.

Interleaving the client write like that tickled an issue akin to #18701:
on Windows, the client reaches Close() before the last record is drained
from the send buffer, the kernel notices and resets the connection,
cutting short the last flow. There is no good way of synchronizing this,
so we sleep for a RTT before calling close, like in CL 75210. Sigh.

Updates #9671

Change-Id: I44dc1cca17b373695b5a18c2741f218af2990bd1
Reviewed-on: https://go-review.googlesource.com/c/147419
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2018-11-12 20:43:06 +00:00
Filippo Valsorda
f513a10f59 crypto/tls: implement TLS 1.3 KeyLogWriter support
Also, add support for the SSLKEYLOGFILE environment variable to the
tests, to simplify debugging of unexpected failures.

Updates #9671

Change-Id: I20a34a5824f083da93097b793d51e796d6eb302b
Reviewed-on: https://go-review.googlesource.com/c/147417
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2018-11-12 20:42:20 +00:00
Filippo Valsorda
376ff45dc1 crypto/tls: implement TLS 1.3 server handshake (base)
Implement a basic TLS 1.3 server handshake, only enabled if explicitly
requested with MaxVersion.

This CL intentionally leaves for future CLs:
  - PSK modes and resumption
  - client authentication
  - compatibility mode ChangeCipherSpecs
  - early data skipping
  - post-handshake messages
  - downgrade protection
  - KeyLogWriter support
  - TLS_FALLBACK_SCSV processing

It also leaves a few areas up for a wider refactor (maybe in Go 1.13):
  - the certificate selection logic can be significantly improved,
    including supporting and surfacing signature_algorithms_cert, but
    this isn't new in TLS 1.3 (see comment in processClientHello)
  - handshake_server_tls13.go can be dried up and broken into more
    meaningful, smaller functions, but it felt premature to do before
    PSK and client auth support
  - the monstrous ClientHello equality check in doHelloRetryRequest can
    get both cleaner and more complete with collaboration from the
    parsing layer, which can come at the same time as extension
    duplicates detection

Updates #9671

Change-Id: Id9db2b6ecc2eea21bf9b59b6d1d9c84a7435151c
Reviewed-on: https://go-review.googlesource.com/c/147017
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2018-11-02 22:07:43 +00:00