Currently, the selection of a client certificate done internally based
on the limitations given by the server's request and the certifcates in
the Config. This means that it's not possible for an application to
control that selection based on details of the request.
This change adds a callback, GetClientCertificate, that is called by a
Client during the handshake and which allows applications to select the
best certificate at that time.
(Based on https://golang.org/cl/25570/ by Bernd Fix.)
Fixes#16626.
Change-Id: Ia4cea03235d2aa3c9fd49c99c227593c8e86ddd9
Reviewed-on: https://go-review.googlesource.com/32115
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
VerifyPeerCertificate returns an error if the peer should not be
trusted. It will be called after the initial handshake and before
any other verification checks on the cert or chain are performed.
This provides the callee an opportunity to augment the certificate
verification.
If VerifyPeerCertificate is not nil and returns an error,
then the handshake will fail.
Fixes#16363
Change-Id: I6a22f199f0e81b6f5d5f37c54d85ab878216bb22
Reviewed-on: https://go-review.googlesource.com/26654
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Since there's no aspect of key logging that OpenSSL can check for us,
the tests for it might as well just connect to another goroutine as this
is lower-maintainance.
Change-Id: I746d1dbad1b4bbfc8ef6ccf136ee4824dbda021e
Reviewed-on: https://go-review.googlesource.com/30089
Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Joonas Kuorilehto <joneskoo@derbian.fi>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Add support for writing TLS client random and master secret
in NSS key log format.
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format
Normally this is enabled by a developer debugging TLS based
applications, especially HTTP/2, by setting the KeyLogWriter
to an open file. The keys negotiated in handshake are then
logged and can be used to decrypt TLS sessions e.g. in Wireshark.
Applications may choose to add support similar to NSS where this
is enabled by environment variable, but no such mechanism is
built in to Go. Instead each application must explicitly enable.
Fixes#13057.
Change-Id: If6edd2d58999903e8390b1674ba4257ecc747ae1
Reviewed-on: https://go-review.googlesource.com/27434
Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
This change causes TLS handshake messages to be buffered and written in
a single Write to the underlying net.Conn.
There are two reasons to want to do this:
Firstly, it's slightly preferable to do this in order to save sending
several, small packets over the network where a single one will do.
Secondly, since 37c28759ca46cf381a466e32168a793165d9c9e9 errors from
Write have been returned from a handshake. This means that, if a peer
closes the connection during a handshake, a “broken pipe” error may
result from tls.Conn.Handshake(). This can mask any, more detailed,
fatal alerts that the peer may have sent because a read will never
happen.
Buffering handshake messages means that the peer will not receive, and
possibly reject, any of a flow while it's still being written.
Fixes#15709
Change-Id: I38dcff1abecc06e52b2de647ea98713ce0fb9a21
Reviewed-on: https://go-review.googlesource.com/23609
Reviewed-by: Andrew Gerrand <adg@golang.org>
Run-TryBot: Andrew Gerrand <adg@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
This change adds Config.Renegotiation which controls whether a TLS
client will accept renegotiation requests from a server. This is used,
for example, by some web servers that wish to “add” a client certificate
to an HTTPS connection.
This is disabled by default because it significantly complicates the
state machine.
Originally, handshakeMutex was taken before locking either Conn.in or
Conn.out. However, if renegotiation is permitted then a handshake may
be triggered during a Read() call. If Conn.in were unlocked before
taking handshakeMutex then a concurrent Read() call could see an
intermediate state and trigger an error. Thus handshakeMutex is now
locked after Conn.in and the handshake functions assume that Conn.in is
locked for the duration of the handshake.
Additionally, handshakeMutex used to protect Conn.out also. With the
possibility of renegotiation that's no longer viable and so
writeRecordLocked has been split off.
Fixes#5742.
Change-Id: I935914db1f185d507ff39bba8274c148d756a1c8
Reviewed-on: https://go-review.googlesource.com/22475
Run-TryBot: Adam Langley <agl@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
Error strings in this package were all over the place: some were
prefixed with “tls:”, some with “crypto/tls:” and some didn't have a
prefix.
This change makes everything use the prefix “tls:”.
Change-Id: Ie8b073c897764b691140412ecd6613da8c4e33a2
Reviewed-on: https://go-review.googlesource.com/21893
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org>
Per RFC 5246, 7.4.1.3:
cipher_suite
The single cipher suite selected by the server from the list in
ClientHello.cipher_suites. For resumed sessions, this field is
the value from the state of the session being resumed.
The specifications are not very clearly written about resuming sessions
at the wrong version (i.e. is the TLS 1.0 notion of "session" the same
type as the TLS 1.1 notion of "session"?). But every other
implementation enforces this check and not doing so has some odd
semantics.
Change-Id: I6234708bd02b636c25139d83b0d35381167e5cad
Reviewed-on: https://go-review.googlesource.com/21153
Reviewed-by: Adam Langley <agl@golang.org>
This promotes a connection hang during TLS handshake to a proper error.
This doesn't fully address #14539 because the error reported in that
case is a write-on-socket-not-connected error, which implies that an
earlier error during connection setup is not being checked, but it is
an improvement over the current behaviour.
Updates #14539.
Change-Id: I0571a752d32d5303db48149ab448226868b19495
Reviewed-on: https://go-review.googlesource.com/19990
Reviewed-by: Adam Langley <agl@golang.org>
This is a followup change to #13111 for filtering out IPv6 literals and
absolute FQDNs from being as the SNI values.
Updates #13111.
Fixes#14404.
Change-Id: I09ab8d2a9153d9a92147e57ca141f2e97ddcef6e
Reviewed-on: https://go-review.googlesource.com/19704
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
During the TLS handshake, check the cipher suite the server selects is
one of those offered in the ClientHello. The code was checking it was
in the larger list that was sometimes whittled down for the ClientHello.
Fixes#13174
Change-Id: Iad8eebbcfa5027f30403b9700c43cfa949e135bb
Reviewed-on: https://go-review.googlesource.com/16698
Reviewed-by: Adam Langley <agl@golang.org>
Run-TryBot: Adam Langley <agl@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
(This relands commit a4dcc692011bf1ceca9b1a363fd83f3e59e399ee.)
https://tools.ietf.org/html/rfc6066#section-3 states:
“Literal IPv4 and IPv6 addresses are not permitted in "HostName".”
However, if an IP literal was set as Config.ServerName (which could
happen as easily as calling Dial with an IP address) then the code would
send the IP literal as the SNI value.
This change filters out IP literals, as recognised by net.ParseIP, from
being sent as the SNI value.
Fixes#13111.
Change-Id: I6e544a78a01388f8fe98150589d073b917087f75
Reviewed-on: https://go-review.googlesource.com/16776
Run-TryBot: Adam Langley <agl@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
https://tools.ietf.org/html/rfc6066#section-3 states:
“Literal IPv4 and IPv6 addresses are not permitted in "HostName".”
However, if an IP literal was set as Config.ServerName (which could
happen as easily as calling Dial with an IP address) then the code would
send the IP literal as the SNI value.
This change filters out IP literals, as recognised by net.ParseIP, from
being sent as the SNI value.
Fixes#13111.
Change-Id: Ie9ec7acc767ae172b48c9c6dd8d84fa27b1cf0de
Reviewed-on: https://go-review.googlesource.com/16742
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Run-TryBot: Adam Langley <agl@golang.org>
Strengthening VerifyHostname exposed the fact that for resumed
connections, ConnectionState().VerifiedChains was not being saved
and restored during the ClientSessionCache operations.
Do that.
This change just saves the verified chains in the client's session
cache. It does not re-verify the certificates when resuming a
connection.
There are arguments both ways about this: we want fast, light-weight
resumption connections (thus suggesting that we shouldn't verify) but
it could also be a little surprising that, if the verification config
is changed, that would be ignored if the same session cache is used.
On the server side we do re-verify client-auth certificates, but the
situation is a little different there. The client session cache is an
object in memory that's reset each time the process restarts. But the
server's session cache is a conceptual object, held by the clients, so
can persist across server restarts. Thus the chance of a change in
verification config being surprisingly ignored is much higher in the
server case.
Fixes#12024.
Change-Id: I3081029623322ce3d9f4f3819659fdd9a381db16
Reviewed-on: https://go-review.googlesource.com/13164
Reviewed-by: Russ Cox <rsc@golang.org>
Run-TryBot: Russ Cox <rsc@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
Prior to TLS 1.2, the handshake had a pleasing property that one could
incrementally hash it and, from that, get the needed hashes for both
the CertificateVerify and Finished messages.
TLS 1.2 introduced negotiation for the signature and hash and it became
possible for the handshake hash to be, say, SHA-384, but for the
CertificateVerify to sign the handshake with SHA-1. The problem is that
one doesn't know in advance which hashes will be needed and thus the
handshake needs to be buffered.
Go ignored this, always kept a single handshake hash, and any signatures
over the handshake had to use that hash.
However, there are a set of servers that inspect the client's offered
signature hash functions and will abort the handshake if one of the
server's certificates is signed with a hash function outside of that
set. https://robertsspaceindustries.com/ is an example of such a server.
Clearly not a lot of thought happened when that server code was written,
but its out there and we have to deal with it.
This change decouples the handshake hash from the CertificateVerify
hash. This lays the groundwork for advertising support for SHA-384 but
doesn't actually make that change in the interests of reviewability.
Updating the advertised hash functions will cause changes in many of the
testdata/ files and some errors might get lost in the noise. This change
only needs to update four testdata/ files: one because a SHA-384-based
handshake is now being signed with SHA-256 and the others because the
TLS 1.2 CertificateRequest message now includes SHA-1.
This change also has the effect of adding support for
client-certificates in SSLv3 servers. However, SSLv3 is now disabled by
default so this should be moot.
It would be possible to avoid much of this change and just support
SHA-384 for the ServerKeyExchange as the SKX only signs over the nonces
and SKX params (a design mistake in TLS). However, that would leave Go
in the odd situation where it advertised support for SHA-384, but would
only use the handshake hash when signing client certificates. I fear
that'll just cause problems in the future.
Much of this code was written by davidben@ for the purposes of testing
BoringSSL.
Partly addresses #9757
Change-Id: I5137a472b6076812af387a5a69fc62c7373cd485
Reviewed-on: https://go-review.googlesource.com/9415
Run-TryBot: Adam Langley <agl@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
This change adds support for serving and receiving Signed Certificate
Timestamps as described in RFC 6962.
The server is now capable of serving SCTs listed in the Certificate
structure. The client now asks for SCTs and, if any are received,
they are exposed in the ConnectionState structure.
Fixes#10201
Change-Id: Ib3adae98cb4f173bc85cec04d2bdd3aa0fec70bb
Reviewed-on: https://go-review.googlesource.com/8988
Reviewed-by: Adam Langley <agl@golang.org>
Run-TryBot: Adam Langley <agl@golang.org>
Reviewed-by: Jonathan Rudenberg <jonathan@titanous.com>
Generalizes PRF calculation for TLS 1.2 to support arbitrary hashes (SHA-384 instead of SHA-256).
Testdata were all updated to correspond with the new cipher suites in the handshake.
Change-Id: I3d9fc48c19d1043899e38255a53c80dc952ee08f
Reviewed-on: https://go-review.googlesource.com/3265
Reviewed-by: Adam Langley <agl@golang.org>