mirror of
https://github.com/refraction-networking/utls.git
synced 2025-04-03 20:17:36 +03:00
8 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
|
5578206479 |
crypto/tls: reorder client_hello extensions
This sets us up for ECH, which need compressible extensions to be contiguous. Put them at the end to make things easier for everyone. Change-Id: I2a51f76d5fcd1b6d82325f5a4a8cde6d75f1be0c Reviewed-on: https://go-review.googlesource.com/c/go/+/585437 Reviewed-by: Filippo Valsorda <filippo@golang.org> Auto-Submit: Roland Shoemaker <roland@golang.org> LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com> Reviewed-by: Dmitri Shuralyov <dmitshur@google.com> |
||
|
d154b73cf1 |
crypto/tls: implement Extended Master Secret
All OpenSSL tests now test operation with EMS. To test a handshake *without* EMS we need to pass -Options=-ExtendedMasterSecret which is only available in OpenSSL 3.1, which breaks a number of other tests. Updates #43922 Change-Id: Ib9ac79a1d03fab6bfba5fe9cd66689cff661cda7 Reviewed-on: https://go-review.googlesource.com/c/go/+/497376 Run-TryBot: Filippo Valsorda <filippo@golang.org> TryBot-Result: Gopher Robot <gobot@golang.org> Reviewed-by: Roland Shoemaker <roland@golang.org> Auto-Submit: Filippo Valsorda <filippo@golang.org> Reviewed-by: Ian Lance Taylor <iant@google.com> Reviewed-by: Damien Neil <dneil@google.com> |
||
|
89df05a1c4 |
crypto/tls: make cipher suite preference ordering automatic
We now have a (well, two, depending on AES hardware support) universal cipher suite preference order, based on their security and performance. Peer and application lists are now treated as filters (and AES hardware support hints) that are applied to this universal order. This removes a complex and nuanced decision from the application's responsibilities, one which we are better equipped to make and which applications usually don't need to have an opinion about. It also lets us worry less about what suites we support or enable, because we can be confident that bad ones won't be selected over good ones. This also moves 3DES suites to InsecureCipherSuites(), even if they are not disabled by default. Just because we can keep them as a last resort it doesn't mean they are secure. Thankfully we had not promised that Insecure means disabled by default. Notable test changes: - TestCipherSuiteCertPreferenceECDSA was testing that we'd pick the right certificate regardless of CipherSuite ordering, which is now completely ignored, as tested by TestCipherSuitePreference. Removed. - The openssl command of TestHandshakeServerExportKeyingMaterial was broken for TLS 1.0 in CL 262857, but its golden file was not regenerated, so the test kept passing. It now broke because the selected suite from the ones in the golden file changed. - In TestAESCipherReordering, "server strongly prefers AES-GCM" is removed because there is no way for a server to express a strong preference anymore; "client prefers AES-GCM and AES-CBC over ChaCha" switched to ChaCha20 when the server lacks AES hardware; and finally "client supports multiple AES-GCM" changed to always prefer AES-128 per the universal preference list. * this is going back on an explicit decision from CL 262857, and while that client order is weird and does suggest a strong dislike for ChaCha20, we have a strong dislike for software AES, so it didn't feel worth making the logic more complex - All Client-* golden files had to be regenerated because the ClientHello cipher suites have changed. (Even when Config.CipherSuites was limited to one suite, the TLS 1.3 default order changed.) Fixes #45430 Fixes #41476 (as 3DES is now always the last resort) Change-Id: If5f5d356c0f8d1f1c7542fb06644a478d6bad1e5 Reviewed-on: https://go-review.googlesource.com/c/go/+/314609 Run-TryBot: Filippo Valsorda <filippo@golang.org> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Roland Shoemaker <roland@golang.org> Trust: Filippo Valsorda <filippo@golang.org> |
||
|
6bb85fe4e7 |
crypto/tls: re-enable RSA-PSS in TLS 1.2 again
TLS 1.3, which requires RSA-PSS, is now enabled without a GODEBUG opt-out, and with the introduction of Certificate.SupportedSignatureAlgorithms (#28660) there is a programmatic way to avoid RSA-PSS (disable TLS 1.3 with MaxVersion and use that field to specify only PKCS#1 v1.5 SignatureSchemes). This effectively reverts 0b3a57b5374bba3fdf88258e2be4c8be65e6a5de, although following CL 205061 all of the signing-side logic is conveniently centralized in signatureSchemesForCertificate. Fixes #32425 Change-Id: I7c9a8893bb5d518d86eae7db82612b9b2cd257d7 Reviewed-on: https://go-review.googlesource.com/c/go/+/205063 Run-TryBot: Filippo Valsorda <filippo@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Katie Hockman <katie@golang.org> Reviewed-by: Adam Langley <agl@golang.org> |
||
|
9a45e56dc1 |
crypto/tls: disable RSA-PSS in TLS 1.2 again
Signing with RSA-PSS can uncover faulty crypto.Signer implementations, and it can fail for (broken) small keys. We'll have to take that breakage eventually, but it would be nice for it to be opt-out at first. TLS 1.3 requires RSA-PSS and is opt-out in Go 1.13. Instead of making a TLS 1.3 opt-out influence a TLS 1.2 behavior, let's wait to add RSA-PSS to TLS 1.2 until TLS 1.3 is on without opt-out. Note that since the Client Hello is sent before a protocol version is selected, we have to advertise RSA-PSS there to support TLS 1.3. That means that we still support RSA-PSS on the client in TLS 1.2 for verifying server certificates, which is fine, as all issues arise on the signing side. We have to be careful not to pick (or consider available) RSA-PSS on the client for client certificates, though. We'd expect tests to change only in TLS 1.2: * the server won't pick PSS to sign the key exchange (Server-TLSv12-* w/ RSA, TestHandshakeServerRSAPSS); * the server won't advertise PSS in CertificateRequest (Server-TLSv12-ClientAuthRequested*, TestClientAuth); * and the client won't pick PSS for its CertificateVerify (Client-TLSv12-ClientCert-RSA-*, TestHandshakeClientCertRSAPSS, Client-TLSv12-Renegotiate* because "R" requests a client cert). Client-TLSv13-ClientCert-RSA-RSAPSS was updated because of a fix in the test. This effectively reverts 88343530720a52c96b21f2bd5488c8fb607605d7. Testing was made more complex by the undocumented semantics of OpenSSL's -[client_]sigalgs (see openssl/openssl#9172). Updates #32425 Change-Id: Iaddeb2df1f5c75cd090cc8321df2ac8e8e7db349 Reviewed-on: https://go-review.googlesource.com/c/go/+/182339 Reviewed-by: Adam Langley <agl@golang.org> |
||
|
28958b0da6 |
crypto/tls: add support for Ed25519 certificates in TLS 1.2 and 1.3
Support for Ed25519 certificates was added in CL 175478, this wires them up into the TLS stack according to RFC 8422 (TLS 1.2) and RFC 8446 (TLS 1.3). RFC 8422 also specifies support for TLS 1.0 and 1.1, and I initially implemented that, but even OpenSSL doesn't take the complexity, so I just dropped it. It would have required keeping a buffer of the handshake transcript in order to do the direct Ed25519 signatures. We effectively need to support TLS 1.2 because it shares ClientHello signature algorithms with TLS 1.3. While at it, reordered the advertised signature algorithms in the rough order we would want to use them, also based on what curves have fast constant-time implementations. Client and client auth tests changed because of the change in advertised signature algorithms in ClientHello and CertificateRequest. Fixes #25355 Change-Id: I9fdd839afde4fd6b13fcbc5cc7017fd8c35085ee Reviewed-on: https://go-review.googlesource.com/c/go/+/177698 Run-TryBot: Filippo Valsorda <filippo@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Adam Langley <agl@golang.org> |
||
|
5db23cd389 |
crypto/tls: enable TLS 1.3 and update tests
To disable TLS 1.3, simply remove VersionTLS13 from supportedVersions, as tested by TestEscapeRoute, and amend documentation. To make it opt-in, revert the change to (*Config).supportedVersions from this CL. I did not have the heart to implement the early data skipping feature when I realized that it did not offer a choice between two abstraction-breaking options, but demanded them both (look for handshake type in case of HelloRetryRequest, trial decryption otherwise). It's a lot of complexity for an apparently small gain, but if anyone has strong opinions about it let me know. Note that in TLS 1.3 alerts are encrypted, so the close_notify peeking to return (n > 0, io.EOF) from Read doesn't work. If we are lucky, those servers that unexpectedly close connections after serving a single request will have stopped (maybe thanks to H/2) before they got updated to TLS 1.3. Relatedly, session tickets are now provisioned on the client first Read instead of at Handshake time, because they are, well, post-handshake messages. If this proves to be a problem we might try to peek at them. Doubled the tests that cover logic that's different in TLS 1.3. The benchmarks for TLS 1.2 compared to be0f3c286b5 (before TLS 1.3 and its refactors, after CL 142817 changed them to use real connections) show little movement. name old time/op new time/op delta HandshakeServer/RSA-8 795µs ± 1% 798µs ± 1% ~ (p=0.057 n=10+18) HandshakeServer/ECDHE-P256-RSA-8 903µs ± 0% 909µs ± 1% +0.68% (p=0.000 n=8+17) HandshakeServer/ECDHE-P256-ECDSA-P256-8 198µs ± 0% 204µs ± 1% +3.24% (p=0.000 n=9+18) HandshakeServer/ECDHE-X25519-ECDSA-P256-8 202µs ± 3% 208µs ± 1% +2.98% (p=0.000 n=9+20) HandshakeServer/ECDHE-P521-ECDSA-P521-8 15.5ms ± 1% 15.9ms ± 2% +2.49% (p=0.000 n=10+20) Throughput/MaxPacket/1MB-8 5.81ms ±23% 6.14ms ±44% ~ (p=0.605 n=8+18) Throughput/MaxPacket/2MB-8 8.91ms ±22% 8.74ms ±33% ~ (p=0.498 n=9+19) Throughput/MaxPacket/4MB-8 12.8ms ± 3% 14.0ms ±10% +9.74% (p=0.000 n=10+17) Throughput/MaxPacket/8MB-8 25.1ms ± 7% 24.6ms ±16% ~ (p=0.129 n=9+19) Throughput/MaxPacket/16MB-8 46.3ms ± 4% 45.9ms ±12% ~ (p=0.340 n=9+20) Throughput/MaxPacket/32MB-8 88.5ms ± 4% 86.0ms ± 4% -2.82% (p=0.004 n=10+20) Throughput/MaxPacket/64MB-8 173ms ± 2% 167ms ± 7% -3.42% (p=0.001 n=10+19) Throughput/DynamicPacket/1MB-8 5.88ms ± 4% 6.59ms ±64% ~ (p=0.232 n=9+18) Throughput/DynamicPacket/2MB-8 9.08ms ±12% 8.73ms ±21% ~ (p=0.408 n=10+18) Throughput/DynamicPacket/4MB-8 14.2ms ± 5% 14.0ms ±11% ~ (p=0.188 n=9+19) Throughput/DynamicPacket/8MB-8 25.1ms ± 6% 24.0ms ± 7% -4.39% (p=0.000 n=10+18) Throughput/DynamicPacket/16MB-8 45.6ms ± 3% 43.3ms ± 1% -5.22% (p=0.000 n=10+8) Throughput/DynamicPacket/32MB-8 88.4ms ± 3% 84.8ms ± 2% -4.06% (p=0.000 n=10+10) Throughput/DynamicPacket/64MB-8 175ms ± 3% 167ms ± 2% -4.63% (p=0.000 n=10+10) Latency/MaxPacket/200kbps-8 694ms ± 0% 694ms ± 0% -0.02% (p=0.000 n=9+9) Latency/MaxPacket/500kbps-8 279ms ± 0% 279ms ± 0% -0.09% (p=0.000 n=10+10) Latency/MaxPacket/1000kbps-8 140ms ± 0% 140ms ± 0% -0.15% (p=0.000 n=10+9) Latency/MaxPacket/2000kbps-8 71.1ms ± 0% 71.0ms ± 0% -0.09% (p=0.001 n=8+9) Latency/MaxPacket/5000kbps-8 30.5ms ± 6% 30.1ms ± 6% ~ (p=0.905 n=10+9) Latency/DynamicPacket/200kbps-8 134ms ± 0% 134ms ± 0% ~ (p=0.796 n=9+9) Latency/DynamicPacket/500kbps-8 54.8ms ± 0% 54.7ms ± 0% -0.18% (p=0.000 n=8+10) Latency/DynamicPacket/1000kbps-8 28.5ms ± 0% 29.1ms ± 8% ~ (p=0.173 n=8+10) Latency/DynamicPacket/2000kbps-8 15.3ms ± 6% 15.9ms ±10% ~ (p=0.905 n=9+10) Latency/DynamicPacket/5000kbps-8 9.14ms ±21% 9.65ms ±82% ~ (p=0.529 n=10+10) name old speed new speed delta Throughput/MaxPacket/1MB-8 175MB/s ±13% 167MB/s ±64% ~ (p=0.646 n=7+20) Throughput/MaxPacket/2MB-8 241MB/s ±25% 241MB/s ±40% ~ (p=0.660 n=9+20) Throughput/MaxPacket/4MB-8 328MB/s ± 3% 300MB/s ± 9% -8.70% (p=0.000 n=10+17) Throughput/MaxPacket/8MB-8 335MB/s ± 7% 340MB/s ±17% ~ (p=0.212 n=9+20) Throughput/MaxPacket/16MB-8 363MB/s ± 4% 367MB/s ±11% ~ (p=0.340 n=9+20) Throughput/MaxPacket/32MB-8 379MB/s ± 4% 390MB/s ± 4% +2.93% (p=0.004 n=10+20) Throughput/MaxPacket/64MB-8 388MB/s ± 2% 401MB/s ± 7% +3.25% (p=0.004 n=10+20) Throughput/DynamicPacket/1MB-8 178MB/s ± 4% 157MB/s ±73% ~ (p=0.127 n=9+20) Throughput/DynamicPacket/2MB-8 232MB/s ±11% 243MB/s ±18% ~ (p=0.415 n=10+18) Throughput/DynamicPacket/4MB-8 296MB/s ± 5% 299MB/s ±15% ~ (p=0.295 n=9+20) Throughput/DynamicPacket/8MB-8 334MB/s ± 6% 350MB/s ± 7% +4.58% (p=0.000 n=10+18) Throughput/DynamicPacket/16MB-8 368MB/s ± 3% 388MB/s ± 1% +5.48% (p=0.000 n=10+8) Throughput/DynamicPacket/32MB-8 380MB/s ± 3% 396MB/s ± 2% +4.20% (p=0.000 n=10+10) Throughput/DynamicPacket/64MB-8 384MB/s ± 3% 403MB/s ± 2% +4.83% (p=0.000 n=10+10) Comparing TLS 1.2 and TLS 1.3 at tip shows a slight (~5-10%) slowdown of handshakes, which might be worth looking at next cycle, but the latency improvements are expected to overshadow that. name old time/op new time/op delta HandshakeServer/ECDHE-P256-RSA-8 909µs ± 1% 963µs ± 0% +5.87% (p=0.000 n=17+18) HandshakeServer/ECDHE-P256-ECDSA-P256-8 204µs ± 1% 225µs ± 2% +10.20% (p=0.000 n=18+20) HandshakeServer/ECDHE-X25519-ECDSA-P256-8 208µs ± 1% 230µs ± 2% +10.35% (p=0.000 n=20+18) HandshakeServer/ECDHE-P521-ECDSA-P521-8 15.9ms ± 2% 15.9ms ± 1% ~ (p=0.444 n=20+19) Throughput/MaxPacket/1MB-8 6.14ms ±44% 7.07ms ±46% ~ (p=0.057 n=18+19) Throughput/MaxPacket/2MB-8 8.74ms ±33% 8.61ms ± 9% ~ (p=0.552 n=19+17) Throughput/MaxPacket/4MB-8 14.0ms ±10% 14.1ms ±12% ~ (p=0.707 n=17+20) Throughput/MaxPacket/8MB-8 24.6ms ±16% 25.6ms ±14% ~ (p=0.107 n=19+20) Throughput/MaxPacket/16MB-8 45.9ms ±12% 44.7ms ± 6% ~ (p=0.607 n=20+19) Throughput/MaxPacket/32MB-8 86.0ms ± 4% 87.9ms ± 8% ~ (p=0.113 n=20+19) Throughput/MaxPacket/64MB-8 167ms ± 7% 169ms ± 2% +1.26% (p=0.011 n=19+19) Throughput/DynamicPacket/1MB-8 6.59ms ±64% 6.79ms ±43% ~ (p=0.480 n=18+19) Throughput/DynamicPacket/2MB-8 8.73ms ±21% 9.58ms ±13% +9.71% (p=0.006 n=18+20) Throughput/DynamicPacket/4MB-8 14.0ms ±11% 13.9ms ±10% ~ (p=0.687 n=19+20) Throughput/DynamicPacket/8MB-8 24.0ms ± 7% 24.6ms ± 8% +2.36% (p=0.045 n=18+17) Throughput/DynamicPacket/16MB-8 43.3ms ± 1% 44.3ms ± 2% +2.48% (p=0.001 n=8+9) Throughput/DynamicPacket/32MB-8 84.8ms ± 2% 86.7ms ± 2% +2.27% (p=0.000 n=10+10) Throughput/DynamicPacket/64MB-8 167ms ± 2% 170ms ± 3% +1.89% (p=0.005 n=10+10) Latency/MaxPacket/200kbps-8 694ms ± 0% 699ms ± 0% +0.65% (p=0.000 n=9+10) Latency/MaxPacket/500kbps-8 279ms ± 0% 280ms ± 0% +0.68% (p=0.000 n=10+10) Latency/MaxPacket/1000kbps-8 140ms ± 0% 141ms ± 0% +0.59% (p=0.000 n=9+9) Latency/MaxPacket/2000kbps-8 71.0ms ± 0% 71.3ms ± 0% +0.42% (p=0.000 n=9+9) Latency/MaxPacket/5000kbps-8 30.1ms ± 6% 30.7ms ±10% +1.93% (p=0.019 n=9+9) Latency/DynamicPacket/200kbps-8 134ms ± 0% 138ms ± 0% +3.22% (p=0.000 n=9+10) Latency/DynamicPacket/500kbps-8 54.7ms ± 0% 56.3ms ± 0% +3.03% (p=0.000 n=10+8) Latency/DynamicPacket/1000kbps-8 29.1ms ± 8% 29.1ms ± 0% ~ (p=0.173 n=10+8) Latency/DynamicPacket/2000kbps-8 15.9ms ±10% 16.4ms ±36% ~ (p=0.633 n=10+8) Latency/DynamicPacket/5000kbps-8 9.65ms ±82% 8.32ms ± 8% ~ (p=0.573 n=10+8) name old speed new speed delta Throughput/MaxPacket/1MB-8 167MB/s ±64% 155MB/s ±55% ~ (p=0.224 n=20+19) Throughput/MaxPacket/2MB-8 241MB/s ±40% 244MB/s ± 9% ~ (p=0.407 n=20+17) Throughput/MaxPacket/4MB-8 300MB/s ± 9% 298MB/s ±11% ~ (p=0.707 n=17+20) Throughput/MaxPacket/8MB-8 340MB/s ±17% 330MB/s ±13% ~ (p=0.201 n=20+20) Throughput/MaxPacket/16MB-8 367MB/s ±11% 375MB/s ± 5% ~ (p=0.607 n=20+19) Throughput/MaxPacket/32MB-8 390MB/s ± 4% 382MB/s ± 8% ~ (p=0.113 n=20+19) Throughput/MaxPacket/64MB-8 401MB/s ± 7% 397MB/s ± 2% -0.96% (p=0.030 n=20+19) Throughput/DynamicPacket/1MB-8 157MB/s ±73% 156MB/s ±39% ~ (p=0.738 n=20+20) Throughput/DynamicPacket/2MB-8 243MB/s ±18% 220MB/s ±14% -9.65% (p=0.006 n=18+20) Throughput/DynamicPacket/4MB-8 299MB/s ±15% 303MB/s ± 9% ~ (p=0.512 n=20+20) Throughput/DynamicPacket/8MB-8 350MB/s ± 7% 342MB/s ± 8% -2.27% (p=0.045 n=18+17) Throughput/DynamicPacket/16MB-8 388MB/s ± 1% 378MB/s ± 2% -2.41% (p=0.001 n=8+9) Throughput/DynamicPacket/32MB-8 396MB/s ± 2% 387MB/s ± 2% -2.21% (p=0.000 n=10+10) Throughput/DynamicPacket/64MB-8 403MB/s ± 2% 396MB/s ± 3% -1.84% (p=0.005 n=10+10) Fixes #9671 Change-Id: Ieb57c5140eb2c083b8be0d42b240cd2eeec0dcf6 Reviewed-on: https://go-review.googlesource.com/c/147638 Run-TryBot: Filippo Valsorda <filippo@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Adam Langley <agl@golang.org> |
||
|
ed74f7823e |
crypto/tls: advertise and accept rsa_pss_rsae signature algorithms
crypto/x509 already supports PSS signatures (with rsaEncryption OID), and crypto/tls support was added in CL 79736. Advertise support for the algorithms and accept them as a peer. Note that this is about PSS signatures from regular RSA public keys. RSA-PSS only public keys (with RSASSA-PSS OID) are supported in neither crypto/tls nor crypto/x509. See RFC 8446, Section 4.2.3. testdata/Server-TLSv12-ClientAuthRequested* got modified because the CertificateRequest carries the supported signature algorithms. The net/smtp tests changed because 512 bits keys are too small for PSS. Based on Peter Wu's CL 79738, who did all the actual work in CL 79736. Updates #9671 Change-Id: I4a31e9c6e152ff4c50a5c8a274edd610d5fff231 Reviewed-on: https://go-review.googlesource.com/c/146258 Run-TryBot: Filippo Valsorda <filippo@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Adam Langley <agl@golang.org> |