Commit graph

59 commits

Author SHA1 Message Date
Roland Shoemaker
5578206479 crypto/tls: reorder client_hello extensions
This sets us up for ECH, which need compressible extensions to be
contiguous. Put them at the end to make things easier for everyone.

Change-Id: I2a51f76d5fcd1b6d82325f5a4a8cde6d75f1be0c
Reviewed-on: https://go-review.googlesource.com/c/go/+/585437
Reviewed-by: Filippo Valsorda <filippo@golang.org>
Auto-Submit: Roland Shoemaker <roland@golang.org>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Dmitri Shuralyov <dmitshur@google.com>
2024-05-22 22:33:38 +00:00
Filippo Valsorda
245de0a13b crypto/tls: clarify group selection logic
I initially thought the logic was broken, but writing the test I
realized it was actually very clever (derogative). It was relying on the
outer loop continuing after a supported match without a key share,
allowing a later key share to override it (but not a later supported
match because of the "if selectedGroup != 0 { continue }").

Replaced the clever loop with two hopefully more understandable loops,
and added a test (which was already passing).

We were however not checking that the selected group is in the supported
list if we found it in key shares first. (This was only a MAY.) Fixed.

Fixes #65686

Change-Id: I09ea44f90167ffa36809deb78255ed039a217b6d
Reviewed-on: https://go-review.googlesource.com/c/go/+/586655
Reviewed-by: Roland Shoemaker <roland@golang.org>
Reviewed-by: Dmitri Shuralyov <dmitshur@google.com>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Auto-Submit: Filippo Valsorda <filippo@golang.org>
2024-05-22 14:19:11 +00:00
Filippo Valsorda
5ca720fc5e crypto/tls: don't reverify but check certificate expiration on resumption
We used to inconsistently run certificate verification on the server on
resumption, but not on the client. This made TLS 1.3 resumption pretty
much useless, as it didn't save bytes, CPU, or round-trips.

This requires serializing the verified chains into the session ticket,
so it's a tradeoff making the ticket bigger to save computation (and for
consistency).

The previous behavior also had a "stickyness" issue: if a ticket
contained invalid certificates, they would be used even if the client
had in the meantime configured valid certificates for a full handshake.

We also didn't check expiration on the client side on resumption if
InsecureSkipVerify was set. Again for consistency, we do that now.

Also, we used to run VerifyPeerCertificates on resumption even if
NoClientCerts was set.

Fixes #31641

Change-Id: Icc88269ea4adb544fa81158114aae76f3c91a15f
Reviewed-on: https://go-review.googlesource.com/c/go/+/497895
Reviewed-by: Damien Neil <dneil@google.com>
TryBot-Result: Gopher Robot <gobot@golang.org>
Run-TryBot: Filippo Valsorda <filippo@golang.org>
Reviewed-by: Roland Shoemaker <roland@golang.org>
Auto-Submit: Filippo Valsorda <filippo@golang.org>
2023-05-25 00:14:50 +00:00
Filippo Valsorda
d154b73cf1 crypto/tls: implement Extended Master Secret
All OpenSSL tests now test operation with EMS. To test a handshake
*without* EMS we need to pass -Options=-ExtendedMasterSecret which is
only available in OpenSSL 3.1, which breaks a number of other tests.

Updates #43922

Change-Id: Ib9ac79a1d03fab6bfba5fe9cd66689cff661cda7
Reviewed-on: https://go-review.googlesource.com/c/go/+/497376
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gopher Robot <gobot@golang.org>
Reviewed-by: Roland Shoemaker <roland@golang.org>
Auto-Submit: Filippo Valsorda <filippo@golang.org>
Reviewed-by: Ian Lance Taylor <iant@google.com>
Reviewed-by: Damien Neil <dneil@google.com>
2023-05-25 00:13:30 +00:00
Filippo Valsorda
1143de0f03 crypto/tls: add QUIC 0-RTT APIs
Fixes #60107

Change-Id: I158b1c2d80d8ebb5ed7a8e6f313f69060754e220
Reviewed-on: https://go-review.googlesource.com/c/go/+/496995
Reviewed-by: Damien Neil <dneil@google.com>
Reviewed-by: Roland Shoemaker <roland@golang.org>
Run-TryBot: Filippo Valsorda <filippo@golang.org>
Auto-Submit: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gopher Robot <gobot@golang.org>
2023-05-25 00:13:28 +00:00
Filippo Valsorda
866e886415 crypto/tls: add SessionState.Extra
This can be used by applications to store additional data in a session.

Fixes #57753
For #60105

Change-Id: Ib42387ad64750fa8dbbdf51de5e9c86378bef0ee
Reviewed-on: https://go-review.googlesource.com/c/go/+/496822
Run-TryBot: Filippo Valsorda <filippo@golang.org>
Reviewed-by: Marten Seemann <martenseemann@gmail.com>
Reviewed-by: Damien Neil <dneil@google.com>
TryBot-Result: Gopher Robot <gobot@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2023-05-24 23:57:01 +00:00
Filippo Valsorda
b838c1c320 crypto/tls: add SessionState and use it on the server side
This change by itself is useless, because the application has no way to
access or provide SessionStates to crypto/tls, but they will be provided
in following CLs.

For #60105

Change-Id: I8d5de79b1eda0a778420134cf6f346246a1bb296
Reviewed-on: https://go-review.googlesource.com/c/go/+/496818
Reviewed-by: Marten Seemann <martenseemann@gmail.com>
TryBot-Result: Gopher Robot <gobot@golang.org>
Reviewed-by: Damien Neil <dneil@google.com>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
Run-TryBot: Filippo Valsorda <filippo@golang.org>
2023-05-24 23:56:32 +00:00
Filippo Valsorda
65b9e15fc2 crypto/tls: reduce session ticket linkability
Ever since session ticket key rotation was introduced in CL 9072, we've
been including a prefix in every ticket to identify what key it's
encrypted with. It's a small privacy gain, but the cost of trial
decryptions is also small, especially since the first key is probably
the most frequently used.

Also reissue tickets on every resumption so that the next connection
can't be linked to all the previous ones. Again the privacy gain is
small but the performance cost is small and it comes with a reduction in
complexity.

For #60105

Change-Id: I852f297162d2b79a3d9bf61f6171e8ce94b2537a
Reviewed-on: https://go-review.googlesource.com/c/go/+/496817
Reviewed-by: Damien Neil <dneil@google.com>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
Run-TryBot: Damien Neil <dneil@google.com>
TryBot-Result: Gopher Robot <gobot@golang.org>
2023-05-24 23:56:24 +00:00
Filippo Valsorda
5661b3ddeb crypto/ecdsa: use bigmod and nistec instead of math/big and crypto/elliptic
Ignoring custom curves, this makes the whole package constant-time.
There is a slight loss in performance for P-384 and P-521 because bigmod
is slower than math/big (but P-256 has an assembly scalar field
inversion, so doesn't use bigmod for anything big).

name                old time/op    new time/op    delta
Sign/P256-8           19.2µs ± 2%    19.1µs ± 2%     ~     (p=0.268 n=9+10)
Sign/P384-8            166µs ± 3%     188µs ± 2%  +13.52%  (p=0.000 n=10+10)
Sign/P521-8            337µs ± 2%     359µs ± 2%   +6.46%  (p=0.000 n=10+10)
Verify/P256-8         58.1µs ± 2%    58.1µs ± 2%     ~     (p=0.971 n=10+10)
Verify/P384-8          484µs ± 2%     569µs ±12%  +17.65%  (p=0.000 n=10+10)
Verify/P521-8         1.03ms ± 4%    1.14ms ± 2%  +11.02%  (p=0.000 n=10+10)
GenerateKey/P256-8    12.4µs ±12%    12.0µs ± 2%     ~     (p=0.063 n=10+10)
GenerateKey/P384-8     129µs ±18%     119µs ± 2%     ~     (p=0.190 n=10+10)
GenerateKey/P521-8     241µs ± 2%     240µs ± 2%     ~     (p=0.436 n=10+10)

name                old alloc/op   new alloc/op   delta
Sign/P256-8           3.08kB ± 0%    2.47kB ± 0%  -19.77%  (p=0.000 n=10+10)
Sign/P384-8           6.16kB ± 0%    2.64kB ± 0%  -57.16%  (p=0.000 n=10+10)
Sign/P521-8           7.87kB ± 0%    3.01kB ± 0%  -61.80%  (p=0.000 n=10+10)
Verify/P256-8         1.29kB ± 1%    0.48kB ± 0%  -62.69%  (p=0.000 n=10+10)
Verify/P384-8         2.49kB ± 1%    0.64kB ± 0%  -74.25%  (p=0.000 n=10+10)
Verify/P521-8         3.31kB ± 0%    0.96kB ± 0%  -71.02%  (p=0.000 n=7+10)
GenerateKey/P256-8      720B ± 0%      920B ± 0%  +27.78%  (p=0.000 n=10+10)
GenerateKey/P384-8      921B ± 0%     1120B ± 0%  +21.61%  (p=0.000 n=9+10)
GenerateKey/P521-8    1.30kB ± 0%    1.44kB ± 0%  +10.45%  (p=0.000 n=10+10)

name                old allocs/op  new allocs/op  delta
Sign/P256-8             45.0 ± 0%      33.0 ± 0%  -26.67%  (p=0.000 n=10+10)
Sign/P384-8             69.0 ± 0%      34.0 ± 0%  -50.72%  (p=0.000 n=10+10)
Sign/P521-8             71.0 ± 0%      35.0 ± 0%  -50.70%  (p=0.000 n=10+10)
Verify/P256-8           23.0 ± 0%      10.0 ± 0%  -56.52%  (p=0.000 n=10+10)
Verify/P384-8           43.0 ± 0%      14.0 ± 0%  -67.44%  (p=0.000 n=10+10)
Verify/P521-8           45.0 ± 0%      14.0 ± 0%  -68.89%  (p=0.000 n=7+10)
GenerateKey/P256-8      13.0 ± 0%      14.0 ± 0%   +7.69%  (p=0.000 n=10+10)
GenerateKey/P384-8      16.0 ± 0%      17.0 ± 0%   +6.25%  (p=0.000 n=10+10)
GenerateKey/P521-8      16.5 ± 3%      17.0 ± 0%   +3.03%  (p=0.033 n=10+10)

Change-Id: I4e074ef039b0f7ffbc436a4cdbe4ef90c647018d
Reviewed-on: https://go-review.googlesource.com/c/go/+/353849
Auto-Submit: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gopher Robot <gobot@golang.org>
Reviewed-by: Than McIntosh <thanm@google.com>
Reviewed-by: David Chase <drchase@google.com>
Run-TryBot: Filippo Valsorda <filippo@golang.org>
Reviewed-by: Roland Shoemaker <roland@golang.org>
2022-11-21 16:19:34 +00:00
Filippo Valsorda
3c6b6127c0 crypto/tls: let HTTP/1.1 clients connect to servers with NextProtos "h2"
Fixes #46310

Change-Id: Idd5e30f05c439f736ae6f3904cbb9cc2ba772315
Reviewed-on: https://go-review.googlesource.com/c/go/+/325432
Trust: Filippo Valsorda <filippo@golang.org>
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Roland Shoemaker <roland@golang.org>
2021-06-10 12:41:37 +00:00
Filippo Valsorda
89df05a1c4 crypto/tls: make cipher suite preference ordering automatic
We now have a (well, two, depending on AES hardware support) universal
cipher suite preference order, based on their security and performance.
Peer and application lists are now treated as filters (and AES hardware
support hints) that are applied to this universal order.

This removes a complex and nuanced decision from the application's
responsibilities, one which we are better equipped to make and which
applications usually don't need to have an opinion about. It also lets
us worry less about what suites we support or enable, because we can be
confident that bad ones won't be selected over good ones.

This also moves 3DES suites to InsecureCipherSuites(), even if they are
not disabled by default. Just because we can keep them as a last resort
it doesn't mean they are secure. Thankfully we had not promised that
Insecure means disabled by default.

Notable test changes:

  - TestCipherSuiteCertPreferenceECDSA was testing that we'd pick the
    right certificate regardless of CipherSuite ordering, which is now
    completely ignored, as tested by TestCipherSuitePreference. Removed.

  - The openssl command of TestHandshakeServerExportKeyingMaterial was
    broken for TLS 1.0 in CL 262857, but its golden file was not
    regenerated, so the test kept passing. It now broke because the
    selected suite from the ones in the golden file changed.

  - In TestAESCipherReordering, "server strongly prefers AES-GCM" is
    removed because there is no way for a server to express a strong
    preference anymore; "client prefers AES-GCM and AES-CBC over ChaCha"
    switched to ChaCha20 when the server lacks AES hardware; and finally
    "client supports multiple AES-GCM" changed to always prefer AES-128
    per the universal preference list.

    * this is going back on an explicit decision from CL 262857, and
      while that client order is weird and does suggest a strong dislike
      for ChaCha20, we have a strong dislike for software AES, so it
      didn't feel worth making the logic more complex

  - All Client-* golden files had to be regenerated because the
    ClientHello cipher suites have changed.
    (Even when Config.CipherSuites was limited to one suite, the TLS 1.3
    default order changed.)

Fixes #45430
Fixes #41476 (as 3DES is now always the last resort)

Change-Id: If5f5d356c0f8d1f1c7542fb06644a478d6bad1e5
Reviewed-on: https://go-review.googlesource.com/c/go/+/314609
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Roland Shoemaker <roland@golang.org>
Trust: Filippo Valsorda <filippo@golang.org>
2021-05-08 05:15:48 +00:00
Roland Shoemaker
7d3285645e crypto/tls: enforce ALPN overlap when negotiated on both sides
During the TLS handshake if the server doesn't support any of the
application protocols requested by the client, send the
no_application_protocol alert and abort the handshake on the server
side. This enforces the requirements of RFC 7301.

Change-Id: Iced2bb5c6efc607497de1c40ee3de9c2b393fa5d
Reviewed-on: https://go-review.googlesource.com/c/go/+/289209
Trust: Roland Shoemaker <roland@golang.org>
Trust: Katie Hockman <katie@golang.org>
Run-TryBot: Roland Shoemaker <roland@golang.org>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Filippo Valsorda <filippo@golang.org>
2021-05-06 18:57:43 +00:00
Roland Shoemaker
18d259497e crypto/tls: de-prioritize AES-GCM ciphers when lacking hardware support
When either the server or client are lacking hardware support for
AES-GCM ciphers, indicated by the server lacking the relevant
instructions and by the client not putting AES-GCM ciphers at the top
of its preference list, reorder the preference list to de-prioritize
AES-GCM based ciphers when they are adjacent to other AEAD ciphers.

Also updates a number of recorded openssl TLS tests which previously
only specified TLS 1.2 cipher preferences (using -cipher), but not
TLS 1.3 cipher preferences (using -ciphersuites), to specify both
preferences, making these tests more predictable.

Fixes #41181.

Change-Id: Ied896c96c095481e755aaff9ff0746fb4cb9568e
Reviewed-on: https://go-review.googlesource.com/c/go/+/262857
Run-TryBot: Roland Shoemaker <roland@golang.org>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Filippo Valsorda <filippo@golang.org>
Trust: Roland Shoemaker <roland@golang.org>
Trust: Katie Hockman <katie@golang.org>
2020-11-10 01:40:27 +00:00
Katie Hockman
451074ba19 crypto/tls: rotate session keys in older TLS versions
Also encode the certificates in a way that's more
consistent with TLS 1.3 (with a 24 byte length prefix).

Note that this will have an additional performance cost
requiring clients to do a full handshake every 7 days
where previously they were able to use the same ticket
indefinitely.

Updates #25256

Change-Id: Ic4d1ba0d92773c490b33b5f6c1320d557cc7347d
Reviewed-on: https://go-review.googlesource.com/c/go/+/231317
Run-TryBot: Katie Hockman <katie@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Filippo Valsorda <filippo@golang.org>
2020-05-07 18:33:39 +00:00
Filippo Valsorda
aff697f53d crypto/tls: take key size into account in signature algorithm selection
Fixes #29793

Change-Id: I6e389d166c2d9a2ba8664a41f4b9569f2481b27f
Reviewed-on: https://go-review.googlesource.com/c/go/+/205177
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Katie Hockman <katie@golang.org>
2019-11-12 01:09:40 +00:00
Filippo Valsorda
6bb85fe4e7 crypto/tls: re-enable RSA-PSS in TLS 1.2 again
TLS 1.3, which requires RSA-PSS, is now enabled without a GODEBUG
opt-out, and with the introduction of
Certificate.SupportedSignatureAlgorithms (#28660) there is a
programmatic way to avoid RSA-PSS (disable TLS 1.3 with MaxVersion and
use that field to specify only PKCS#1 v1.5 SignatureSchemes).

This effectively reverts 0b3a57b5374bba3fdf88258e2be4c8be65e6a5de,
although following CL 205061 all of the signing-side logic is
conveniently centralized in signatureSchemesForCertificate.

Fixes #32425

Change-Id: I7c9a8893bb5d518d86eae7db82612b9b2cd257d7
Reviewed-on: https://go-review.googlesource.com/c/go/+/205063
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Katie Hockman <katie@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2019-11-12 01:09:15 +00:00
Olivier Poitrey
e580b52d55 crypto/tls: send ec_points_format extension in ServerHello
Follow the recommandation from RFC 8422, section 5.1.2 of sending back the
ec_points_format extension when requested by the client. This is to fix
some clients declining the handshake if omitted.

Fixes #31943

Change-Id: I7b04dbac6f9af75cda094073defe081e1e9a295d
Reviewed-on: https://go-review.googlesource.com/c/go/+/176418
Run-TryBot: Filippo Valsorda <filippo@golang.org>
Reviewed-by: Olivier Poitrey <rs@rhapsodyk.net>
Reviewed-by: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2019-10-31 15:14:45 +00:00
Brad Fitzpatrick
6b5dc9f4ba crypto/tls: remove NPN support
RELNOTE=yes

Fixes #28362

Change-Id: I43813c0c17bbe6c4cbb4d1f121518c434b3f5aa8
Reviewed-on: https://go-review.googlesource.com/c/go/+/174329
Reviewed-by: Filippo Valsorda <filippo@golang.org>
2019-10-04 18:07:46 +00:00
Filippo Valsorda
018f13d1a3 crypto/tls: remove SSLv3 support
SSLv3 has been irreparably broken since the POODLE attack 5 years ago
and RFC 7568 (f.k.a. draft-ietf-tls-sslv3-diediedie) prohibits its use
in no uncertain terms.

As announced in the Go 1.13 release notes, remove support for it
entirely in Go 1.14.

Updates #32716

Change-Id: Id653557961d8f75f484a01e6afd2e104a4ccceaf
Reviewed-on: https://go-review.googlesource.com/c/go/+/191976
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2019-08-27 22:24:05 +00:00
Filippo Valsorda
9a45e56dc1 crypto/tls: disable RSA-PSS in TLS 1.2 again
Signing with RSA-PSS can uncover faulty crypto.Signer implementations,
and it can fail for (broken) small keys. We'll have to take that
breakage eventually, but it would be nice for it to be opt-out at first.

TLS 1.3 requires RSA-PSS and is opt-out in Go 1.13. Instead of making a
TLS 1.3 opt-out influence a TLS 1.2 behavior, let's wait to add RSA-PSS
to TLS 1.2 until TLS 1.3 is on without opt-out.

Note that since the Client Hello is sent before a protocol version is
selected, we have to advertise RSA-PSS there to support TLS 1.3.
That means that we still support RSA-PSS on the client in TLS 1.2 for
verifying server certificates, which is fine, as all issues arise on the
signing side. We have to be careful not to pick (or consider available)
RSA-PSS on the client for client certificates, though.

We'd expect tests to change only in TLS 1.2:

    * the server won't pick PSS to sign the key exchange
      (Server-TLSv12-* w/ RSA, TestHandshakeServerRSAPSS);
    * the server won't advertise PSS in CertificateRequest
      (Server-TLSv12-ClientAuthRequested*, TestClientAuth);
    * and the client won't pick PSS for its CertificateVerify
      (Client-TLSv12-ClientCert-RSA-*, TestHandshakeClientCertRSAPSS,
      Client-TLSv12-Renegotiate* because "R" requests a client cert).

Client-TLSv13-ClientCert-RSA-RSAPSS was updated because of a fix in the test.

This effectively reverts 88343530720a52c96b21f2bd5488c8fb607605d7.

Testing was made more complex by the undocumented semantics of OpenSSL's
-[client_]sigalgs (see openssl/openssl#9172).

Updates #32425

Change-Id: Iaddeb2df1f5c75cd090cc8321df2ac8e8e7db349
Reviewed-on: https://go-review.googlesource.com/c/go/+/182339
Reviewed-by: Adam Langley <agl@golang.org>
2019-06-19 19:59:14 +00:00
Filippo Valsorda
28958b0da6 crypto/tls: add support for Ed25519 certificates in TLS 1.2 and 1.3
Support for Ed25519 certificates was added in CL 175478, this wires them
up into the TLS stack according to RFC 8422 (TLS 1.2) and RFC 8446 (TLS 1.3).

RFC 8422 also specifies support for TLS 1.0 and 1.1, and I initially
implemented that, but even OpenSSL doesn't take the complexity, so I
just dropped it. It would have required keeping a buffer of the
handshake transcript in order to do the direct Ed25519 signatures. We
effectively need to support TLS 1.2 because it shares ClientHello
signature algorithms with TLS 1.3.

While at it, reordered the advertised signature algorithms in the rough
order we would want to use them, also based on what curves have fast
constant-time implementations.

Client and client auth tests changed because of the change in advertised
signature algorithms in ClientHello and CertificateRequest.

Fixes #25355

Change-Id: I9fdd839afde4fd6b13fcbc5cc7017fd8c35085ee
Reviewed-on: https://go-review.googlesource.com/c/go/+/177698
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2019-05-17 16:13:45 +00:00
Filippo Valsorda
2e9a42ccc2 Revert "crypto/tls: disable RSA-PSS in TLS 1.2"
In Go 1.13 we will enable RSA-PSS in TLS 1.2 at the same time as we make
TLS 1.3 enabled by default.

This reverts commit 7ccd3583eddcd79679fb29cfc83a6e6fb6973f1e.

Updates #30055

Change-Id: I6f2ddf7652d1172a6b29f4e335ff3a71a89974bc
Reviewed-on: https://go-review.googlesource.com/c/163080
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2019-02-27 07:54:00 +00:00
Filippo Valsorda
b5bf3890ae crypto/tls: disable RSA-PSS in TLS 1.2
Most of the issues that led to the decision on #30055 were related to
incompatibility with or faulty support for RSA-PSS (#29831, #29779,
v1.5 signatures). RSA-PSS is required by TLS 1.3, but is also available
to be negotiated in TLS 1.2.

Altering TLS 1.2 behavior based on GODEBUG=tls13=1 feels surprising, so
just disable RSA-PSS entirely in TLS 1.2 until TLS 1.3 is on by default,
so breakage happens all at once.

Updates #30055

Change-Id: Iee90454a20ded8895e5302e8bcbcd32e4e3031c2
Reviewed-on: https://go-review.googlesource.com/c/160998
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2019-02-07 18:34:43 +00:00
Filippo Valsorda
daa7ff8195 crypto/tls: fix client certificates support for legacy servers
signatureSchemesForCertificate was written to be used with TLS 1.3, but
ended up used for TLS 1.2 client certificates in a refactor. Since it
only supported TLS 1.3 signature algorithms, it would lead to no RSA
client certificates being sent to servers that didn't support RSA-PSS.

TestHandshakeClientCertRSAPKCS1v15 was testing *specifically* for this,
but alas the OpenSSL flag -verify accepts an empty certificates list as
valid, as opposed to -Verify...

Fixes #28925

Change-Id: I61afc02ca501d3d64ab4ad77bbb4cf10931e6f93
Reviewed-on: https://go-review.googlesource.com/c/151660
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2018-11-30 19:10:38 +00:00
Filippo Valsorda
b4c934319a crypto/tls: prevent the test server from sending session tickets
Since they are sent after the handshake in TLS 1.3, the client was not
actually consuming them, as it doesn't make any Read calls. They were
then sitting in the kernel receive buffer when the client would call
Close. The kernel would see that and send a RST, which would race the
closeNotify, causing errors.

Also, we get to trim 600 lines of useless test data.

Fixes #28852

Change-Id: I7517feab77dabab7504bfc111098ba09ea07ae5e
Reviewed-on: https://go-review.googlesource.com/c/151659
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2018-11-29 05:55:51 +00:00
Filippo Valsorda
5db23cd389 crypto/tls: enable TLS 1.3 and update tests
To disable TLS 1.3, simply remove VersionTLS13 from supportedVersions,
as tested by TestEscapeRoute, and amend documentation. To make it
opt-in, revert the change to (*Config).supportedVersions from this CL.

I did not have the heart to implement the early data skipping feature
when I realized that it did not offer a choice between two
abstraction-breaking options, but demanded them both (look for handshake
type in case of HelloRetryRequest, trial decryption otherwise). It's a
lot of complexity for an apparently small gain, but if anyone has strong
opinions about it let me know.

Note that in TLS 1.3 alerts are encrypted, so the close_notify peeking
to return (n > 0, io.EOF) from Read doesn't work. If we are lucky, those
servers that unexpectedly close connections after serving a single
request will have stopped (maybe thanks to H/2) before they got updated
to TLS 1.3.

Relatedly, session tickets are now provisioned on the client first Read
instead of at Handshake time, because they are, well, post-handshake
messages. If this proves to be a problem we might try to peek at them.

Doubled the tests that cover logic that's different in TLS 1.3.

The benchmarks for TLS 1.2 compared to be0f3c286b5 (before TLS 1.3 and
its refactors, after CL 142817 changed them to use real connections)
show little movement.

name                                       old time/op   new time/op   delta
HandshakeServer/RSA-8                        795µs ± 1%    798µs ± 1%    ~     (p=0.057 n=10+18)
HandshakeServer/ECDHE-P256-RSA-8             903µs ± 0%    909µs ± 1%  +0.68%  (p=0.000 n=8+17)
HandshakeServer/ECDHE-P256-ECDSA-P256-8      198µs ± 0%    204µs ± 1%  +3.24%  (p=0.000 n=9+18)
HandshakeServer/ECDHE-X25519-ECDSA-P256-8    202µs ± 3%    208µs ± 1%  +2.98%  (p=0.000 n=9+20)
HandshakeServer/ECDHE-P521-ECDSA-P521-8     15.5ms ± 1%   15.9ms ± 2%  +2.49%  (p=0.000 n=10+20)
Throughput/MaxPacket/1MB-8                  5.81ms ±23%   6.14ms ±44%    ~     (p=0.605 n=8+18)
Throughput/MaxPacket/2MB-8                  8.91ms ±22%   8.74ms ±33%    ~     (p=0.498 n=9+19)
Throughput/MaxPacket/4MB-8                  12.8ms ± 3%   14.0ms ±10%  +9.74%  (p=0.000 n=10+17)
Throughput/MaxPacket/8MB-8                  25.1ms ± 7%   24.6ms ±16%    ~     (p=0.129 n=9+19)
Throughput/MaxPacket/16MB-8                 46.3ms ± 4%   45.9ms ±12%    ~     (p=0.340 n=9+20)
Throughput/MaxPacket/32MB-8                 88.5ms ± 4%   86.0ms ± 4%  -2.82%  (p=0.004 n=10+20)
Throughput/MaxPacket/64MB-8                  173ms ± 2%    167ms ± 7%  -3.42%  (p=0.001 n=10+19)
Throughput/DynamicPacket/1MB-8              5.88ms ± 4%   6.59ms ±64%    ~     (p=0.232 n=9+18)
Throughput/DynamicPacket/2MB-8              9.08ms ±12%   8.73ms ±21%    ~     (p=0.408 n=10+18)
Throughput/DynamicPacket/4MB-8              14.2ms ± 5%   14.0ms ±11%    ~     (p=0.188 n=9+19)
Throughput/DynamicPacket/8MB-8              25.1ms ± 6%   24.0ms ± 7%  -4.39%  (p=0.000 n=10+18)
Throughput/DynamicPacket/16MB-8             45.6ms ± 3%   43.3ms ± 1%  -5.22%  (p=0.000 n=10+8)
Throughput/DynamicPacket/32MB-8             88.4ms ± 3%   84.8ms ± 2%  -4.06%  (p=0.000 n=10+10)
Throughput/DynamicPacket/64MB-8              175ms ± 3%    167ms ± 2%  -4.63%  (p=0.000 n=10+10)
Latency/MaxPacket/200kbps-8                  694ms ± 0%    694ms ± 0%  -0.02%  (p=0.000 n=9+9)
Latency/MaxPacket/500kbps-8                  279ms ± 0%    279ms ± 0%  -0.09%  (p=0.000 n=10+10)
Latency/MaxPacket/1000kbps-8                 140ms ± 0%    140ms ± 0%  -0.15%  (p=0.000 n=10+9)
Latency/MaxPacket/2000kbps-8                71.1ms ± 0%   71.0ms ± 0%  -0.09%  (p=0.001 n=8+9)
Latency/MaxPacket/5000kbps-8                30.5ms ± 6%   30.1ms ± 6%    ~     (p=0.905 n=10+9)
Latency/DynamicPacket/200kbps-8              134ms ± 0%    134ms ± 0%    ~     (p=0.796 n=9+9)
Latency/DynamicPacket/500kbps-8             54.8ms ± 0%   54.7ms ± 0%  -0.18%  (p=0.000 n=8+10)
Latency/DynamicPacket/1000kbps-8            28.5ms ± 0%   29.1ms ± 8%    ~     (p=0.173 n=8+10)
Latency/DynamicPacket/2000kbps-8            15.3ms ± 6%   15.9ms ±10%    ~     (p=0.905 n=9+10)
Latency/DynamicPacket/5000kbps-8            9.14ms ±21%   9.65ms ±82%    ~     (p=0.529 n=10+10)

name                                       old speed     new speed     delta
Throughput/MaxPacket/1MB-8                 175MB/s ±13%  167MB/s ±64%    ~     (p=0.646 n=7+20)
Throughput/MaxPacket/2MB-8                 241MB/s ±25%  241MB/s ±40%    ~     (p=0.660 n=9+20)
Throughput/MaxPacket/4MB-8                 328MB/s ± 3%  300MB/s ± 9%  -8.70%  (p=0.000 n=10+17)
Throughput/MaxPacket/8MB-8                 335MB/s ± 7%  340MB/s ±17%    ~     (p=0.212 n=9+20)
Throughput/MaxPacket/16MB-8                363MB/s ± 4%  367MB/s ±11%    ~     (p=0.340 n=9+20)
Throughput/MaxPacket/32MB-8                379MB/s ± 4%  390MB/s ± 4%  +2.93%  (p=0.004 n=10+20)
Throughput/MaxPacket/64MB-8                388MB/s ± 2%  401MB/s ± 7%  +3.25%  (p=0.004 n=10+20)
Throughput/DynamicPacket/1MB-8             178MB/s ± 4%  157MB/s ±73%    ~     (p=0.127 n=9+20)
Throughput/DynamicPacket/2MB-8             232MB/s ±11%  243MB/s ±18%    ~     (p=0.415 n=10+18)
Throughput/DynamicPacket/4MB-8             296MB/s ± 5%  299MB/s ±15%    ~     (p=0.295 n=9+20)
Throughput/DynamicPacket/8MB-8             334MB/s ± 6%  350MB/s ± 7%  +4.58%  (p=0.000 n=10+18)
Throughput/DynamicPacket/16MB-8            368MB/s ± 3%  388MB/s ± 1%  +5.48%  (p=0.000 n=10+8)
Throughput/DynamicPacket/32MB-8            380MB/s ± 3%  396MB/s ± 2%  +4.20%  (p=0.000 n=10+10)
Throughput/DynamicPacket/64MB-8            384MB/s ± 3%  403MB/s ± 2%  +4.83%  (p=0.000 n=10+10)

Comparing TLS 1.2 and TLS 1.3 at tip shows a slight (~5-10%) slowdown of
handshakes, which might be worth looking at next cycle, but the latency
improvements are expected to overshadow that.

name                                       old time/op   new time/op   delta
HandshakeServer/ECDHE-P256-RSA-8             909µs ± 1%    963µs ± 0%   +5.87%  (p=0.000 n=17+18)
HandshakeServer/ECDHE-P256-ECDSA-P256-8      204µs ± 1%    225µs ± 2%  +10.20%  (p=0.000 n=18+20)
HandshakeServer/ECDHE-X25519-ECDSA-P256-8    208µs ± 1%    230µs ± 2%  +10.35%  (p=0.000 n=20+18)
HandshakeServer/ECDHE-P521-ECDSA-P521-8     15.9ms ± 2%   15.9ms ± 1%     ~     (p=0.444 n=20+19)
Throughput/MaxPacket/1MB-8                  6.14ms ±44%   7.07ms ±46%     ~     (p=0.057 n=18+19)
Throughput/MaxPacket/2MB-8                  8.74ms ±33%   8.61ms ± 9%     ~     (p=0.552 n=19+17)
Throughput/MaxPacket/4MB-8                  14.0ms ±10%   14.1ms ±12%     ~     (p=0.707 n=17+20)
Throughput/MaxPacket/8MB-8                  24.6ms ±16%   25.6ms ±14%     ~     (p=0.107 n=19+20)
Throughput/MaxPacket/16MB-8                 45.9ms ±12%   44.7ms ± 6%     ~     (p=0.607 n=20+19)
Throughput/MaxPacket/32MB-8                 86.0ms ± 4%   87.9ms ± 8%     ~     (p=0.113 n=20+19)
Throughput/MaxPacket/64MB-8                  167ms ± 7%    169ms ± 2%   +1.26%  (p=0.011 n=19+19)
Throughput/DynamicPacket/1MB-8              6.59ms ±64%   6.79ms ±43%     ~     (p=0.480 n=18+19)
Throughput/DynamicPacket/2MB-8              8.73ms ±21%   9.58ms ±13%   +9.71%  (p=0.006 n=18+20)
Throughput/DynamicPacket/4MB-8              14.0ms ±11%   13.9ms ±10%     ~     (p=0.687 n=19+20)
Throughput/DynamicPacket/8MB-8              24.0ms ± 7%   24.6ms ± 8%   +2.36%  (p=0.045 n=18+17)
Throughput/DynamicPacket/16MB-8             43.3ms ± 1%   44.3ms ± 2%   +2.48%  (p=0.001 n=8+9)
Throughput/DynamicPacket/32MB-8             84.8ms ± 2%   86.7ms ± 2%   +2.27%  (p=0.000 n=10+10)
Throughput/DynamicPacket/64MB-8              167ms ± 2%    170ms ± 3%   +1.89%  (p=0.005 n=10+10)
Latency/MaxPacket/200kbps-8                  694ms ± 0%    699ms ± 0%   +0.65%  (p=0.000 n=9+10)
Latency/MaxPacket/500kbps-8                  279ms ± 0%    280ms ± 0%   +0.68%  (p=0.000 n=10+10)
Latency/MaxPacket/1000kbps-8                 140ms ± 0%    141ms ± 0%   +0.59%  (p=0.000 n=9+9)
Latency/MaxPacket/2000kbps-8                71.0ms ± 0%   71.3ms ± 0%   +0.42%  (p=0.000 n=9+9)
Latency/MaxPacket/5000kbps-8                30.1ms ± 6%   30.7ms ±10%   +1.93%  (p=0.019 n=9+9)
Latency/DynamicPacket/200kbps-8              134ms ± 0%    138ms ± 0%   +3.22%  (p=0.000 n=9+10)
Latency/DynamicPacket/500kbps-8             54.7ms ± 0%   56.3ms ± 0%   +3.03%  (p=0.000 n=10+8)
Latency/DynamicPacket/1000kbps-8            29.1ms ± 8%   29.1ms ± 0%     ~     (p=0.173 n=10+8)
Latency/DynamicPacket/2000kbps-8            15.9ms ±10%   16.4ms ±36%     ~     (p=0.633 n=10+8)
Latency/DynamicPacket/5000kbps-8            9.65ms ±82%   8.32ms ± 8%     ~     (p=0.573 n=10+8)

name                                       old speed     new speed     delta
Throughput/MaxPacket/1MB-8                 167MB/s ±64%  155MB/s ±55%     ~     (p=0.224 n=20+19)
Throughput/MaxPacket/2MB-8                 241MB/s ±40%  244MB/s ± 9%     ~     (p=0.407 n=20+17)
Throughput/MaxPacket/4MB-8                 300MB/s ± 9%  298MB/s ±11%     ~     (p=0.707 n=17+20)
Throughput/MaxPacket/8MB-8                 340MB/s ±17%  330MB/s ±13%     ~     (p=0.201 n=20+20)
Throughput/MaxPacket/16MB-8                367MB/s ±11%  375MB/s ± 5%     ~     (p=0.607 n=20+19)
Throughput/MaxPacket/32MB-8                390MB/s ± 4%  382MB/s ± 8%     ~     (p=0.113 n=20+19)
Throughput/MaxPacket/64MB-8                401MB/s ± 7%  397MB/s ± 2%   -0.96%  (p=0.030 n=20+19)
Throughput/DynamicPacket/1MB-8             157MB/s ±73%  156MB/s ±39%     ~     (p=0.738 n=20+20)
Throughput/DynamicPacket/2MB-8             243MB/s ±18%  220MB/s ±14%   -9.65%  (p=0.006 n=18+20)
Throughput/DynamicPacket/4MB-8             299MB/s ±15%  303MB/s ± 9%     ~     (p=0.512 n=20+20)
Throughput/DynamicPacket/8MB-8             350MB/s ± 7%  342MB/s ± 8%   -2.27%  (p=0.045 n=18+17)
Throughput/DynamicPacket/16MB-8            388MB/s ± 1%  378MB/s ± 2%   -2.41%  (p=0.001 n=8+9)
Throughput/DynamicPacket/32MB-8            396MB/s ± 2%  387MB/s ± 2%   -2.21%  (p=0.000 n=10+10)
Throughput/DynamicPacket/64MB-8            403MB/s ± 2%  396MB/s ± 3%   -1.84%  (p=0.005 n=10+10)

Fixes #9671

Change-Id: Ieb57c5140eb2c083b8be0d42b240cd2eeec0dcf6
Reviewed-on: https://go-review.googlesource.com/c/147638
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2018-11-12 20:44:39 +00:00
Filippo Valsorda
b523d280e4 crypto/tls: implement TLS 1.3 client authentication
Note that the SignatureSchemes passed to GetClientCertificate in TLS 1.2
are now filtered by the requested certificate type. This feels like an
improvement anyway, and the full list can be surfaced as well when
support for signature_algorithms_cert is added, which actually matches
the semantics of the CertificateRequest signature_algorithms in TLS 1.2.

Also, note a subtle behavior change in server side resumption: if a
certificate is requested but not required, and the resumed session did
not include one, it used not to invoke VerifyPeerCertificate. However,
if the resumed session did include a certificate, it would. (If a
certificate was required but not in the session, the session is rejected
in checkForResumption.) This inconsistency could be unexpected, even
dangerous, so now VerifyPeerCertificate is always invoked. Still not
consistent with the client behavior, which does not ever invoke
VerifyPeerCertificate on resumption, but it felt too surprising to
entirely change either.

Updates #9671

Change-Id: Ib2b0dbc30e659208dca3ac07d6c687a407d7aaaf
Reviewed-on: https://go-review.googlesource.com/c/147599
Reviewed-by: Adam Langley <agl@golang.org>
2018-11-12 20:43:55 +00:00
Filippo Valsorda
166c58b85c crypto/tls: implement TLS 1.3 PSK authentication (server side)
Added some assertions to testHandshake, but avoided checking the error
of one of the Close() because the one that would lose the race would
write the closeNotify to a connection closed on the other side which is
broken on js/wasm (#28650). Moved that Close() after the chan sync to
ensure it happens second.

Accepting a ticket with client certificates when NoClientCert is
configured is probably not a problem, and we could hide them to avoid
confusing the application, but the current behavior is to skip the
ticket, and I'd rather keep behavior changes to a minimum.

Updates #9671

Change-Id: I93b56e44ddfe3d48c2bef52c83285ba2f46f297a
Reviewed-on: https://go-review.googlesource.com/c/147445
Reviewed-by: Adam Langley <agl@golang.org>
2018-11-12 20:43:35 +00:00
Filippo Valsorda
5b79a7c982 crypto/tls: implement TLS 1.3 middlebox compatibility mode
Looks like the introduction of CCS records in the client second flight
gave time to s_server to send NewSessionTicket messages in between the
client application data and close_notify. There seems to be no way of
turning NewSessionTicket messages off, neither by not sending a
psk_key_exchange_modes extension, nor by command line flag.

Interleaving the client write like that tickled an issue akin to #18701:
on Windows, the client reaches Close() before the last record is drained
from the send buffer, the kernel notices and resets the connection,
cutting short the last flow. There is no good way of synchronizing this,
so we sleep for a RTT before calling close, like in CL 75210. Sigh.

Updates #9671

Change-Id: I44dc1cca17b373695b5a18c2741f218af2990bd1
Reviewed-on: https://go-review.googlesource.com/c/147419
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2018-11-12 20:43:06 +00:00
Filippo Valsorda
e04a8ac694 crypto/tls: implement TLS 1.3 KeyUpdate messages
Since TLS 1.3 delivers handshake messages (including KeyUpdate) after
the handshake, the want argument to readRecord had became almost
pointless: it only meant something when set to recordTypeChangeCipherSpec.
Replaced it with a bool to reflect that, and added two shorthands to
avoid anonymous bools in calls.

Took the occasion to simplify and formalize the invariants of readRecord.

The maxConsecutiveEmptyRecords loop became useless when readRecord
started retrying on any non-advancing record in CL 145297.

Replaced panics with errors, because failure is better than undefined
behavior, but contained failure is better than a DoS vulnerability. For
example, I suspect the panic at the top of readRecord was reachable from
handleRenegotiation, which calls readHandshake with handshakeComplete
false. Thankfully it was not a panic in 1.11, and it's allowed now.

Removed Client-TLSv13-RenegotiationRejected because OpenSSL isn't
actually willing to ask for renegotiation over TLS 1.3, the expected
error was due to NewSessionTicket messages, which didn't break the rest
of the tests because they stop too soon.

Updates #9671

Change-Id: I297a81bde5c8020a962a92891b70d6d70b90f5e3
Reviewed-on: https://go-review.googlesource.com/c/147418
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2018-11-12 20:42:36 +00:00
Filippo Valsorda
376ff45dc1 crypto/tls: implement TLS 1.3 server handshake (base)
Implement a basic TLS 1.3 server handshake, only enabled if explicitly
requested with MaxVersion.

This CL intentionally leaves for future CLs:
  - PSK modes and resumption
  - client authentication
  - compatibility mode ChangeCipherSpecs
  - early data skipping
  - post-handshake messages
  - downgrade protection
  - KeyLogWriter support
  - TLS_FALLBACK_SCSV processing

It also leaves a few areas up for a wider refactor (maybe in Go 1.13):
  - the certificate selection logic can be significantly improved,
    including supporting and surfacing signature_algorithms_cert, but
    this isn't new in TLS 1.3 (see comment in processClientHello)
  - handshake_server_tls13.go can be dried up and broken into more
    meaningful, smaller functions, but it felt premature to do before
    PSK and client auth support
  - the monstrous ClientHello equality check in doHelloRetryRequest can
    get both cleaner and more complete with collaboration from the
    parsing layer, which can come at the same time as extension
    duplicates detection

Updates #9671

Change-Id: Id9db2b6ecc2eea21bf9b59b6d1d9c84a7435151c
Reviewed-on: https://go-review.googlesource.com/c/147017
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2018-11-02 22:07:43 +00:00
Filippo Valsorda
2c3ff7ba06 crypto/tls: implement TLS 1.3 client handshake (base)
Implement a basic TLS 1.3 client handshake, only enabled if explicitly
requested with MaxVersion.

This CL intentionally leaves for future CLs:
  - PSK modes and resumption
  - client authentication
  - post-handshake messages
  - downgrade protection
  - KeyLogWriter support

Updates #9671

Change-Id: Ieb6130fb6f25aea4f0d39e3a2448dfc942e1de7a
Reviewed-on: https://go-review.googlesource.com/c/146559
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2018-11-02 22:07:02 +00:00
Filippo Valsorda
ed74f7823e crypto/tls: advertise and accept rsa_pss_rsae signature algorithms
crypto/x509 already supports PSS signatures (with rsaEncryption OID),
and crypto/tls support was added in CL 79736. Advertise support for the
algorithms and accept them as a peer.

Note that this is about PSS signatures from regular RSA public keys.
RSA-PSS only public keys (with RSASSA-PSS OID) are supported in neither
crypto/tls nor crypto/x509. See RFC 8446, Section 4.2.3.

testdata/Server-TLSv12-ClientAuthRequested* got modified because the
CertificateRequest carries the supported signature algorithms.

The net/smtp tests changed because 512 bits keys are too small for PSS.

Based on Peter Wu's CL 79738, who did all the actual work in CL 79736.

Updates #9671

Change-Id: I4a31e9c6e152ff4c50a5c8a274edd610d5fff231
Reviewed-on: https://go-review.googlesource.com/c/146258
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2018-11-02 22:05:52 +00:00
Filippo Valsorda
0a9fc9c88a crypto/tls: make ConnectionState.ExportKeyingMaterial a method
The unexported field is hidden from reflect based marshalers, which
would break otherwise. Also, make it return an error, as there are
multiple reasons it might fail.

Fixes #27125

Change-Id: I92adade2fe456103d2d5c0315629ca0256953764
Reviewed-on: https://go-review.googlesource.com/130535
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2018-08-22 03:48:56 +00:00
Kevin Burke
a7f5c0823b crypto/tls: add examples for [Load]X509KeyPair
I was confused about how to start an HTTP server if the server
cert/key are in memory, not on disk. I thought it would be good to
show an example of how to use these two functions to accomplish that.

example-cert.pem and example-key.pem were generated using
crypto/tls/generate_cert.go.

Change-Id: I850e1282fb1c38aff8bd9aeb51988d21fe307584
Reviewed-on: https://go-review.googlesource.com/72252
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2018-04-30 17:25:27 +00:00
Filippo Valsorda
ca44103d11 crypto/tls: advertise support for SHA-512 signatures in 1.2
This is the equivalent change to 1c105980 but for SHA-512.

SHA-512 certificates are already supported by default since b53bb2ca,
but some servers will refuse connections if the algorithm is not
advertised in the overloaded signatureAndHash extension (see 09b238f1).

This required adding support for SHA-512 signatures on CertificateVerify
and ServerKeyExchange messages, because of said overloading.

Some testdata/Client-TLSv1{0,1} files changed because they send a 1.2
ClientHello even if the server picks a lower version.

Closes #22422

Change-Id: I16282d03a3040260d203711ec21e6b20a0e1e105
Reviewed-on: https://go-review.googlesource.com/74950
Run-TryBot: Filippo Valsorda <hi@filippo.io>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2017-11-08 22:39:36 +00:00
Adam Langley
38982b663e crypto/tls: enable ChaCha20-Poly1305 cipher suites by default.
This change enables the ChaCha20-Poly1305 cipher suites by default. This
changes the default ClientHello and thus requires updating all the
tests.

Change-Id: I6683a2647caaff4a11f9e932babb6f07912cad94
Reviewed-on: https://go-review.googlesource.com/30958
Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2016-10-18 06:54:30 +00:00
Adam Langley
7f2a0090ec crypto/tls: support ChaCha20-Poly1305.
This change adds support for the ChaCha20-Poly1305 AEAD to crypto/tls,
as specified in https://tools.ietf.org/html/rfc7905.

Fixes #15499.

Change-Id: Iaa689be90e03f208c40b574eca399e56f3c7ecf1
Reviewed-on: https://go-review.googlesource.com/30957
Run-TryBot: Adam Langley <agl@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2016-10-17 21:05:26 +00:00
Adam Langley
46e9439117 crypto/tls: enable X25519 by default.
Since this changes the offered curves in the ClientHello, all the test
data needs to be updated too.

Change-Id: I227934711104349c0f0eab11d854e5a2adcbc363
Reviewed-on: https://go-review.googlesource.com/30825
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2016-10-12 17:07:31 +00:00
Adam Langley
6bcda018f7 crypto/tls: support X25519.
X25519 (RFC 7748) is now commonly used for key agreement in TLS
connections, as specified in
https://tools.ietf.org/html/draft-ietf-tls-curve25519-01.

This change adds support for that in crypto/tls, but does not enabled it
by default so that there's less test noise. A future change will enable
it by default and will update all the test data at the same time.

Change-Id: I91802ecd776d73aae5c65bcb653d12e23c413ed4
Reviewed-on: https://go-review.googlesource.com/30824
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2016-10-12 17:04:28 +00:00
Adam Langley
f0c7db843d crypto/tls: switch to OpenSSL 1.1.0 for test data.
We will need OpenSSL 1.1.0 in order to test some of the features
expected for Go 1.8. However, 1.1.0 also disables (by default) some
things that we still want to test, such as RC4, 3DES and SSLv3. Thus
developers wanting to update the crypto/tls test data will need to build
OpenSSL from source.

This change updates the test data with transcripts generated by 1.1.0
(in order to reduce future diffs) and also causes a banner to be printed
if 1.1.0 is not used when updating.

(The test for an ALPN mismatch is removed because OpenSSL now terminates
the connection with a fatal alert if no known ALPN protocols are
offered. There's no point testing against this because it's an OpenSSL
behaviour.)

Change-Id: I957516975e0b8c7def84184f65c81d0b68f1c551
Reviewed-on: https://go-review.googlesource.com/30821
Run-TryBot: Adam Langley <agl@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2016-10-12 17:03:46 +00:00
Adam Langley
0ce4657e04 crypto/tls: simplify keylog tests.
Since there's no aspect of key logging that OpenSSL can check for us,
the tests for it might as well just connect to another goroutine as this
is lower-maintainance.

Change-Id: I746d1dbad1b4bbfc8ef6ccf136ee4824dbda021e
Reviewed-on: https://go-review.googlesource.com/30089
Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Joonas Kuorilehto <joneskoo@derbian.fi>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2016-10-01 15:50:11 +00:00
Joonas Kuorilehto
94b4238f5f crypto/tls: add KeyLogWriter for debugging
Add support for writing TLS client random and master secret
in NSS key log format.

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format

Normally this is enabled by a developer debugging TLS based
applications, especially HTTP/2, by setting the KeyLogWriter
to an open file. The keys negotiated in handshake are then
logged and can be used to decrypt TLS sessions e.g. in Wireshark.

Applications may choose to add support similar to NSS where this
is enabled by environment variable, but no such mechanism is
built in to Go. Instead each application must explicitly enable.

Fixes #13057.

Change-Id: If6edd2d58999903e8390b1674ba4257ecc747ae1
Reviewed-on: https://go-review.googlesource.com/27434
Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2016-08-27 17:20:55 +00:00
Adam Langley
e099795efd crypto/tls: support AES-128-CBC cipher suites with SHA-256.
These were new with TLS 1.2 and, reportedly, some servers require it.
Since it's easy, this change adds suport for three flavours of
AES-128-CBC with SHA-256 MACs.

Other testdata/ files have to be updated because this changes the list
of cipher suites offered by default by the client.

Fixes #15487.

Change-Id: I1b14330c31eeda20185409a37072343552c3464f
Reviewed-on: https://go-review.googlesource.com/27315
Run-TryBot: Adam Langley <agl@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Reviewed-by: Jonathan Rudenberg <jonathan@titanous.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-08-18 21:46:46 +00:00
Adam Langley
5ad0511ca2 crypto/x509: require a NULL parameters for RSA public keys.
The RFC is clear that the Parameters in an AlgorithmIdentifer for an RSA
public key must be NULL. BoringSSL enforces this so we have strong
evidence that this is a widely compatible change.

Embarrassingly enough, the major source of violations of this is us. Go
used to get this correct in only one of two places. This was only fixed
in 2013 (with 4874bc9b). That's why lots of test certificates are
updated in this change.

Fixes #16166.

Change-Id: Ib9a4551349354c66e730d44eb8cee4ec402ea8ab
Reviewed-on: https://go-review.googlesource.com/27312
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2016-08-17 23:47:18 +00:00
Adam Langley
e041919535 crypto/tls: allow renegotiation to be handled by a client.
This change adds Config.Renegotiation which controls whether a TLS
client will accept renegotiation requests from a server. This is used,
for example, by some web servers that wish to “add” a client certificate
to an HTTPS connection.

This is disabled by default because it significantly complicates the
state machine.

Originally, handshakeMutex was taken before locking either Conn.in or
Conn.out. However, if renegotiation is permitted then a handshake may
be triggered during a Read() call. If Conn.in were unlocked before
taking handshakeMutex then a concurrent Read() call could see an
intermediate state and trigger an error. Thus handshakeMutex is now
locked after Conn.in and the handshake functions assume that Conn.in is
locked for the duration of the handshake.

Additionally, handshakeMutex used to protect Conn.out also. With the
possibility of renegotiation that's no longer viable and so
writeRecordLocked has been split off.

Fixes #5742.

Change-Id: I935914db1f185d507ff39bba8274c148d756a1c8
Reviewed-on: https://go-review.googlesource.com/22475
Run-TryBot: Adam Langley <agl@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
2016-04-28 17:56:28 +00:00
Shenghou Ma
14661a3d39 crypto/tls: add TLS_RSA_WITH_AES_128_GCM_SHA256 and TLS_RSA_WITH_AES_256_GCM_SHA384 cipher suites
Fixes #9894.

Change-Id: I9c7ce771df2e2d1c99a06f800dce63c4e1875993
Reviewed-on: https://go-review.googlesource.com/16924
Run-TryBot: Minux Ma <minux@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2015-11-15 20:59:11 +00:00
Adam Langley
59effa71a9 crypto/tls: update testing certificates.
This change alters the certificate used in many tests so that it's no
longer self-signed. This allows some tests to exercise the standard
certificate verification paths in the future.

Change-Id: I9c3fcd6847eed8269ff3b86d9b6966406bf0642d
Reviewed-on: https://go-review.googlesource.com/13244
Reviewed-by: Russ Cox <rsc@golang.org>
Run-TryBot: Adam Langley <agl@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2015-08-05 19:06:51 +00:00
Adam Langley
eedecb3d60 crypto/tls: update the supported signature algorithms.
This is the second in a two-part change. See https://golang.org/cl/9415
for details of the overall change.

This change updates the supported signature algorithms to include
SHA-384 and updates all the testdata/ files accordingly. Even some of
the testdata/ files named “TLS1.0” and “TLS1.1” have been updated
because they have TLS 1.2 ClientHello's even though the server picks a
lower version.

Fixes #9757.

Change-Id: Ia76de2b548d3b39cd4aa3f71132b0da7c917debd
Reviewed-on: https://go-review.googlesource.com/9472
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2015-04-30 03:47:51 +00:00
Adam Langley
7de6f5ad0c crypto/tls: decouple handshake signatures from the handshake hash.
Prior to TLS 1.2, the handshake had a pleasing property that one could
incrementally hash it and, from that, get the needed hashes for both
the CertificateVerify and Finished messages.

TLS 1.2 introduced negotiation for the signature and hash and it became
possible for the handshake hash to be, say, SHA-384, but for the
CertificateVerify to sign the handshake with SHA-1. The problem is that
one doesn't know in advance which hashes will be needed and thus the
handshake needs to be buffered.

Go ignored this, always kept a single handshake hash, and any signatures
over the handshake had to use that hash.

However, there are a set of servers that inspect the client's offered
signature hash functions and will abort the handshake if one of the
server's certificates is signed with a hash function outside of that
set. https://robertsspaceindustries.com/ is an example of such a server.

Clearly not a lot of thought happened when that server code was written,
but its out there and we have to deal with it.

This change decouples the handshake hash from the CertificateVerify
hash. This lays the groundwork for advertising support for SHA-384 but
doesn't actually make that change in the interests of reviewability.
Updating the advertised hash functions will cause changes in many of the
testdata/ files and some errors might get lost in the noise. This change
only needs to update four testdata/ files: one because a SHA-384-based
handshake is now being signed with SHA-256 and the others because the
TLS 1.2 CertificateRequest message now includes SHA-1.

This change also has the effect of adding support for
client-certificates in SSLv3 servers. However, SSLv3 is now disabled by
default so this should be moot.

It would be possible to avoid much of this change and just support
SHA-384 for the ServerKeyExchange as the SKX only signs over the nonces
and SKX params (a design mistake in TLS). However, that would leave Go
in the odd situation where it advertised support for SHA-384, but would
only use the handshake hash when signing client certificates. I fear
that'll just cause problems in the future.

Much of this code was written by davidben@ for the purposes of testing
BoringSSL.

Partly addresses #9757

Change-Id: I5137a472b6076812af387a5a69fc62c7373cd485
Reviewed-on: https://go-review.googlesource.com/9415
Run-TryBot: Adam Langley <agl@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2015-04-30 03:47:02 +00:00