Commit graph

9 commits

Author SHA1 Message Date
Jonathan Rudenberg
7576470d56 crypto/tls: add support for session ticket key rotation
This change adds a new method to tls.Config, SetSessionTicketKeys, that
changes the key used to encrypt session tickets while the server is
running. Additional keys may be provided that will be used to maintain
continuity while rotating keys. If a ticket encrypted with an old key is
provided by the client, the server will resume the session and provide
the client with a ticket encrypted using the new key.

Fixes #9994

Change-Id: Idbc16b10ff39616109a51ed39a6fa208faad5b4e
Reviewed-on: https://go-review.googlesource.com/9072
Reviewed-by: Jonathan Rudenberg <jonathan@titanous.com>
Reviewed-by: Adam Langley <agl@golang.org>
2015-04-26 20:57:28 +00:00
Jonathan Rudenberg
cf04082452 crypto/tls: add support for Certificate Transparency
This change adds support for serving and receiving Signed Certificate
Timestamps as described in RFC 6962.

The server is now capable of serving SCTs listed in the Certificate
structure. The client now asks for SCTs and, if any are received,
they are exposed in the ConnectionState structure.

Fixes #10201

Change-Id: Ib3adae98cb4f173bc85cec04d2bdd3aa0fec70bb
Reviewed-on: https://go-review.googlesource.com/8988
Reviewed-by: Adam Langley <agl@golang.org>
Run-TryBot: Adam Langley <agl@golang.org>
Reviewed-by: Jonathan Rudenberg <jonathan@titanous.com>
2015-04-26 16:53:11 +00:00
Jonathan Rudenberg
06b29738e8 crypto/tls: fix test data generation
- Multiple GetCertificate tests shared the same name and were
  overwriting each other, each test now has a unique name.
- expectAlert was not implemented in the data updater, the single
  test that used it has been replaced with a ClientHello failure
  test.

Fixes #10470

Change-Id: I500738f6302ffa863d7ee45d85fa8773155e0614
Reviewed-on: https://go-review.googlesource.com/8959
Reviewed-by: Adam Langley <agl@golang.org>
Run-TryBot: Adam Langley <agl@golang.org>
2015-04-16 18:16:37 +00:00
Joël Stemmer
c1444f153a crypto/tls: return correct hash function when using client certificates in handshake
Commit f1d669aee994b28e1afcfe974680565932d25b70 added support for
AES_256_GCM_SHA384 cipher suites as specified in RFC5289. However, it
did not take the arbitrary hash function into account in the TLS client
handshake when using client certificates.

The hashForClientCertificate method always returned SHA256 as its
hashing function, even if it actually used a different one to calculate
its digest. Setting up the connection would eventually fail with the
error "tls: failed to sign handshake with client certificate:
crypto/rsa: input must be hashed message".

Included is an additional test for this specific situation that uses the
SHA384 hash.

Fixes #9808

Change-Id: Iccbf4ab225633471ef897907c208ad31f92855a3
Reviewed-on: https://go-review.googlesource.com/7040
Reviewed-by: Adam Langley <agl@golang.org>
Run-TryBot: Adam Langley <agl@golang.org>
2015-03-16 23:38:51 +00:00
Jacob H. Haven
01861d435c crypto/tls: add support for AES_256_GCM_SHA384 cipher suites specified in RFC5289
Generalizes PRF calculation for TLS 1.2 to support arbitrary hashes (SHA-384 instead of SHA-256).
Testdata were all updated to correspond with the new cipher suites in the handshake.

Change-Id: I3d9fc48c19d1043899e38255a53c80dc952ee08f
Reviewed-on: https://go-review.googlesource.com/3265
Reviewed-by: Adam Langley <agl@golang.org>
2015-02-04 00:18:14 +00:00
David Leon Gil
531f0d0055 crypto/ecdsa: make Sign safe with broken entropy sources
ECDSA is unsafe to use if an entropy source produces predictable
output for the ephemeral nonces. E.g., [Nguyen]. A simple
countermeasure is to hash the secret key, the message, and
entropy together to seed a CSPRNG, from which the ephemeral key
is derived.

Fixes #9452

--

This is a minimalist (in terms of patch size) solution, though
not the most parsimonious in its use of primitives:

   - csprng_key = ChopMD-256(SHA2-512(priv.D||entropy||hash))
   - reader = AES-256-CTR(k=csprng_key)

This, however, provides at most 128-bit collision-resistance,
so that Adv will have a term related to the number of messages
signed that is significantly worse than plain ECDSA. This does
not seem to be of any practical importance.

ChopMD-256(SHA2-512(x)) is used, rather than SHA2-256(x), for
two sets of reasons:

*Practical:* SHA2-512 has a larger state and 16 more rounds; it
is likely non-generically stronger than SHA2-256. And, AFAIK,
cryptanalysis backs this up. (E.g., [Biryukov] gives a
distinguisher on 47-round SHA2-256 with cost < 2^85.) This is
well below a reasonable security-strength target.

*Theoretical:* [Coron] and [Chang] show that Chop-MD(F(x)) is
indifferentiable from a random oracle for slightly beyond the
birthday barrier. It seems likely that this makes a generic
security proof that this construction remains UF-CMA is
possible in the indifferentiability framework.

--

Many thanks to Payman Mohassel for reviewing this construction;
any mistakes are mine, however. And, as he notes, reusing the
private key in this way means that the generic-group (non-RO)
proof of ECDSA's security given in [Brown] no longer directly
applies.

--

[Brown]: http://www.cacr.math.uwaterloo.ca/techreports/2000/corr2000-54.ps
"Brown. The exact security of ECDSA. 2000"

[Coron]: https://www.cs.nyu.edu/~puniya/papers/merkle.pdf
"Coron et al. Merkle-Damgard revisited. 2005"

[Chang]: 50860436.pdf
"Chang and Nandi. Improved indifferentiability security analysis
of chopMD hash function. 2008"

[Biryukov]: 70730269.pdf
"Biryukov et al. Second-order differential collisions for reduced
SHA-256. 2011"

[Nguyen]: ftp://ftp.di.ens.fr/pub/users/pnguyen/PubECDSA.ps
"Nguyen and Shparlinski. The insecurity of the elliptic curve
digital signature algorithm with partially known nonces. 2003"

New tests:

  TestNonceSafety: Check that signatures are safe even with a
    broken entropy source.

  TestINDCCA: Check that signatures remain non-deterministic
    with a functional entropy source.

Updated "golden" KATs in crypto/tls/testdata that use ECDSA suites.

Change-Id: I55337a2fbec2e42a36ce719bd2184793682d678a
Reviewed-on: https://go-review.googlesource.com/3340
Reviewed-by: Adam Langley <agl@golang.org>
2015-01-28 01:39:51 +00:00
Adam Langley
a367222d8d crypto/tls: support TLS_FALLBACK_SCSV as a server.
A new attack on CBC padding in SSLv3 was released yesterday[1]. Go only
supports SSLv3 as a server, not as a client. An easy fix is to change
the default minimum version to TLS 1.0 but that seems a little much
this late in the 1.4 process as it may break some things.

Thus this patch adds server support for TLS_FALLBACK_SCSV[2] -- a
mechanism for solving the fallback problem overall. Chrome has
implemented this since February and Google has urged others to do so in
light of yesterday's news.

With this change, clients can indicate that they are doing a fallback
connection and Go servers will be able to correctly reject them.

[1] http://googleonlinesecurity.blogspot.com/2014/10/this-poodle-bites-exploiting-ssl-30.html
[2] https://tools.ietf.org/html/draft-ietf-tls-downgrade-scsv-00

LGTM=rsc
R=rsc
CC=golang-codereviews
https://golang.org/cl/157090043
2014-10-15 17:54:04 -07:00
Adam Langley
a59ca4a0e7 crypto/tls: ensure that we don't resume when tickets are disabled.
LGTM=r
R=r, adg, rsc
https://golang.org/cl/148080043
2014-09-26 11:02:09 +10:00
Russ Cox
bb890c0d27 build: move package sources from src/pkg to src
Preparation was in CL 134570043.
This CL contains only the effect of 'hg mv src/pkg/* src'.
For more about the move, see golang.org/s/go14nopkg.
2014-09-08 00:08:51 -04:00