utls/handshake_test.go
Filippo Valsorda 1b72cce3de crypto/tls: replace net.Pipe in tests with real TCP connections
crypto/tls is meant to work over network connections with buffering, not
synchronous connections, as explained in #24198. Tests based on net.Pipe
are unrealistic as reads and writes are matched one to one. Such tests
worked just thanks to the implementation details of the tls.Conn
internal buffering, and would break if for example the flush of the
first flight of the server was not entirely assimilated by the client
rawInput buffer before the client attempted to reply to the ServerHello.

Note that this might run into the Darwin network issues at #25696.

Fixed a few test races that were either hidden or synchronized by the
use of the in-memory net.Pipe.

Also, this gets us slightly more realistic benchmarks, reflecting some
syscall cost of Read and Write operations.

Change-Id: I5a597b3d7a81b8ccc776030cc837133412bf50f8
Reviewed-on: https://go-review.googlesource.com/c/142817
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2018-10-19 12:43:30 +00:00

269 lines
6.7 KiB
Go

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tls
import (
"bufio"
"encoding/hex"
"errors"
"flag"
"fmt"
"io"
"io/ioutil"
"net"
"os"
"os/exec"
"strconv"
"strings"
"sync"
"testing"
)
// TLS reference tests run a connection against a reference implementation
// (OpenSSL) of TLS and record the bytes of the resulting connection. The Go
// code, during a test, is configured with deterministic randomness and so the
// reference test can be reproduced exactly in the future.
//
// In order to save everyone who wishes to run the tests from needing the
// reference implementation installed, the reference connections are saved in
// files in the testdata directory. Thus running the tests involves nothing
// external, but creating and updating them requires the reference
// implementation.
//
// Tests can be updated by running them with the -update flag. This will cause
// the test files to be regenerated. Generally one should combine the -update
// flag with -test.run to updated a specific test. Since the reference
// implementation will always generate fresh random numbers, large parts of
// the reference connection will always change.
var (
update = flag.Bool("update", false, "update golden files on disk")
opensslVersionTestOnce sync.Once
opensslVersionTestErr error
)
func checkOpenSSLVersion(t *testing.T) {
opensslVersionTestOnce.Do(testOpenSSLVersion)
if opensslVersionTestErr != nil {
t.Fatal(opensslVersionTestErr)
}
}
func testOpenSSLVersion() {
// This test ensures that the version of OpenSSL looks reasonable
// before updating the test data.
if !*update {
return
}
openssl := exec.Command("openssl", "version")
output, err := openssl.CombinedOutput()
if err != nil {
opensslVersionTestErr = err
return
}
version := string(output)
if strings.HasPrefix(version, "OpenSSL 1.1.0") {
return
}
println("***********************************************")
println("")
println("You need to build OpenSSL 1.1.0 from source in order")
println("to update the test data.")
println("")
println("Configure it with:")
println("./Configure enable-weak-ssl-ciphers enable-ssl3 enable-ssl3-method -static linux-x86_64")
println("and then add the apps/ directory at the front of your PATH.")
println("***********************************************")
opensslVersionTestErr = errors.New("version of OpenSSL does not appear to be suitable for updating test data")
}
// recordingConn is a net.Conn that records the traffic that passes through it.
// WriteTo can be used to produce output that can be later be loaded with
// ParseTestData.
type recordingConn struct {
net.Conn
sync.Mutex
flows [][]byte
reading bool
}
func (r *recordingConn) Read(b []byte) (n int, err error) {
if n, err = r.Conn.Read(b); n == 0 {
return
}
b = b[:n]
r.Lock()
defer r.Unlock()
if l := len(r.flows); l == 0 || !r.reading {
buf := make([]byte, len(b))
copy(buf, b)
r.flows = append(r.flows, buf)
} else {
r.flows[l-1] = append(r.flows[l-1], b[:n]...)
}
r.reading = true
return
}
func (r *recordingConn) Write(b []byte) (n int, err error) {
if n, err = r.Conn.Write(b); n == 0 {
return
}
b = b[:n]
r.Lock()
defer r.Unlock()
if l := len(r.flows); l == 0 || r.reading {
buf := make([]byte, len(b))
copy(buf, b)
r.flows = append(r.flows, buf)
} else {
r.flows[l-1] = append(r.flows[l-1], b[:n]...)
}
r.reading = false
return
}
// WriteTo writes Go source code to w that contains the recorded traffic.
func (r *recordingConn) WriteTo(w io.Writer) (int64, error) {
// TLS always starts with a client to server flow.
clientToServer := true
var written int64
for i, flow := range r.flows {
source, dest := "client", "server"
if !clientToServer {
source, dest = dest, source
}
n, err := fmt.Fprintf(w, ">>> Flow %d (%s to %s)\n", i+1, source, dest)
written += int64(n)
if err != nil {
return written, err
}
dumper := hex.Dumper(w)
n, err = dumper.Write(flow)
written += int64(n)
if err != nil {
return written, err
}
err = dumper.Close()
if err != nil {
return written, err
}
clientToServer = !clientToServer
}
return written, nil
}
func parseTestData(r io.Reader) (flows [][]byte, err error) {
var currentFlow []byte
scanner := bufio.NewScanner(r)
for scanner.Scan() {
line := scanner.Text()
// If the line starts with ">>> " then it marks the beginning
// of a new flow.
if strings.HasPrefix(line, ">>> ") {
if len(currentFlow) > 0 || len(flows) > 0 {
flows = append(flows, currentFlow)
currentFlow = nil
}
continue
}
// Otherwise the line is a line of hex dump that looks like:
// 00000170 fc f5 06 bf (...) |.....X{&?......!|
// (Some bytes have been omitted from the middle section.)
if i := strings.IndexByte(line, ' '); i >= 0 {
line = line[i:]
} else {
return nil, errors.New("invalid test data")
}
if i := strings.IndexByte(line, '|'); i >= 0 {
line = line[:i]
} else {
return nil, errors.New("invalid test data")
}
hexBytes := strings.Fields(line)
for _, hexByte := range hexBytes {
val, err := strconv.ParseUint(hexByte, 16, 8)
if err != nil {
return nil, errors.New("invalid hex byte in test data: " + err.Error())
}
currentFlow = append(currentFlow, byte(val))
}
}
if len(currentFlow) > 0 {
flows = append(flows, currentFlow)
}
return flows, nil
}
// tempFile creates a temp file containing contents and returns its path.
func tempFile(contents string) string {
file, err := ioutil.TempFile("", "go-tls-test")
if err != nil {
panic("failed to create temp file: " + err.Error())
}
path := file.Name()
file.WriteString(contents)
file.Close()
return path
}
// localListener is set up by TestMain and used by localPipe to create Conn
// pairs like net.Pipe, but connected by an actual buffered TCP connection.
var localListener struct {
sync.Mutex
net.Listener
}
func localPipe(t testing.TB) (net.Conn, net.Conn) {
localListener.Lock()
defer localListener.Unlock()
c := make(chan net.Conn)
go func() {
conn, err := localListener.Accept()
if err != nil {
t.Errorf("Failed to accept local connection: %v", err)
}
c <- conn
}()
addr := localListener.Addr()
c1, err := net.Dial(addr.Network(), addr.String())
if err != nil {
t.Fatalf("Failed to dial local connection: %v", err)
}
c2 := <-c
return c1, c2
}
func TestMain(m *testing.M) {
l, err := net.Listen("tcp", "127.0.0.1:0")
if err != nil {
l, err = net.Listen("tcp6", "[::1]:0")
}
if err != nil {
fmt.Fprintf(os.Stderr, "Failed to open local listener: %v", err)
os.Exit(1)
}
localListener.Listener = l
exitCode := m.Run()
localListener.Close()
os.Exit(exitCode)
}