utls/handshake_server_tls13.go
Gaukas Wang 86e9b69fdd
sync: Go 1.21 with QUIC support (#208)
* sync: Go 1.21rc3, QUIC support added (#207)

* sync: merge with upstream tag/go-1.21rc3 (#11)

* fix: all tests pass

* impl: UQUIC Transport

* deps: bump up min Go version

* new: uquic

* fix: add QUICTransportParameter

* deprecated: Go 1.19 no longer supported

Go 1.19 will fail to build or pass the test once we bump up to the new version.

* sync: crypto/tls: restrict RSA keys in certificates to <= 8192 bits (#209)

* [release-branch.go1.21] crypto/tls: restrict RSA keys in certificates to <= 8192 bits

Extremely large RSA keys in certificate chains can cause a client/server
to expend significant CPU time verifying signatures. Limit this by
restricting the size of RSA keys transmitted during handshakes to <=
8192 bits.

Based on a survey of publicly trusted RSA keys, there are currently only
three certificates in circulation with keys larger than this, and all
three appear to be test certificates that are not actively deployed. It
is possible there are larger keys in use in private PKIs, but we target
the web PKI, so causing breakage here in the interests of increasing the
default safety of users of crypto/tls seems reasonable.

Thanks to Mateusz Poliwczak for reporting this issue.

Fixes CVE-2023-29409

* build: [ci skip] boring not included

* fix: typo [ci skip]

* docs: replenish readme [ci skip]

replace old build status badge with new ones, bump up required version noted in docs, update developer contact to reflect current status.
2023-08-03 23:22:53 -06:00

991 lines
29 KiB
Go

// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tls
import (
"bytes"
"context"
"crypto"
"crypto/hmac"
"crypto/rsa"
"encoding/binary"
"errors"
"hash"
"io"
"time"
)
// maxClientPSKIdentities is the number of client PSK identities the server will
// attempt to validate. It will ignore the rest not to let cheap ClientHello
// messages cause too much work in session ticket decryption attempts.
const maxClientPSKIdentities = 5
type serverHandshakeStateTLS13 struct {
c *Conn
ctx context.Context
clientHello *clientHelloMsg
hello *serverHelloMsg
sentDummyCCS bool
usingPSK bool
earlyData bool
suite *cipherSuiteTLS13
cert *Certificate
sigAlg SignatureScheme
earlySecret []byte
sharedKey []byte
handshakeSecret []byte
masterSecret []byte
trafficSecret []byte // client_application_traffic_secret_0
transcript hash.Hash
clientFinished []byte
}
func (hs *serverHandshakeStateTLS13) handshake() error {
c := hs.c
if needFIPS() {
return errors.New("tls: internal error: TLS 1.3 reached in FIPS mode")
}
// For an overview of the TLS 1.3 handshake, see RFC 8446, Section 2.
if err := hs.processClientHello(); err != nil {
return err
}
if err := hs.checkForResumption(); err != nil {
return err
}
if err := hs.pickCertificate(); err != nil {
return err
}
c.buffering = true
if err := hs.sendServerParameters(); err != nil {
return err
}
if err := hs.sendServerCertificate(); err != nil {
return err
}
if err := hs.sendServerFinished(); err != nil {
return err
}
// Note that at this point we could start sending application data without
// waiting for the client's second flight, but the application might not
// expect the lack of replay protection of the ClientHello parameters.
if _, err := c.flush(); err != nil {
return err
}
if err := hs.readClientCertificate(); err != nil {
return err
}
if err := hs.readClientFinished(); err != nil {
return err
}
c.isHandshakeComplete.Store(true)
return nil
}
func (hs *serverHandshakeStateTLS13) processClientHello() error {
c := hs.c
hs.hello = new(serverHelloMsg)
// TLS 1.3 froze the ServerHello.legacy_version field, and uses
// supported_versions instead. See RFC 8446, sections 4.1.3 and 4.2.1.
hs.hello.vers = VersionTLS12
hs.hello.supportedVersion = c.vers
if len(hs.clientHello.supportedVersions) == 0 {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: client used the legacy version field to negotiate TLS 1.3")
}
// Abort if the client is doing a fallback and landing lower than what we
// support. See RFC 7507, which however does not specify the interaction
// with supported_versions. The only difference is that with
// supported_versions a client has a chance to attempt a [TLS 1.2, TLS 1.4]
// handshake in case TLS 1.3 is broken but 1.2 is not. Alas, in that case,
// it will have to drop the TLS_FALLBACK_SCSV protection if it falls back to
// TLS 1.2, because a TLS 1.3 server would abort here. The situation before
// supported_versions was not better because there was just no way to do a
// TLS 1.4 handshake without risking the server selecting TLS 1.3.
for _, id := range hs.clientHello.cipherSuites {
if id == TLS_FALLBACK_SCSV {
// Use c.vers instead of max(supported_versions) because an attacker
// could defeat this by adding an arbitrary high version otherwise.
if c.vers < c.config.maxSupportedVersion(roleServer) {
c.sendAlert(alertInappropriateFallback)
return errors.New("tls: client using inappropriate protocol fallback")
}
break
}
}
if len(hs.clientHello.compressionMethods) != 1 ||
hs.clientHello.compressionMethods[0] != compressionNone {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: TLS 1.3 client supports illegal compression methods")
}
hs.hello.random = make([]byte, 32)
if _, err := io.ReadFull(c.config.rand(), hs.hello.random); err != nil {
c.sendAlert(alertInternalError)
return err
}
if len(hs.clientHello.secureRenegotiation) != 0 {
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: initial handshake had non-empty renegotiation extension")
}
if hs.clientHello.earlyData && c.quic != nil {
if len(hs.clientHello.pskIdentities) == 0 {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: early_data without pre_shared_key")
}
} else if hs.clientHello.earlyData {
// See RFC 8446, Section 4.2.10 for the complicated behavior required
// here. The scenario is that a different server at our address offered
// to accept early data in the past, which we can't handle. For now, all
// 0-RTT enabled session tickets need to expire before a Go server can
// replace a server or join a pool. That's the same requirement that
// applies to mixing or replacing with any TLS 1.2 server.
c.sendAlert(alertUnsupportedExtension)
return errors.New("tls: client sent unexpected early data")
}
hs.hello.sessionId = hs.clientHello.sessionId
hs.hello.compressionMethod = compressionNone
preferenceList := defaultCipherSuitesTLS13
if !hasAESGCMHardwareSupport || !aesgcmPreferred(hs.clientHello.cipherSuites) {
preferenceList = defaultCipherSuitesTLS13NoAES
}
for _, suiteID := range preferenceList {
hs.suite = mutualCipherSuiteTLS13(hs.clientHello.cipherSuites, suiteID)
if hs.suite != nil {
break
}
}
if hs.suite == nil {
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: no cipher suite supported by both client and server")
}
c.cipherSuite = hs.suite.id
hs.hello.cipherSuite = hs.suite.id
hs.transcript = hs.suite.hash.New()
// Pick the ECDHE group in server preference order, but give priority to
// groups with a key share, to avoid a HelloRetryRequest round-trip.
var selectedGroup CurveID
var clientKeyShare *keyShare
GroupSelection:
for _, preferredGroup := range c.config.curvePreferences() {
for _, ks := range hs.clientHello.keyShares {
if ks.group == preferredGroup {
selectedGroup = ks.group
clientKeyShare = &ks
break GroupSelection
}
}
if selectedGroup != 0 {
continue
}
for _, group := range hs.clientHello.supportedCurves {
if group == preferredGroup {
selectedGroup = group
break
}
}
}
if selectedGroup == 0 {
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: no ECDHE curve supported by both client and server")
}
if clientKeyShare == nil {
if err := hs.doHelloRetryRequest(selectedGroup); err != nil {
return err
}
clientKeyShare = &hs.clientHello.keyShares[0]
}
if _, ok := curveForCurveID(selectedGroup); !ok {
c.sendAlert(alertInternalError)
return errors.New("tls: CurvePreferences includes unsupported curve")
}
key, err := generateECDHEKey(c.config.rand(), selectedGroup)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
hs.hello.serverShare = keyShare{group: selectedGroup, data: key.PublicKey().Bytes()}
peerKey, err := key.Curve().NewPublicKey(clientKeyShare.data)
if err != nil {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: invalid client key share")
}
hs.sharedKey, err = key.ECDH(peerKey)
if err != nil {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: invalid client key share")
}
selectedProto, err := negotiateALPN(c.config.NextProtos, hs.clientHello.alpnProtocols, c.quic != nil)
if err != nil {
c.sendAlert(alertNoApplicationProtocol)
return err
}
c.clientProtocol = selectedProto
if c.quic != nil {
if hs.clientHello.quicTransportParameters == nil {
// RFC 9001 Section 8.2.
c.sendAlert(alertMissingExtension)
return errors.New("tls: client did not send a quic_transport_parameters extension")
}
c.quicSetTransportParameters(hs.clientHello.quicTransportParameters)
} else {
if hs.clientHello.quicTransportParameters != nil {
c.sendAlert(alertUnsupportedExtension)
return errors.New("tls: client sent an unexpected quic_transport_parameters extension")
}
}
c.serverName = hs.clientHello.serverName
return nil
}
func (hs *serverHandshakeStateTLS13) checkForResumption() error {
c := hs.c
if c.config.SessionTicketsDisabled {
return nil
}
modeOK := false
for _, mode := range hs.clientHello.pskModes {
if mode == pskModeDHE {
modeOK = true
break
}
}
if !modeOK {
return nil
}
if len(hs.clientHello.pskIdentities) != len(hs.clientHello.pskBinders) {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: invalid or missing PSK binders")
}
if len(hs.clientHello.pskIdentities) == 0 {
return nil
}
for i, identity := range hs.clientHello.pskIdentities {
if i >= maxClientPSKIdentities {
break
}
var sessionState *SessionState
if c.config.UnwrapSession != nil {
var err error
sessionState, err = c.config.UnwrapSession(identity.label, c.connectionStateLocked())
if err != nil {
return err
}
if sessionState == nil {
continue
}
} else {
plaintext := c.config.decryptTicket(identity.label, c.ticketKeys)
if plaintext == nil {
continue
}
var err error
sessionState, err = ParseSessionState(plaintext)
if err != nil {
continue
}
}
if sessionState.version != VersionTLS13 {
continue
}
createdAt := time.Unix(int64(sessionState.createdAt), 0)
if c.config.time().Sub(createdAt) > maxSessionTicketLifetime {
continue
}
pskSuite := cipherSuiteTLS13ByID(sessionState.cipherSuite)
if pskSuite == nil || pskSuite.hash != hs.suite.hash {
continue
}
// PSK connections don't re-establish client certificates, but carry
// them over in the session ticket. Ensure the presence of client certs
// in the ticket is consistent with the configured requirements.
sessionHasClientCerts := len(sessionState.peerCertificates) != 0
needClientCerts := requiresClientCert(c.config.ClientAuth)
if needClientCerts && !sessionHasClientCerts {
continue
}
if sessionHasClientCerts && c.config.ClientAuth == NoClientCert {
continue
}
if sessionHasClientCerts && c.config.time().After(sessionState.peerCertificates[0].NotAfter) {
continue
}
if sessionHasClientCerts && c.config.ClientAuth >= VerifyClientCertIfGiven &&
len(sessionState.verifiedChains) == 0 {
continue
}
hs.earlySecret = hs.suite.extract(sessionState.secret, nil)
binderKey := hs.suite.deriveSecret(hs.earlySecret, resumptionBinderLabel, nil)
// Clone the transcript in case a HelloRetryRequest was recorded.
transcript := cloneHash(hs.transcript, hs.suite.hash)
if transcript == nil {
c.sendAlert(alertInternalError)
return errors.New("tls: internal error: failed to clone hash")
}
clientHelloBytes, err := hs.clientHello.marshalWithoutBinders()
if err != nil {
c.sendAlert(alertInternalError)
return err
}
transcript.Write(clientHelloBytes)
pskBinder := hs.suite.finishedHash(binderKey, transcript)
if !hmac.Equal(hs.clientHello.pskBinders[i], pskBinder) {
c.sendAlert(alertDecryptError)
return errors.New("tls: invalid PSK binder")
}
if c.quic != nil && hs.clientHello.earlyData && i == 0 &&
sessionState.EarlyData && sessionState.cipherSuite == hs.suite.id &&
sessionState.alpnProtocol == c.clientProtocol {
hs.earlyData = true
transcript := hs.suite.hash.New()
if err := transcriptMsg(hs.clientHello, transcript); err != nil {
return err
}
earlyTrafficSecret := hs.suite.deriveSecret(hs.earlySecret, clientEarlyTrafficLabel, transcript)
c.quicSetReadSecret(QUICEncryptionLevelEarly, hs.suite.id, earlyTrafficSecret)
}
c.didResume = true
c.peerCertificates = sessionState.peerCertificates
c.ocspResponse = sessionState.ocspResponse
c.scts = sessionState.scts
c.verifiedChains = sessionState.verifiedChains
hs.hello.selectedIdentityPresent = true
hs.hello.selectedIdentity = uint16(i)
hs.usingPSK = true
return nil
}
return nil
}
// cloneHash uses the encoding.BinaryMarshaler and encoding.BinaryUnmarshaler
// interfaces implemented by standard library hashes to clone the state of in
// to a new instance of h. It returns nil if the operation fails.
func cloneHash(in hash.Hash, h crypto.Hash) hash.Hash {
// Recreate the interface to avoid importing encoding.
type binaryMarshaler interface {
MarshalBinary() (data []byte, err error)
UnmarshalBinary(data []byte) error
}
marshaler, ok := in.(binaryMarshaler)
if !ok {
return nil
}
state, err := marshaler.MarshalBinary()
if err != nil {
return nil
}
out := h.New()
unmarshaler, ok := out.(binaryMarshaler)
if !ok {
return nil
}
if err := unmarshaler.UnmarshalBinary(state); err != nil {
return nil
}
return out
}
func (hs *serverHandshakeStateTLS13) pickCertificate() error {
c := hs.c
// Only one of PSK and certificates are used at a time.
if hs.usingPSK {
return nil
}
// signature_algorithms is required in TLS 1.3. See RFC 8446, Section 4.2.3.
if len(hs.clientHello.supportedSignatureAlgorithms) == 0 {
return c.sendAlert(alertMissingExtension)
}
certificate, err := c.config.getCertificate(clientHelloInfo(hs.ctx, c, hs.clientHello))
if err != nil {
if err == errNoCertificates {
c.sendAlert(alertUnrecognizedName)
} else {
c.sendAlert(alertInternalError)
}
return err
}
hs.sigAlg, err = selectSignatureScheme(c.vers, certificate, hs.clientHello.supportedSignatureAlgorithms)
if err != nil {
// getCertificate returned a certificate that is unsupported or
// incompatible with the client's signature algorithms.
c.sendAlert(alertHandshakeFailure)
return err
}
hs.cert = certificate
return nil
}
// sendDummyChangeCipherSpec sends a ChangeCipherSpec record for compatibility
// with middleboxes that didn't implement TLS correctly. See RFC 8446, Appendix D.4.
func (hs *serverHandshakeStateTLS13) sendDummyChangeCipherSpec() error {
if hs.c.quic != nil {
return nil
}
if hs.sentDummyCCS {
return nil
}
hs.sentDummyCCS = true
return hs.c.writeChangeCipherRecord()
}
func (hs *serverHandshakeStateTLS13) doHelloRetryRequest(selectedGroup CurveID) error {
c := hs.c
// The first ClientHello gets double-hashed into the transcript upon a
// HelloRetryRequest. See RFC 8446, Section 4.4.1.
if err := transcriptMsg(hs.clientHello, hs.transcript); err != nil {
return err
}
chHash := hs.transcript.Sum(nil)
hs.transcript.Reset()
hs.transcript.Write([]byte{typeMessageHash, 0, 0, uint8(len(chHash))})
hs.transcript.Write(chHash)
helloRetryRequest := &serverHelloMsg{
vers: hs.hello.vers,
random: helloRetryRequestRandom,
sessionId: hs.hello.sessionId,
cipherSuite: hs.hello.cipherSuite,
compressionMethod: hs.hello.compressionMethod,
supportedVersion: hs.hello.supportedVersion,
selectedGroup: selectedGroup,
}
if _, err := hs.c.writeHandshakeRecord(helloRetryRequest, hs.transcript); err != nil {
return err
}
if err := hs.sendDummyChangeCipherSpec(); err != nil {
return err
}
// clientHelloMsg is not included in the transcript.
msg, err := c.readHandshake(nil)
if err != nil {
return err
}
clientHello, ok := msg.(*clientHelloMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(clientHello, msg)
}
if len(clientHello.keyShares) != 1 || clientHello.keyShares[0].group != selectedGroup {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: client sent invalid key share in second ClientHello")
}
if clientHello.earlyData {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: client indicated early data in second ClientHello")
}
if illegalClientHelloChange(clientHello, hs.clientHello) {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: client illegally modified second ClientHello")
}
hs.clientHello = clientHello
return nil
}
// illegalClientHelloChange reports whether the two ClientHello messages are
// different, with the exception of the changes allowed before and after a
// HelloRetryRequest. See RFC 8446, Section 4.1.2.
func illegalClientHelloChange(ch, ch1 *clientHelloMsg) bool {
if len(ch.supportedVersions) != len(ch1.supportedVersions) ||
len(ch.cipherSuites) != len(ch1.cipherSuites) ||
len(ch.supportedCurves) != len(ch1.supportedCurves) ||
len(ch.supportedSignatureAlgorithms) != len(ch1.supportedSignatureAlgorithms) ||
len(ch.supportedSignatureAlgorithmsCert) != len(ch1.supportedSignatureAlgorithmsCert) ||
len(ch.alpnProtocols) != len(ch1.alpnProtocols) {
return true
}
for i := range ch.supportedVersions {
if ch.supportedVersions[i] != ch1.supportedVersions[i] {
return true
}
}
for i := range ch.cipherSuites {
if ch.cipherSuites[i] != ch1.cipherSuites[i] {
return true
}
}
for i := range ch.supportedCurves {
if ch.supportedCurves[i] != ch1.supportedCurves[i] {
return true
}
}
for i := range ch.supportedSignatureAlgorithms {
if ch.supportedSignatureAlgorithms[i] != ch1.supportedSignatureAlgorithms[i] {
return true
}
}
for i := range ch.supportedSignatureAlgorithmsCert {
if ch.supportedSignatureAlgorithmsCert[i] != ch1.supportedSignatureAlgorithmsCert[i] {
return true
}
}
for i := range ch.alpnProtocols {
if ch.alpnProtocols[i] != ch1.alpnProtocols[i] {
return true
}
}
return ch.vers != ch1.vers ||
!bytes.Equal(ch.random, ch1.random) ||
!bytes.Equal(ch.sessionId, ch1.sessionId) ||
!bytes.Equal(ch.compressionMethods, ch1.compressionMethods) ||
ch.serverName != ch1.serverName ||
ch.ocspStapling != ch1.ocspStapling ||
!bytes.Equal(ch.supportedPoints, ch1.supportedPoints) ||
ch.ticketSupported != ch1.ticketSupported ||
!bytes.Equal(ch.sessionTicket, ch1.sessionTicket) ||
ch.secureRenegotiationSupported != ch1.secureRenegotiationSupported ||
!bytes.Equal(ch.secureRenegotiation, ch1.secureRenegotiation) ||
ch.scts != ch1.scts ||
!bytes.Equal(ch.cookie, ch1.cookie) ||
!bytes.Equal(ch.pskModes, ch1.pskModes)
}
func (hs *serverHandshakeStateTLS13) sendServerParameters() error {
c := hs.c
if err := transcriptMsg(hs.clientHello, hs.transcript); err != nil {
return err
}
if _, err := hs.c.writeHandshakeRecord(hs.hello, hs.transcript); err != nil {
return err
}
if err := hs.sendDummyChangeCipherSpec(); err != nil {
return err
}
earlySecret := hs.earlySecret
if earlySecret == nil {
earlySecret = hs.suite.extract(nil, nil)
}
hs.handshakeSecret = hs.suite.extract(hs.sharedKey,
hs.suite.deriveSecret(earlySecret, "derived", nil))
clientSecret := hs.suite.deriveSecret(hs.handshakeSecret,
clientHandshakeTrafficLabel, hs.transcript)
c.in.setTrafficSecret(hs.suite, QUICEncryptionLevelHandshake, clientSecret)
serverSecret := hs.suite.deriveSecret(hs.handshakeSecret,
serverHandshakeTrafficLabel, hs.transcript)
c.out.setTrafficSecret(hs.suite, QUICEncryptionLevelHandshake, serverSecret)
if c.quic != nil {
if c.hand.Len() != 0 {
c.sendAlert(alertUnexpectedMessage)
}
c.quicSetWriteSecret(QUICEncryptionLevelHandshake, hs.suite.id, serverSecret)
c.quicSetReadSecret(QUICEncryptionLevelHandshake, hs.suite.id, clientSecret)
}
err := c.config.writeKeyLog(keyLogLabelClientHandshake, hs.clientHello.random, clientSecret)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
err = c.config.writeKeyLog(keyLogLabelServerHandshake, hs.clientHello.random, serverSecret)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
encryptedExtensions := new(encryptedExtensionsMsg)
encryptedExtensions.alpnProtocol = c.clientProtocol
if c.quic != nil {
p, err := c.quicGetTransportParameters()
if err != nil {
return err
}
encryptedExtensions.quicTransportParameters = p
encryptedExtensions.earlyData = hs.earlyData
}
if _, err := hs.c.writeHandshakeRecord(encryptedExtensions, hs.transcript); err != nil {
return err
}
return nil
}
func (hs *serverHandshakeStateTLS13) requestClientCert() bool {
return hs.c.config.ClientAuth >= RequestClientCert && !hs.usingPSK
}
func (hs *serverHandshakeStateTLS13) sendServerCertificate() error {
c := hs.c
// Only one of PSK and certificates are used at a time.
if hs.usingPSK {
return nil
}
if hs.requestClientCert() {
// Request a client certificate
certReq := new(certificateRequestMsgTLS13)
certReq.ocspStapling = true
certReq.scts = true
certReq.supportedSignatureAlgorithms = supportedSignatureAlgorithms()
if c.config.ClientCAs != nil {
certReq.certificateAuthorities = c.config.ClientCAs.Subjects()
}
if _, err := hs.c.writeHandshakeRecord(certReq, hs.transcript); err != nil {
return err
}
}
certMsg := new(certificateMsgTLS13)
certMsg.certificate = *hs.cert
certMsg.scts = hs.clientHello.scts && len(hs.cert.SignedCertificateTimestamps) > 0
certMsg.ocspStapling = hs.clientHello.ocspStapling && len(hs.cert.OCSPStaple) > 0
if _, err := hs.c.writeHandshakeRecord(certMsg, hs.transcript); err != nil {
return err
}
certVerifyMsg := new(certificateVerifyMsg)
certVerifyMsg.hasSignatureAlgorithm = true
certVerifyMsg.signatureAlgorithm = hs.sigAlg
sigType, sigHash, err := typeAndHashFromSignatureScheme(hs.sigAlg)
if err != nil {
return c.sendAlert(alertInternalError)
}
signed := signedMessage(sigHash, serverSignatureContext, hs.transcript)
signOpts := crypto.SignerOpts(sigHash)
if sigType == signatureRSAPSS {
signOpts = &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash, Hash: sigHash}
}
sig, err := hs.cert.PrivateKey.(crypto.Signer).Sign(c.config.rand(), signed, signOpts)
if err != nil {
public := hs.cert.PrivateKey.(crypto.Signer).Public()
if rsaKey, ok := public.(*rsa.PublicKey); ok && sigType == signatureRSAPSS &&
rsaKey.N.BitLen()/8 < sigHash.Size()*2+2 { // key too small for RSA-PSS
c.sendAlert(alertHandshakeFailure)
} else {
c.sendAlert(alertInternalError)
}
return errors.New("tls: failed to sign handshake: " + err.Error())
}
certVerifyMsg.signature = sig
if _, err := hs.c.writeHandshakeRecord(certVerifyMsg, hs.transcript); err != nil {
return err
}
return nil
}
func (hs *serverHandshakeStateTLS13) sendServerFinished() error {
c := hs.c
finished := &finishedMsg{
verifyData: hs.suite.finishedHash(c.out.trafficSecret, hs.transcript),
}
if _, err := hs.c.writeHandshakeRecord(finished, hs.transcript); err != nil {
return err
}
// Derive secrets that take context through the server Finished.
hs.masterSecret = hs.suite.extract(nil,
hs.suite.deriveSecret(hs.handshakeSecret, "derived", nil))
hs.trafficSecret = hs.suite.deriveSecret(hs.masterSecret,
clientApplicationTrafficLabel, hs.transcript)
serverSecret := hs.suite.deriveSecret(hs.masterSecret,
serverApplicationTrafficLabel, hs.transcript)
c.out.setTrafficSecret(hs.suite, QUICEncryptionLevelApplication, serverSecret)
if c.quic != nil {
if c.hand.Len() != 0 {
// TODO: Handle this in setTrafficSecret?
c.sendAlert(alertUnexpectedMessage)
}
c.quicSetWriteSecret(QUICEncryptionLevelApplication, hs.suite.id, serverSecret)
}
err := c.config.writeKeyLog(keyLogLabelClientTraffic, hs.clientHello.random, hs.trafficSecret)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
err = c.config.writeKeyLog(keyLogLabelServerTraffic, hs.clientHello.random, serverSecret)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
c.ekm = hs.suite.exportKeyingMaterial(hs.masterSecret, hs.transcript)
// If we did not request client certificates, at this point we can
// precompute the client finished and roll the transcript forward to send
// session tickets in our first flight.
if !hs.requestClientCert() {
if err := hs.sendSessionTickets(); err != nil {
return err
}
}
return nil
}
func (hs *serverHandshakeStateTLS13) shouldSendSessionTickets() bool {
if hs.c.config.SessionTicketsDisabled {
return false
}
// QUIC tickets are sent by QUICConn.SendSessionTicket, not automatically.
if hs.c.quic != nil {
return false
}
// Don't send tickets the client wouldn't use. See RFC 8446, Section 4.2.9.
for _, pskMode := range hs.clientHello.pskModes {
if pskMode == pskModeDHE {
return true
}
}
return false
}
func (hs *serverHandshakeStateTLS13) sendSessionTickets() error {
c := hs.c
hs.clientFinished = hs.suite.finishedHash(c.in.trafficSecret, hs.transcript)
finishedMsg := &finishedMsg{
verifyData: hs.clientFinished,
}
if err := transcriptMsg(finishedMsg, hs.transcript); err != nil {
return err
}
c.resumptionSecret = hs.suite.deriveSecret(hs.masterSecret,
resumptionLabel, hs.transcript)
if !hs.shouldSendSessionTickets() {
return nil
}
return c.sendSessionTicket(false)
}
func (c *Conn) sendSessionTicket(earlyData bool) error {
suite := cipherSuiteTLS13ByID(c.cipherSuite)
if suite == nil {
return errors.New("tls: internal error: unknown cipher suite")
}
// ticket_nonce, which must be unique per connection, is always left at
// zero because we only ever send one ticket per connection.
psk := suite.expandLabel(c.resumptionSecret, "resumption",
nil, suite.hash.Size())
m := new(newSessionTicketMsgTLS13)
state, err := c.sessionState()
if err != nil {
return err
}
state.secret = psk
state.EarlyData = earlyData
if c.config.WrapSession != nil {
m.label, err = c.config.WrapSession(c.connectionStateLocked(), state)
if err != nil {
return err
}
} else {
stateBytes, err := state.Bytes()
if err != nil {
c.sendAlert(alertInternalError)
return err
}
m.label, err = c.config.encryptTicket(stateBytes, c.ticketKeys)
if err != nil {
return err
}
}
m.lifetime = uint32(maxSessionTicketLifetime / time.Second)
// ticket_age_add is a random 32-bit value. See RFC 8446, section 4.6.1
// The value is not stored anywhere; we never need to check the ticket age
// because 0-RTT is not supported.
ageAdd := make([]byte, 4)
_, err = c.config.rand().Read(ageAdd)
if err != nil {
return err
}
m.ageAdd = binary.LittleEndian.Uint32(ageAdd)
if earlyData {
// RFC 9001, Section 4.6.1
m.maxEarlyData = 0xffffffff
}
if _, err := c.writeHandshakeRecord(m, nil); err != nil {
return err
}
return nil
}
func (hs *serverHandshakeStateTLS13) readClientCertificate() error {
c := hs.c
if !hs.requestClientCert() {
// Make sure the connection is still being verified whether or not
// the server requested a client certificate.
if c.config.VerifyConnection != nil {
if err := c.config.VerifyConnection(c.connectionStateLocked()); err != nil {
c.sendAlert(alertBadCertificate)
return err
}
}
return nil
}
// If we requested a client certificate, then the client must send a
// certificate message. If it's empty, no CertificateVerify is sent.
msg, err := c.readHandshake(hs.transcript)
if err != nil {
return err
}
certMsg, ok := msg.(*certificateMsgTLS13)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(certMsg, msg)
}
if err := c.processCertsFromClient(certMsg.certificate); err != nil {
return err
}
if c.config.VerifyConnection != nil {
if err := c.config.VerifyConnection(c.connectionStateLocked()); err != nil {
c.sendAlert(alertBadCertificate)
return err
}
}
if len(certMsg.certificate.Certificate) != 0 {
// certificateVerifyMsg is included in the transcript, but not until
// after we verify the handshake signature, since the state before
// this message was sent is used.
msg, err = c.readHandshake(nil)
if err != nil {
return err
}
certVerify, ok := msg.(*certificateVerifyMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(certVerify, msg)
}
// See RFC 8446, Section 4.4.3.
if !isSupportedSignatureAlgorithm(certVerify.signatureAlgorithm, supportedSignatureAlgorithms()) {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: client certificate used with invalid signature algorithm")
}
sigType, sigHash, err := typeAndHashFromSignatureScheme(certVerify.signatureAlgorithm)
if err != nil {
return c.sendAlert(alertInternalError)
}
if sigType == signaturePKCS1v15 || sigHash == crypto.SHA1 {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: client certificate used with invalid signature algorithm")
}
signed := signedMessage(sigHash, clientSignatureContext, hs.transcript)
if err := verifyHandshakeSignature(sigType, c.peerCertificates[0].PublicKey,
sigHash, signed, certVerify.signature); err != nil {
c.sendAlert(alertDecryptError)
return errors.New("tls: invalid signature by the client certificate: " + err.Error())
}
if err := transcriptMsg(certVerify, hs.transcript); err != nil {
return err
}
}
// If we waited until the client certificates to send session tickets, we
// are ready to do it now.
if err := hs.sendSessionTickets(); err != nil {
return err
}
return nil
}
func (hs *serverHandshakeStateTLS13) readClientFinished() error {
c := hs.c
// finishedMsg is not included in the transcript.
msg, err := c.readHandshake(nil)
if err != nil {
return err
}
finished, ok := msg.(*finishedMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(finished, msg)
}
if !hmac.Equal(hs.clientFinished, finished.verifyData) {
c.sendAlert(alertDecryptError)
return errors.New("tls: invalid client finished hash")
}
c.in.setTrafficSecret(hs.suite, QUICEncryptionLevelApplication, hs.trafficSecret)
return nil
}