utls/handshake_client_test.go
Filippo Valsorda 5db23cd389 crypto/tls: enable TLS 1.3 and update tests
To disable TLS 1.3, simply remove VersionTLS13 from supportedVersions,
as tested by TestEscapeRoute, and amend documentation. To make it
opt-in, revert the change to (*Config).supportedVersions from this CL.

I did not have the heart to implement the early data skipping feature
when I realized that it did not offer a choice between two
abstraction-breaking options, but demanded them both (look for handshake
type in case of HelloRetryRequest, trial decryption otherwise). It's a
lot of complexity for an apparently small gain, but if anyone has strong
opinions about it let me know.

Note that in TLS 1.3 alerts are encrypted, so the close_notify peeking
to return (n > 0, io.EOF) from Read doesn't work. If we are lucky, those
servers that unexpectedly close connections after serving a single
request will have stopped (maybe thanks to H/2) before they got updated
to TLS 1.3.

Relatedly, session tickets are now provisioned on the client first Read
instead of at Handshake time, because they are, well, post-handshake
messages. If this proves to be a problem we might try to peek at them.

Doubled the tests that cover logic that's different in TLS 1.3.

The benchmarks for TLS 1.2 compared to be0f3c286b5 (before TLS 1.3 and
its refactors, after CL 142817 changed them to use real connections)
show little movement.

name                                       old time/op   new time/op   delta
HandshakeServer/RSA-8                        795µs ± 1%    798µs ± 1%    ~     (p=0.057 n=10+18)
HandshakeServer/ECDHE-P256-RSA-8             903µs ± 0%    909µs ± 1%  +0.68%  (p=0.000 n=8+17)
HandshakeServer/ECDHE-P256-ECDSA-P256-8      198µs ± 0%    204µs ± 1%  +3.24%  (p=0.000 n=9+18)
HandshakeServer/ECDHE-X25519-ECDSA-P256-8    202µs ± 3%    208µs ± 1%  +2.98%  (p=0.000 n=9+20)
HandshakeServer/ECDHE-P521-ECDSA-P521-8     15.5ms ± 1%   15.9ms ± 2%  +2.49%  (p=0.000 n=10+20)
Throughput/MaxPacket/1MB-8                  5.81ms ±23%   6.14ms ±44%    ~     (p=0.605 n=8+18)
Throughput/MaxPacket/2MB-8                  8.91ms ±22%   8.74ms ±33%    ~     (p=0.498 n=9+19)
Throughput/MaxPacket/4MB-8                  12.8ms ± 3%   14.0ms ±10%  +9.74%  (p=0.000 n=10+17)
Throughput/MaxPacket/8MB-8                  25.1ms ± 7%   24.6ms ±16%    ~     (p=0.129 n=9+19)
Throughput/MaxPacket/16MB-8                 46.3ms ± 4%   45.9ms ±12%    ~     (p=0.340 n=9+20)
Throughput/MaxPacket/32MB-8                 88.5ms ± 4%   86.0ms ± 4%  -2.82%  (p=0.004 n=10+20)
Throughput/MaxPacket/64MB-8                  173ms ± 2%    167ms ± 7%  -3.42%  (p=0.001 n=10+19)
Throughput/DynamicPacket/1MB-8              5.88ms ± 4%   6.59ms ±64%    ~     (p=0.232 n=9+18)
Throughput/DynamicPacket/2MB-8              9.08ms ±12%   8.73ms ±21%    ~     (p=0.408 n=10+18)
Throughput/DynamicPacket/4MB-8              14.2ms ± 5%   14.0ms ±11%    ~     (p=0.188 n=9+19)
Throughput/DynamicPacket/8MB-8              25.1ms ± 6%   24.0ms ± 7%  -4.39%  (p=0.000 n=10+18)
Throughput/DynamicPacket/16MB-8             45.6ms ± 3%   43.3ms ± 1%  -5.22%  (p=0.000 n=10+8)
Throughput/DynamicPacket/32MB-8             88.4ms ± 3%   84.8ms ± 2%  -4.06%  (p=0.000 n=10+10)
Throughput/DynamicPacket/64MB-8              175ms ± 3%    167ms ± 2%  -4.63%  (p=0.000 n=10+10)
Latency/MaxPacket/200kbps-8                  694ms ± 0%    694ms ± 0%  -0.02%  (p=0.000 n=9+9)
Latency/MaxPacket/500kbps-8                  279ms ± 0%    279ms ± 0%  -0.09%  (p=0.000 n=10+10)
Latency/MaxPacket/1000kbps-8                 140ms ± 0%    140ms ± 0%  -0.15%  (p=0.000 n=10+9)
Latency/MaxPacket/2000kbps-8                71.1ms ± 0%   71.0ms ± 0%  -0.09%  (p=0.001 n=8+9)
Latency/MaxPacket/5000kbps-8                30.5ms ± 6%   30.1ms ± 6%    ~     (p=0.905 n=10+9)
Latency/DynamicPacket/200kbps-8              134ms ± 0%    134ms ± 0%    ~     (p=0.796 n=9+9)
Latency/DynamicPacket/500kbps-8             54.8ms ± 0%   54.7ms ± 0%  -0.18%  (p=0.000 n=8+10)
Latency/DynamicPacket/1000kbps-8            28.5ms ± 0%   29.1ms ± 8%    ~     (p=0.173 n=8+10)
Latency/DynamicPacket/2000kbps-8            15.3ms ± 6%   15.9ms ±10%    ~     (p=0.905 n=9+10)
Latency/DynamicPacket/5000kbps-8            9.14ms ±21%   9.65ms ±82%    ~     (p=0.529 n=10+10)

name                                       old speed     new speed     delta
Throughput/MaxPacket/1MB-8                 175MB/s ±13%  167MB/s ±64%    ~     (p=0.646 n=7+20)
Throughput/MaxPacket/2MB-8                 241MB/s ±25%  241MB/s ±40%    ~     (p=0.660 n=9+20)
Throughput/MaxPacket/4MB-8                 328MB/s ± 3%  300MB/s ± 9%  -8.70%  (p=0.000 n=10+17)
Throughput/MaxPacket/8MB-8                 335MB/s ± 7%  340MB/s ±17%    ~     (p=0.212 n=9+20)
Throughput/MaxPacket/16MB-8                363MB/s ± 4%  367MB/s ±11%    ~     (p=0.340 n=9+20)
Throughput/MaxPacket/32MB-8                379MB/s ± 4%  390MB/s ± 4%  +2.93%  (p=0.004 n=10+20)
Throughput/MaxPacket/64MB-8                388MB/s ± 2%  401MB/s ± 7%  +3.25%  (p=0.004 n=10+20)
Throughput/DynamicPacket/1MB-8             178MB/s ± 4%  157MB/s ±73%    ~     (p=0.127 n=9+20)
Throughput/DynamicPacket/2MB-8             232MB/s ±11%  243MB/s ±18%    ~     (p=0.415 n=10+18)
Throughput/DynamicPacket/4MB-8             296MB/s ± 5%  299MB/s ±15%    ~     (p=0.295 n=9+20)
Throughput/DynamicPacket/8MB-8             334MB/s ± 6%  350MB/s ± 7%  +4.58%  (p=0.000 n=10+18)
Throughput/DynamicPacket/16MB-8            368MB/s ± 3%  388MB/s ± 1%  +5.48%  (p=0.000 n=10+8)
Throughput/DynamicPacket/32MB-8            380MB/s ± 3%  396MB/s ± 2%  +4.20%  (p=0.000 n=10+10)
Throughput/DynamicPacket/64MB-8            384MB/s ± 3%  403MB/s ± 2%  +4.83%  (p=0.000 n=10+10)

Comparing TLS 1.2 and TLS 1.3 at tip shows a slight (~5-10%) slowdown of
handshakes, which might be worth looking at next cycle, but the latency
improvements are expected to overshadow that.

name                                       old time/op   new time/op   delta
HandshakeServer/ECDHE-P256-RSA-8             909µs ± 1%    963µs ± 0%   +5.87%  (p=0.000 n=17+18)
HandshakeServer/ECDHE-P256-ECDSA-P256-8      204µs ± 1%    225µs ± 2%  +10.20%  (p=0.000 n=18+20)
HandshakeServer/ECDHE-X25519-ECDSA-P256-8    208µs ± 1%    230µs ± 2%  +10.35%  (p=0.000 n=20+18)
HandshakeServer/ECDHE-P521-ECDSA-P521-8     15.9ms ± 2%   15.9ms ± 1%     ~     (p=0.444 n=20+19)
Throughput/MaxPacket/1MB-8                  6.14ms ±44%   7.07ms ±46%     ~     (p=0.057 n=18+19)
Throughput/MaxPacket/2MB-8                  8.74ms ±33%   8.61ms ± 9%     ~     (p=0.552 n=19+17)
Throughput/MaxPacket/4MB-8                  14.0ms ±10%   14.1ms ±12%     ~     (p=0.707 n=17+20)
Throughput/MaxPacket/8MB-8                  24.6ms ±16%   25.6ms ±14%     ~     (p=0.107 n=19+20)
Throughput/MaxPacket/16MB-8                 45.9ms ±12%   44.7ms ± 6%     ~     (p=0.607 n=20+19)
Throughput/MaxPacket/32MB-8                 86.0ms ± 4%   87.9ms ± 8%     ~     (p=0.113 n=20+19)
Throughput/MaxPacket/64MB-8                  167ms ± 7%    169ms ± 2%   +1.26%  (p=0.011 n=19+19)
Throughput/DynamicPacket/1MB-8              6.59ms ±64%   6.79ms ±43%     ~     (p=0.480 n=18+19)
Throughput/DynamicPacket/2MB-8              8.73ms ±21%   9.58ms ±13%   +9.71%  (p=0.006 n=18+20)
Throughput/DynamicPacket/4MB-8              14.0ms ±11%   13.9ms ±10%     ~     (p=0.687 n=19+20)
Throughput/DynamicPacket/8MB-8              24.0ms ± 7%   24.6ms ± 8%   +2.36%  (p=0.045 n=18+17)
Throughput/DynamicPacket/16MB-8             43.3ms ± 1%   44.3ms ± 2%   +2.48%  (p=0.001 n=8+9)
Throughput/DynamicPacket/32MB-8             84.8ms ± 2%   86.7ms ± 2%   +2.27%  (p=0.000 n=10+10)
Throughput/DynamicPacket/64MB-8              167ms ± 2%    170ms ± 3%   +1.89%  (p=0.005 n=10+10)
Latency/MaxPacket/200kbps-8                  694ms ± 0%    699ms ± 0%   +0.65%  (p=0.000 n=9+10)
Latency/MaxPacket/500kbps-8                  279ms ± 0%    280ms ± 0%   +0.68%  (p=0.000 n=10+10)
Latency/MaxPacket/1000kbps-8                 140ms ± 0%    141ms ± 0%   +0.59%  (p=0.000 n=9+9)
Latency/MaxPacket/2000kbps-8                71.0ms ± 0%   71.3ms ± 0%   +0.42%  (p=0.000 n=9+9)
Latency/MaxPacket/5000kbps-8                30.1ms ± 6%   30.7ms ±10%   +1.93%  (p=0.019 n=9+9)
Latency/DynamicPacket/200kbps-8              134ms ± 0%    138ms ± 0%   +3.22%  (p=0.000 n=9+10)
Latency/DynamicPacket/500kbps-8             54.7ms ± 0%   56.3ms ± 0%   +3.03%  (p=0.000 n=10+8)
Latency/DynamicPacket/1000kbps-8            29.1ms ± 8%   29.1ms ± 0%     ~     (p=0.173 n=10+8)
Latency/DynamicPacket/2000kbps-8            15.9ms ±10%   16.4ms ±36%     ~     (p=0.633 n=10+8)
Latency/DynamicPacket/5000kbps-8            9.65ms ±82%   8.32ms ± 8%     ~     (p=0.573 n=10+8)

name                                       old speed     new speed     delta
Throughput/MaxPacket/1MB-8                 167MB/s ±64%  155MB/s ±55%     ~     (p=0.224 n=20+19)
Throughput/MaxPacket/2MB-8                 241MB/s ±40%  244MB/s ± 9%     ~     (p=0.407 n=20+17)
Throughput/MaxPacket/4MB-8                 300MB/s ± 9%  298MB/s ±11%     ~     (p=0.707 n=17+20)
Throughput/MaxPacket/8MB-8                 340MB/s ±17%  330MB/s ±13%     ~     (p=0.201 n=20+20)
Throughput/MaxPacket/16MB-8                367MB/s ±11%  375MB/s ± 5%     ~     (p=0.607 n=20+19)
Throughput/MaxPacket/32MB-8                390MB/s ± 4%  382MB/s ± 8%     ~     (p=0.113 n=20+19)
Throughput/MaxPacket/64MB-8                401MB/s ± 7%  397MB/s ± 2%   -0.96%  (p=0.030 n=20+19)
Throughput/DynamicPacket/1MB-8             157MB/s ±73%  156MB/s ±39%     ~     (p=0.738 n=20+20)
Throughput/DynamicPacket/2MB-8             243MB/s ±18%  220MB/s ±14%   -9.65%  (p=0.006 n=18+20)
Throughput/DynamicPacket/4MB-8             299MB/s ±15%  303MB/s ± 9%     ~     (p=0.512 n=20+20)
Throughput/DynamicPacket/8MB-8             350MB/s ± 7%  342MB/s ± 8%   -2.27%  (p=0.045 n=18+17)
Throughput/DynamicPacket/16MB-8            388MB/s ± 1%  378MB/s ± 2%   -2.41%  (p=0.001 n=8+9)
Throughput/DynamicPacket/32MB-8            396MB/s ± 2%  387MB/s ± 2%   -2.21%  (p=0.000 n=10+10)
Throughput/DynamicPacket/64MB-8            403MB/s ± 2%  396MB/s ± 3%   -1.84%  (p=0.005 n=10+10)

Fixes #9671

Change-Id: Ieb57c5140eb2c083b8be0d42b240cd2eeec0dcf6
Reviewed-on: https://go-review.googlesource.com/c/147638
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
2018-11-12 20:44:39 +00:00

1975 lines
56 KiB
Go

// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tls
import (
"bytes"
"crypto/ecdsa"
"crypto/rsa"
"crypto/x509"
"encoding/base64"
"encoding/binary"
"encoding/pem"
"errors"
"fmt"
"io"
"math/big"
"net"
"os"
"os/exec"
"path/filepath"
"strconv"
"strings"
"testing"
"time"
)
func init() {
// TLS 1.3 cipher suites preferences are not configurable and change based
// on the architecture. Force them to the version with AES accelleration for
// test consistency.
once.Do(initDefaultCipherSuites)
varDefaultCipherSuitesTLS13 = []uint16{
TLS_AES_128_GCM_SHA256,
TLS_CHACHA20_POLY1305_SHA256,
TLS_AES_256_GCM_SHA384,
}
}
// Note: see comment in handshake_test.go for details of how the reference
// tests work.
// opensslInputEvent enumerates possible inputs that can be sent to an `openssl
// s_client` process.
type opensslInputEvent int
const (
// opensslRenegotiate causes OpenSSL to request a renegotiation of the
// connection.
opensslRenegotiate opensslInputEvent = iota
// opensslSendBanner causes OpenSSL to send the contents of
// opensslSentinel on the connection.
opensslSendSentinel
// opensslKeyUpdate causes OpenSSL to send send a key update message to the
// client and request one back.
opensslKeyUpdate
)
const opensslSentinel = "SENTINEL\n"
type opensslInput chan opensslInputEvent
func (i opensslInput) Read(buf []byte) (n int, err error) {
for event := range i {
switch event {
case opensslRenegotiate:
return copy(buf, []byte("R\n")), nil
case opensslKeyUpdate:
return copy(buf, []byte("K\n")), nil
case opensslSendSentinel:
return copy(buf, []byte(opensslSentinel)), nil
default:
panic("unknown event")
}
}
return 0, io.EOF
}
// opensslOutputSink is an io.Writer that receives the stdout and stderr from an
// `openssl` process and sends a value to handshakeComplete or readKeyUpdate
// when certain messages are seen.
type opensslOutputSink struct {
handshakeComplete chan struct{}
readKeyUpdate chan struct{}
all []byte
line []byte
}
func newOpensslOutputSink() *opensslOutputSink {
return &opensslOutputSink{make(chan struct{}), make(chan struct{}), nil, nil}
}
// opensslEndOfHandshake is a message that the “openssl s_server” tool will
// print when a handshake completes if run with “-state”.
const opensslEndOfHandshake = "SSL_accept:SSLv3/TLS write finished"
// opensslReadKeyUpdate is a message that the “openssl s_server” tool will
// print when a KeyUpdate message is received if run with “-state”.
const opensslReadKeyUpdate = "SSL_accept:TLSv1.3 read client key update"
func (o *opensslOutputSink) Write(data []byte) (n int, err error) {
o.line = append(o.line, data...)
o.all = append(o.all, data...)
for {
i := bytes.IndexByte(o.line, '\n')
if i < 0 {
break
}
if bytes.Equal([]byte(opensslEndOfHandshake), o.line[:i]) {
o.handshakeComplete <- struct{}{}
}
if bytes.Equal([]byte(opensslReadKeyUpdate), o.line[:i]) {
o.readKeyUpdate <- struct{}{}
}
o.line = o.line[i+1:]
}
return len(data), nil
}
func (o *opensslOutputSink) WriteTo(w io.Writer) (int64, error) {
n, err := w.Write(o.all)
return int64(n), err
}
// clientTest represents a test of the TLS client handshake against a reference
// implementation.
type clientTest struct {
// name is a freeform string identifying the test and the file in which
// the expected results will be stored.
name string
// command, if not empty, contains a series of arguments for the
// command to run for the reference server.
command []string
// config, if not nil, contains a custom Config to use for this test.
config *Config
// cert, if not empty, contains a DER-encoded certificate for the
// reference server.
cert []byte
// key, if not nil, contains either a *rsa.PrivateKey or
// *ecdsa.PrivateKey which is the private key for the reference server.
key interface{}
// extensions, if not nil, contains a list of extension data to be returned
// from the ServerHello. The data should be in standard TLS format with
// a 2-byte uint16 type, 2-byte data length, followed by the extension data.
extensions [][]byte
// validate, if not nil, is a function that will be called with the
// ConnectionState of the resulting connection. It returns a non-nil
// error if the ConnectionState is unacceptable.
validate func(ConnectionState) error
// numRenegotiations is the number of times that the connection will be
// renegotiated.
numRenegotiations int
// renegotiationExpectedToFail, if not zero, is the number of the
// renegotiation attempt that is expected to fail.
renegotiationExpectedToFail int
// checkRenegotiationError, if not nil, is called with any error
// arising from renegotiation. It can map expected errors to nil to
// ignore them.
checkRenegotiationError func(renegotiationNum int, err error) error
// sendKeyUpdate will cause the server to send a KeyUpdate message.
sendKeyUpdate bool
}
var defaultServerCommand = []string{"openssl", "s_server"}
// connFromCommand starts the reference server process, connects to it and
// returns a recordingConn for the connection. The stdin return value is an
// opensslInput for the stdin of the child process. It must be closed before
// Waiting for child.
func (test *clientTest) connFromCommand() (conn *recordingConn, child *exec.Cmd, stdin opensslInput, stdout *opensslOutputSink, err error) {
cert := testRSACertificate
if len(test.cert) > 0 {
cert = test.cert
}
certPath := tempFile(string(cert))
defer os.Remove(certPath)
var key interface{} = testRSAPrivateKey
if test.key != nil {
key = test.key
}
var pemType string
var derBytes []byte
switch key := key.(type) {
case *rsa.PrivateKey:
pemType = "RSA"
derBytes = x509.MarshalPKCS1PrivateKey(key)
case *ecdsa.PrivateKey:
pemType = "EC"
var err error
derBytes, err = x509.MarshalECPrivateKey(key)
if err != nil {
panic(err)
}
default:
panic("unknown key type")
}
var pemOut bytes.Buffer
pem.Encode(&pemOut, &pem.Block{Type: pemType + " PRIVATE KEY", Bytes: derBytes})
keyPath := tempFile(pemOut.String())
defer os.Remove(keyPath)
var command []string
if len(test.command) > 0 {
command = append(command, test.command...)
} else {
command = append(command, defaultServerCommand...)
}
command = append(command, "-cert", certPath, "-certform", "DER", "-key", keyPath)
// serverPort contains the port that OpenSSL will listen on. OpenSSL
// can't take "0" as an argument here so we have to pick a number and
// hope that it's not in use on the machine. Since this only occurs
// when -update is given and thus when there's a human watching the
// test, this isn't too bad.
const serverPort = 24323
command = append(command, "-accept", strconv.Itoa(serverPort))
if len(test.extensions) > 0 {
var serverInfo bytes.Buffer
for _, ext := range test.extensions {
pem.Encode(&serverInfo, &pem.Block{
Type: fmt.Sprintf("SERVERINFO FOR EXTENSION %d", binary.BigEndian.Uint16(ext)),
Bytes: ext,
})
}
serverInfoPath := tempFile(serverInfo.String())
defer os.Remove(serverInfoPath)
command = append(command, "-serverinfo", serverInfoPath)
}
if test.numRenegotiations > 0 || test.sendKeyUpdate {
found := false
for _, flag := range command[1:] {
if flag == "-state" {
found = true
break
}
}
if !found {
panic("-state flag missing to OpenSSL, you need this if testing renegotiation or KeyUpdate")
}
}
cmd := exec.Command(command[0], command[1:]...)
stdin = opensslInput(make(chan opensslInputEvent))
cmd.Stdin = stdin
out := newOpensslOutputSink()
cmd.Stdout = out
cmd.Stderr = out
if err := cmd.Start(); err != nil {
return nil, nil, nil, nil, err
}
// OpenSSL does print an "ACCEPT" banner, but it does so *before*
// opening the listening socket, so we can't use that to wait until it
// has started listening. Thus we are forced to poll until we get a
// connection.
var tcpConn net.Conn
for i := uint(0); i < 5; i++ {
tcpConn, err = net.DialTCP("tcp", nil, &net.TCPAddr{
IP: net.IPv4(127, 0, 0, 1),
Port: serverPort,
})
if err == nil {
break
}
time.Sleep((1 << i) * 5 * time.Millisecond)
}
if err != nil {
close(stdin)
out.WriteTo(os.Stdout)
cmd.Process.Kill()
return nil, nil, nil, nil, cmd.Wait()
}
record := &recordingConn{
Conn: tcpConn,
}
return record, cmd, stdin, out, nil
}
func (test *clientTest) dataPath() string {
return filepath.Join("testdata", "Client-"+test.name)
}
func (test *clientTest) loadData() (flows [][]byte, err error) {
in, err := os.Open(test.dataPath())
if err != nil {
return nil, err
}
defer in.Close()
return parseTestData(in)
}
func (test *clientTest) run(t *testing.T, write bool) {
checkOpenSSLVersion(t)
var clientConn, serverConn net.Conn
var recordingConn *recordingConn
var childProcess *exec.Cmd
var stdin opensslInput
var stdout *opensslOutputSink
if write {
var err error
recordingConn, childProcess, stdin, stdout, err = test.connFromCommand()
if err != nil {
t.Fatalf("Failed to start subcommand: %s", err)
}
clientConn = recordingConn
} else {
clientConn, serverConn = localPipe(t)
}
config := test.config
if config == nil {
config = testConfig
}
client := Client(clientConn, config)
doneChan := make(chan bool)
go func() {
defer func() {
// Give time to the send buffer to drain, to avoid the kernel
// sending a RST and cutting off the flow. See Issue 18701.
time.Sleep(10 * time.Millisecond)
client.Close()
clientConn.Close()
doneChan <- true
}()
if _, err := client.Write([]byte("hello\n")); err != nil {
t.Errorf("Client.Write failed: %s", err)
return
}
for i := 1; i <= test.numRenegotiations; i++ {
// The initial handshake will generate a
// handshakeComplete signal which needs to be quashed.
if i == 1 && write {
<-stdout.handshakeComplete
}
// OpenSSL will try to interleave application data and
// a renegotiation if we send both concurrently.
// Therefore: ask OpensSSL to start a renegotiation, run
// a goroutine to call client.Read and thus process the
// renegotiation request, watch for OpenSSL's stdout to
// indicate that the handshake is complete and,
// finally, have OpenSSL write something to cause
// client.Read to complete.
if write {
stdin <- opensslRenegotiate
}
signalChan := make(chan struct{})
go func() {
defer close(signalChan)
buf := make([]byte, 256)
n, err := client.Read(buf)
if test.checkRenegotiationError != nil {
newErr := test.checkRenegotiationError(i, err)
if err != nil && newErr == nil {
return
}
err = newErr
}
if err != nil {
t.Errorf("Client.Read failed after renegotiation #%d: %s", i, err)
return
}
buf = buf[:n]
if !bytes.Equal([]byte(opensslSentinel), buf) {
t.Errorf("Client.Read returned %q, but wanted %q", string(buf), opensslSentinel)
}
if expected := i + 1; client.handshakes != expected {
t.Errorf("client should have recorded %d handshakes, but believes that %d have occurred", expected, client.handshakes)
}
}()
if write && test.renegotiationExpectedToFail != i {
<-stdout.handshakeComplete
stdin <- opensslSendSentinel
}
<-signalChan
}
if test.sendKeyUpdate {
if write {
<-stdout.handshakeComplete
stdin <- opensslKeyUpdate
}
doneRead := make(chan struct{})
go func() {
defer close(doneRead)
buf := make([]byte, 256)
n, err := client.Read(buf)
if err != nil {
t.Errorf("Client.Read failed after KeyUpdate: %s", err)
return
}
buf = buf[:n]
if !bytes.Equal([]byte(opensslSentinel), buf) {
t.Errorf("Client.Read returned %q, but wanted %q", string(buf), opensslSentinel)
}
}()
if write {
// There's no real reason to wait for the client KeyUpdate to
// send data with the new server keys, except that s_server
// drops writes if they are sent at the wrong time.
<-stdout.readKeyUpdate
stdin <- opensslSendSentinel
}
<-doneRead
if _, err := client.Write([]byte("hello again\n")); err != nil {
t.Errorf("Client.Write failed: %s", err)
return
}
}
if test.validate != nil {
if err := test.validate(client.ConnectionState()); err != nil {
t.Errorf("validate callback returned error: %s", err)
}
}
// If the server sent us an alert after our last flight, give it a
// chance to arrive.
if write && test.renegotiationExpectedToFail == 0 {
client.SetReadDeadline(time.Now().Add(500 * time.Millisecond))
if _, err := client.Read(make([]byte, 1)); err != nil {
if netErr, ok := err.(net.Error); !ok || !netErr.Timeout() {
t.Errorf("final Read returned an error: %s", err)
}
}
}
}()
if !write {
flows, err := test.loadData()
if err != nil {
t.Fatalf("%s: failed to load data from %s: %v", test.name, test.dataPath(), err)
}
for i, b := range flows {
if i%2 == 1 {
serverConn.SetWriteDeadline(time.Now().Add(1 * time.Minute))
serverConn.Write(b)
continue
}
bb := make([]byte, len(b))
serverConn.SetReadDeadline(time.Now().Add(1 * time.Minute))
_, err := io.ReadFull(serverConn, bb)
if err != nil {
t.Fatalf("%s #%d: %s", test.name, i, err)
}
if !bytes.Equal(b, bb) {
t.Fatalf("%s #%d: mismatch on read: got:%x want:%x", test.name, i, bb, b)
}
}
// Give time to the send buffer to drain, to avoid the kernel
// sending a RST and cutting off the flow. See Issue 18701.
time.Sleep(10 * time.Millisecond)
serverConn.Close()
}
<-doneChan
if write {
path := test.dataPath()
out, err := os.OpenFile(path, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0644)
if err != nil {
t.Fatalf("Failed to create output file: %s", err)
}
defer out.Close()
recordingConn.Close()
close(stdin)
childProcess.Process.Kill()
childProcess.Wait()
if len(recordingConn.flows) < 3 {
os.Stdout.Write(stdout.all)
t.Fatalf("Client connection didn't work")
}
recordingConn.WriteTo(out)
fmt.Printf("Wrote %s\n", path)
}
}
func runClientTestForVersion(t *testing.T, template *clientTest, version, option string) {
t.Run(version, func(t *testing.T) {
// Make a deep copy of the template before going parallel.
test := *template
if template.config != nil {
test.config = template.config.Clone()
}
if !*update {
t.Parallel()
}
test.name = version + "-" + test.name
if len(test.command) == 0 {
test.command = defaultServerCommand
}
test.command = append([]string(nil), test.command...)
test.command = append(test.command, option)
test.run(t, *update)
})
}
func runClientTestTLS10(t *testing.T, template *clientTest) {
runClientTestForVersion(t, template, "TLSv10", "-tls1")
}
func runClientTestTLS11(t *testing.T, template *clientTest) {
runClientTestForVersion(t, template, "TLSv11", "-tls1_1")
}
func runClientTestTLS12(t *testing.T, template *clientTest) {
runClientTestForVersion(t, template, "TLSv12", "-tls1_2")
}
func runClientTestTLS13(t *testing.T, template *clientTest) {
runClientTestForVersion(t, template, "TLSv13", "-tls1_3")
}
func TestHandshakeClientRSARC4(t *testing.T) {
test := &clientTest{
name: "RSA-RC4",
command: []string{"openssl", "s_server", "-cipher", "RC4-SHA"},
}
runClientTestTLS10(t, test)
runClientTestTLS11(t, test)
runClientTestTLS12(t, test)
}
func TestHandshakeClientRSAAES128GCM(t *testing.T) {
test := &clientTest{
name: "AES128-GCM-SHA256",
command: []string{"openssl", "s_server", "-cipher", "AES128-GCM-SHA256"},
}
runClientTestTLS12(t, test)
}
func TestHandshakeClientRSAAES256GCM(t *testing.T) {
test := &clientTest{
name: "AES256-GCM-SHA384",
command: []string{"openssl", "s_server", "-cipher", "AES256-GCM-SHA384"},
}
runClientTestTLS12(t, test)
}
func TestHandshakeClientECDHERSAAES(t *testing.T) {
test := &clientTest{
name: "ECDHE-RSA-AES",
command: []string{"openssl", "s_server", "-cipher", "ECDHE-RSA-AES128-SHA"},
}
runClientTestTLS10(t, test)
runClientTestTLS11(t, test)
runClientTestTLS12(t, test)
}
func TestHandshakeClientECDHEECDSAAES(t *testing.T) {
test := &clientTest{
name: "ECDHE-ECDSA-AES",
command: []string{"openssl", "s_server", "-cipher", "ECDHE-ECDSA-AES128-SHA"},
cert: testECDSACertificate,
key: testECDSAPrivateKey,
}
runClientTestTLS10(t, test)
runClientTestTLS11(t, test)
runClientTestTLS12(t, test)
}
func TestHandshakeClientECDHEECDSAAESGCM(t *testing.T) {
test := &clientTest{
name: "ECDHE-ECDSA-AES-GCM",
command: []string{"openssl", "s_server", "-cipher", "ECDHE-ECDSA-AES128-GCM-SHA256"},
cert: testECDSACertificate,
key: testECDSAPrivateKey,
}
runClientTestTLS12(t, test)
}
func TestHandshakeClientAES256GCMSHA384(t *testing.T) {
test := &clientTest{
name: "ECDHE-ECDSA-AES256-GCM-SHA384",
command: []string{"openssl", "s_server", "-cipher", "ECDHE-ECDSA-AES256-GCM-SHA384"},
cert: testECDSACertificate,
key: testECDSAPrivateKey,
}
runClientTestTLS12(t, test)
}
func TestHandshakeClientAES128CBCSHA256(t *testing.T) {
test := &clientTest{
name: "AES128-SHA256",
command: []string{"openssl", "s_server", "-cipher", "AES128-SHA256"},
}
runClientTestTLS12(t, test)
}
func TestHandshakeClientECDHERSAAES128CBCSHA256(t *testing.T) {
test := &clientTest{
name: "ECDHE-RSA-AES128-SHA256",
command: []string{"openssl", "s_server", "-cipher", "ECDHE-RSA-AES128-SHA256"},
}
runClientTestTLS12(t, test)
}
func TestHandshakeClientECDHEECDSAAES128CBCSHA256(t *testing.T) {
test := &clientTest{
name: "ECDHE-ECDSA-AES128-SHA256",
command: []string{"openssl", "s_server", "-cipher", "ECDHE-ECDSA-AES128-SHA256"},
cert: testECDSACertificate,
key: testECDSAPrivateKey,
}
runClientTestTLS12(t, test)
}
func TestHandshakeClientX25519(t *testing.T) {
config := testConfig.Clone()
config.CurvePreferences = []CurveID{X25519}
test := &clientTest{
name: "X25519-ECDHE",
command: []string{"openssl", "s_server", "-cipher", "ECDHE-RSA-AES128-GCM-SHA256", "-curves", "X25519"},
config: config,
}
runClientTestTLS12(t, test)
runClientTestTLS13(t, test)
}
func TestHandshakeClientP256(t *testing.T) {
config := testConfig.Clone()
config.CurvePreferences = []CurveID{CurveP256}
test := &clientTest{
name: "P256-ECDHE",
command: []string{"openssl", "s_server", "-cipher", "ECDHE-RSA-AES128-GCM-SHA256", "-curves", "P-256"},
config: config,
}
runClientTestTLS12(t, test)
runClientTestTLS13(t, test)
}
func TestHandshakeClientHelloRetryRequest(t *testing.T) {
config := testConfig.Clone()
config.CurvePreferences = []CurveID{X25519, CurveP256}
test := &clientTest{
name: "HelloRetryRequest",
command: []string{"openssl", "s_server", "-cipher", "ECDHE-RSA-AES128-GCM-SHA256", "-curves", "P-256"},
config: config,
}
runClientTestTLS13(t, test)
}
func TestHandshakeClientECDHERSAChaCha20(t *testing.T) {
config := testConfig.Clone()
config.CipherSuites = []uint16{TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305}
test := &clientTest{
name: "ECDHE-RSA-CHACHA20-POLY1305",
command: []string{"openssl", "s_server", "-cipher", "ECDHE-RSA-CHACHA20-POLY1305"},
config: config,
}
runClientTestTLS12(t, test)
}
func TestHandshakeClientECDHEECDSAChaCha20(t *testing.T) {
config := testConfig.Clone()
config.CipherSuites = []uint16{TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305}
test := &clientTest{
name: "ECDHE-ECDSA-CHACHA20-POLY1305",
command: []string{"openssl", "s_server", "-cipher", "ECDHE-ECDSA-CHACHA20-POLY1305"},
config: config,
cert: testECDSACertificate,
key: testECDSAPrivateKey,
}
runClientTestTLS12(t, test)
}
func TestHandshakeClientAES128SHA256(t *testing.T) {
test := &clientTest{
name: "AES128-SHA256",
command: []string{"openssl", "s_server", "-ciphersuites", "TLS_AES_128_GCM_SHA256"},
}
runClientTestTLS13(t, test)
}
func TestHandshakeClientAES256SHA384(t *testing.T) {
test := &clientTest{
name: "AES256-SHA384",
command: []string{"openssl", "s_server", "-ciphersuites", "TLS_AES_256_GCM_SHA384"},
}
runClientTestTLS13(t, test)
}
func TestHandshakeClientCHACHA20SHA256(t *testing.T) {
test := &clientTest{
name: "CHACHA20-SHA256",
command: []string{"openssl", "s_server", "-ciphersuites", "TLS_CHACHA20_POLY1305_SHA256"},
}
runClientTestTLS13(t, test)
}
func TestHandshakeClientECDSATLS13(t *testing.T) {
test := &clientTest{
name: "ECDSA",
cert: testECDSACertificate,
key: testECDSAPrivateKey,
}
runClientTestTLS13(t, test)
}
func TestHandshakeClientCertRSA(t *testing.T) {
config := testConfig.Clone()
cert, _ := X509KeyPair([]byte(clientCertificatePEM), []byte(clientKeyPEM))
config.Certificates = []Certificate{cert}
test := &clientTest{
name: "ClientCert-RSA-RSA",
command: []string{"openssl", "s_server", "-cipher", "AES128", "-verify", "1"},
config: config,
}
runClientTestTLS10(t, test)
runClientTestTLS12(t, test)
test = &clientTest{
name: "ClientCert-RSA-ECDSA",
command: []string{"openssl", "s_server", "-cipher", "ECDHE-ECDSA-AES128-SHA", "-verify", "1"},
config: config,
cert: testECDSACertificate,
key: testECDSAPrivateKey,
}
runClientTestTLS10(t, test)
runClientTestTLS12(t, test)
runClientTestTLS13(t, test)
test = &clientTest{
name: "ClientCert-RSA-AES256-GCM-SHA384",
command: []string{"openssl", "s_server", "-cipher", "ECDHE-RSA-AES256-GCM-SHA384", "-verify", "1"},
config: config,
cert: testRSACertificate,
key: testRSAPrivateKey,
}
runClientTestTLS12(t, test)
}
func TestHandshakeClientCertECDSA(t *testing.T) {
config := testConfig.Clone()
cert, _ := X509KeyPair([]byte(clientECDSACertificatePEM), []byte(clientECDSAKeyPEM))
config.Certificates = []Certificate{cert}
test := &clientTest{
name: "ClientCert-ECDSA-RSA",
command: []string{"openssl", "s_server", "-cipher", "AES128", "-verify", "1"},
config: config,
}
runClientTestTLS10(t, test)
runClientTestTLS12(t, test)
runClientTestTLS13(t, test)
test = &clientTest{
name: "ClientCert-ECDSA-ECDSA",
command: []string{"openssl", "s_server", "-cipher", "ECDHE-ECDSA-AES128-SHA", "-verify", "1"},
config: config,
cert: testECDSACertificate,
key: testECDSAPrivateKey,
}
runClientTestTLS10(t, test)
runClientTestTLS12(t, test)
}
// TestHandshakeClientCertRSAPSS tests a few separate things:
// * that our client can serve a PSS-signed certificate
// * that our client can validate a PSS-signed certificate
// * that our client can use rsa_pss_rsae_sha256 in its CertificateVerify
// * that our client can accpet rsa_pss_rsae_sha256 in the server CertificateVerify
func TestHandshakeClientCertRSAPSS(t *testing.T) {
issuer, err := x509.ParseCertificate(testRSAPSSCertificate)
if err != nil {
panic(err)
}
rootCAs := x509.NewCertPool()
rootCAs.AddCert(issuer)
config := testConfig.Clone()
cert, _ := X509KeyPair([]byte(clientCertificatePEM), []byte(clientKeyPEM))
config.Certificates = []Certificate{cert}
config.RootCAs = rootCAs
test := &clientTest{
name: "ClientCert-RSA-RSAPSS",
command: []string{"openssl", "s_server", "-cipher", "AES128", "-verify", "1",
"-client_sigalgs", "rsa_pss_rsae_sha256", "-sigalgs", "rsa_pss_rsae_sha256"},
config: config,
cert: testRSAPSSCertificate,
key: testRSAPrivateKey,
}
runClientTestTLS12(t, test)
runClientTestTLS13(t, test)
}
func TestHandshakeClientCertRSAPKCS1v15(t *testing.T) {
config := testConfig.Clone()
cert, _ := X509KeyPair([]byte(clientCertificatePEM), []byte(clientKeyPEM))
config.Certificates = []Certificate{cert}
test := &clientTest{
name: "ClientCert-RSA-RSAPKCS1v15",
command: []string{"openssl", "s_server", "-cipher", "AES128", "-verify", "1",
"-client_sigalgs", "rsa_pkcs1_sha256", "-sigalgs", "rsa_pkcs1_sha256"},
config: config,
}
runClientTestTLS12(t, test)
}
func TestClientKeyUpdate(t *testing.T) {
test := &clientTest{
name: "KeyUpdate",
command: []string{"openssl", "s_server", "-state"},
sendKeyUpdate: true,
}
runClientTestTLS13(t, test)
}
func TestResumption(t *testing.T) {
t.Run("TLSv12", func(t *testing.T) { testResumption(t, VersionTLS12) })
t.Run("TLSv13", func(t *testing.T) { testResumption(t, VersionTLS13) })
}
func testResumption(t *testing.T, version uint16) {
serverConfig := &Config{
MaxVersion: version,
CipherSuites: []uint16{TLS_RSA_WITH_RC4_128_SHA, TLS_ECDHE_RSA_WITH_RC4_128_SHA},
Certificates: testConfig.Certificates,
}
issuer, err := x509.ParseCertificate(testRSACertificateIssuer)
if err != nil {
panic(err)
}
rootCAs := x509.NewCertPool()
rootCAs.AddCert(issuer)
clientConfig := &Config{
MaxVersion: version,
CipherSuites: []uint16{TLS_RSA_WITH_RC4_128_SHA},
ClientSessionCache: NewLRUClientSessionCache(32),
RootCAs: rootCAs,
ServerName: "example.golang",
}
testResumeState := func(test string, didResume bool) {
_, hs, err := testHandshake(t, clientConfig, serverConfig)
if err != nil {
t.Fatalf("%s: handshake failed: %s", test, err)
}
if hs.DidResume != didResume {
t.Fatalf("%s resumed: %v, expected: %v", test, hs.DidResume, didResume)
}
if didResume && (hs.PeerCertificates == nil || hs.VerifiedChains == nil) {
t.Fatalf("expected non-nil certificates after resumption. Got peerCertificates: %#v, verifiedCertificates: %#v", hs.PeerCertificates, hs.VerifiedChains)
}
}
getTicket := func() []byte {
return clientConfig.ClientSessionCache.(*lruSessionCache).q.Front().Value.(*lruSessionCacheEntry).state.sessionTicket
}
deleteTicket := func() {
ticketKey := clientConfig.ClientSessionCache.(*lruSessionCache).q.Front().Value.(*lruSessionCacheEntry).sessionKey
clientConfig.ClientSessionCache.Put(ticketKey, nil)
}
corruptTicket := func() {
clientConfig.ClientSessionCache.(*lruSessionCache).q.Front().Value.(*lruSessionCacheEntry).state.masterSecret[0] ^= 0xff
}
randomKey := func() [32]byte {
var k [32]byte
if _, err := io.ReadFull(serverConfig.rand(), k[:]); err != nil {
t.Fatalf("Failed to read new SessionTicketKey: %s", err)
}
return k
}
testResumeState("Handshake", false)
ticket := getTicket()
testResumeState("Resume", true)
if !bytes.Equal(ticket, getTicket()) && version != VersionTLS13 {
t.Fatal("first ticket doesn't match ticket after resumption")
}
if bytes.Equal(ticket, getTicket()) && version == VersionTLS13 {
t.Fatal("ticket didn't change after resumption")
}
key1 := randomKey()
serverConfig.SetSessionTicketKeys([][32]byte{key1})
testResumeState("InvalidSessionTicketKey", false)
testResumeState("ResumeAfterInvalidSessionTicketKey", true)
key2 := randomKey()
serverConfig.SetSessionTicketKeys([][32]byte{key2, key1})
ticket = getTicket()
testResumeState("KeyChange", true)
if bytes.Equal(ticket, getTicket()) {
t.Fatal("new ticket wasn't included while resuming")
}
testResumeState("KeyChangeFinish", true)
// Reset serverConfig to ensure that calling SetSessionTicketKeys
// before the serverConfig is used works.
serverConfig = &Config{
MaxVersion: version,
CipherSuites: []uint16{TLS_RSA_WITH_RC4_128_SHA, TLS_ECDHE_RSA_WITH_RC4_128_SHA},
Certificates: testConfig.Certificates,
}
serverConfig.SetSessionTicketKeys([][32]byte{key2})
testResumeState("FreshConfig", true)
// In TLS 1.3, cross-cipher suite resumption is allowed as long as the KDF
// hash matches. Also, Config.CipherSuites does not apply to TLS 1.3.
if version != VersionTLS13 {
clientConfig.CipherSuites = []uint16{TLS_ECDHE_RSA_WITH_RC4_128_SHA}
testResumeState("DifferentCipherSuite", false)
testResumeState("DifferentCipherSuiteRecovers", true)
}
deleteTicket()
testResumeState("WithoutSessionTicket", false)
// Session resumption should work when using client certificates
deleteTicket()
serverConfig.ClientCAs = rootCAs
serverConfig.ClientAuth = RequireAndVerifyClientCert
clientConfig.Certificates = serverConfig.Certificates
testResumeState("InitialHandshake", false)
testResumeState("WithClientCertificates", true)
serverConfig.ClientAuth = NoClientCert
// Tickets should be removed from the session cache on TLS handshake
// failure, and the client should recover from a corrupted PSK
testResumeState("FetchTicketToCorrupt", false)
corruptTicket()
_, _, err = testHandshake(t, clientConfig, serverConfig)
if err == nil {
t.Fatalf("handshake did not fail with a corrupted client secret")
}
testResumeState("AfterHandshakeFailure", false)
clientConfig.ClientSessionCache = nil
testResumeState("WithoutSessionCache", false)
}
func TestLRUClientSessionCache(t *testing.T) {
// Initialize cache of capacity 4.
cache := NewLRUClientSessionCache(4)
cs := make([]ClientSessionState, 6)
keys := []string{"0", "1", "2", "3", "4", "5", "6"}
// Add 4 entries to the cache and look them up.
for i := 0; i < 4; i++ {
cache.Put(keys[i], &cs[i])
}
for i := 0; i < 4; i++ {
if s, ok := cache.Get(keys[i]); !ok || s != &cs[i] {
t.Fatalf("session cache failed lookup for added key: %s", keys[i])
}
}
// Add 2 more entries to the cache. First 2 should be evicted.
for i := 4; i < 6; i++ {
cache.Put(keys[i], &cs[i])
}
for i := 0; i < 2; i++ {
if s, ok := cache.Get(keys[i]); ok || s != nil {
t.Fatalf("session cache should have evicted key: %s", keys[i])
}
}
// Touch entry 2. LRU should evict 3 next.
cache.Get(keys[2])
cache.Put(keys[0], &cs[0])
if s, ok := cache.Get(keys[3]); ok || s != nil {
t.Fatalf("session cache should have evicted key 3")
}
// Update entry 0 in place.
cache.Put(keys[0], &cs[3])
if s, ok := cache.Get(keys[0]); !ok || s != &cs[3] {
t.Fatalf("session cache failed update for key 0")
}
// Calling Put with a nil entry deletes the key.
cache.Put(keys[0], nil)
if _, ok := cache.Get(keys[0]); ok {
t.Fatalf("session cache failed to delete key 0")
}
// Delete entry 2. LRU should keep 4 and 5
cache.Put(keys[2], nil)
if _, ok := cache.Get(keys[2]); ok {
t.Fatalf("session cache failed to delete key 4")
}
for i := 4; i < 6; i++ {
if s, ok := cache.Get(keys[i]); !ok || s != &cs[i] {
t.Fatalf("session cache should not have deleted key: %s", keys[i])
}
}
}
func TestKeyLogTLS12(t *testing.T) {
var serverBuf, clientBuf bytes.Buffer
clientConfig := testConfig.Clone()
clientConfig.KeyLogWriter = &clientBuf
clientConfig.MaxVersion = VersionTLS12
serverConfig := testConfig.Clone()
serverConfig.KeyLogWriter = &serverBuf
serverConfig.MaxVersion = VersionTLS12
c, s := localPipe(t)
done := make(chan bool)
go func() {
defer close(done)
if err := Server(s, serverConfig).Handshake(); err != nil {
t.Errorf("server: %s", err)
return
}
s.Close()
}()
if err := Client(c, clientConfig).Handshake(); err != nil {
t.Fatalf("client: %s", err)
}
c.Close()
<-done
checkKeylogLine := func(side, loggedLine string) {
if len(loggedLine) == 0 {
t.Fatalf("%s: no keylog line was produced", side)
}
const expectedLen = 13 /* "CLIENT_RANDOM" */ +
1 /* space */ +
32*2 /* hex client nonce */ +
1 /* space */ +
48*2 /* hex master secret */ +
1 /* new line */
if len(loggedLine) != expectedLen {
t.Fatalf("%s: keylog line has incorrect length (want %d, got %d): %q", side, expectedLen, len(loggedLine), loggedLine)
}
if !strings.HasPrefix(loggedLine, "CLIENT_RANDOM "+strings.Repeat("0", 64)+" ") {
t.Fatalf("%s: keylog line has incorrect structure or nonce: %q", side, loggedLine)
}
}
checkKeylogLine("client", clientBuf.String())
checkKeylogLine("server", serverBuf.String())
}
func TestKeyLogTLS13(t *testing.T) {
var serverBuf, clientBuf bytes.Buffer
clientConfig := testConfig.Clone()
clientConfig.KeyLogWriter = &clientBuf
serverConfig := testConfig.Clone()
serverConfig.KeyLogWriter = &serverBuf
c, s := localPipe(t)
done := make(chan bool)
go func() {
defer close(done)
if err := Server(s, serverConfig).Handshake(); err != nil {
t.Errorf("server: %s", err)
return
}
s.Close()
}()
if err := Client(c, clientConfig).Handshake(); err != nil {
t.Fatalf("client: %s", err)
}
c.Close()
<-done
checkKeylogLines := func(side, loggedLines string) {
loggedLines = strings.TrimSpace(loggedLines)
lines := strings.Split(loggedLines, "\n")
if len(lines) != 4 {
t.Errorf("Expected the %s to log 4 lines, got %d", side, len(lines))
}
}
checkKeylogLines("client", clientBuf.String())
checkKeylogLines("server", serverBuf.String())
}
func TestHandshakeClientALPNMatch(t *testing.T) {
config := testConfig.Clone()
config.NextProtos = []string{"proto2", "proto1"}
test := &clientTest{
name: "ALPN",
// Note that this needs OpenSSL 1.0.2 because that is the first
// version that supports the -alpn flag.
command: []string{"openssl", "s_server", "-alpn", "proto1,proto2"},
config: config,
validate: func(state ConnectionState) error {
// The server's preferences should override the client.
if state.NegotiatedProtocol != "proto1" {
return fmt.Errorf("Got protocol %q, wanted proto1", state.NegotiatedProtocol)
}
return nil
},
}
runClientTestTLS12(t, test)
runClientTestTLS13(t, test)
}
// sctsBase64 contains data from `openssl s_client -serverinfo 18 -connect ritter.vg:443`
const sctsBase64 = "ABIBaQFnAHUApLkJkLQYWBSHuxOizGdwCjw1mAT5G9+443fNDsgN3BAAAAFHl5nuFgAABAMARjBEAiAcS4JdlW5nW9sElUv2zvQyPoZ6ejKrGGB03gjaBZFMLwIgc1Qbbn+hsH0RvObzhS+XZhr3iuQQJY8S9G85D9KeGPAAdgBo9pj4H2SCvjqM7rkoHUz8cVFdZ5PURNEKZ6y7T0/7xAAAAUeX4bVwAAAEAwBHMEUCIDIhFDgG2HIuADBkGuLobU5a4dlCHoJLliWJ1SYT05z6AiEAjxIoZFFPRNWMGGIjskOTMwXzQ1Wh2e7NxXE1kd1J0QsAdgDuS723dc5guuFCaR+r4Z5mow9+X7By2IMAxHuJeqj9ywAAAUhcZIqHAAAEAwBHMEUCICmJ1rBT09LpkbzxtUC+Hi7nXLR0J+2PmwLp+sJMuqK+AiEAr0NkUnEVKVhAkccIFpYDqHOlZaBsuEhWWrYpg2RtKp0="
func TestHandshakClientSCTs(t *testing.T) {
config := testConfig.Clone()
scts, err := base64.StdEncoding.DecodeString(sctsBase64)
if err != nil {
t.Fatal(err)
}
// Note that this needs OpenSSL 1.0.2 because that is the first
// version that supports the -serverinfo flag.
test := &clientTest{
name: "SCT",
config: config,
extensions: [][]byte{scts},
validate: func(state ConnectionState) error {
expectedSCTs := [][]byte{
scts[8:125],
scts[127:245],
scts[247:],
}
if n := len(state.SignedCertificateTimestamps); n != len(expectedSCTs) {
return fmt.Errorf("Got %d scts, wanted %d", n, len(expectedSCTs))
}
for i, expected := range expectedSCTs {
if sct := state.SignedCertificateTimestamps[i]; !bytes.Equal(sct, expected) {
return fmt.Errorf("SCT #%d contained %x, expected %x", i, sct, expected)
}
}
return nil
},
}
runClientTestTLS12(t, test)
// TLS 1.3 moved SCTs to the Certificate extensions and -serverinfo only
// supports ServerHello extensions.
}
func TestRenegotiationRejected(t *testing.T) {
config := testConfig.Clone()
test := &clientTest{
name: "RenegotiationRejected",
command: []string{"openssl", "s_server", "-state"},
config: config,
numRenegotiations: 1,
renegotiationExpectedToFail: 1,
checkRenegotiationError: func(renegotiationNum int, err error) error {
if err == nil {
return errors.New("expected error from renegotiation but got nil")
}
if !strings.Contains(err.Error(), "no renegotiation") {
return fmt.Errorf("expected renegotiation to be rejected but got %q", err)
}
return nil
},
}
runClientTestTLS12(t, test)
}
func TestRenegotiateOnce(t *testing.T) {
config := testConfig.Clone()
config.Renegotiation = RenegotiateOnceAsClient
test := &clientTest{
name: "RenegotiateOnce",
command: []string{"openssl", "s_server", "-state"},
config: config,
numRenegotiations: 1,
}
runClientTestTLS12(t, test)
}
func TestRenegotiateTwice(t *testing.T) {
config := testConfig.Clone()
config.Renegotiation = RenegotiateFreelyAsClient
test := &clientTest{
name: "RenegotiateTwice",
command: []string{"openssl", "s_server", "-state"},
config: config,
numRenegotiations: 2,
}
runClientTestTLS12(t, test)
}
func TestRenegotiateTwiceRejected(t *testing.T) {
config := testConfig.Clone()
config.Renegotiation = RenegotiateOnceAsClient
test := &clientTest{
name: "RenegotiateTwiceRejected",
command: []string{"openssl", "s_server", "-state"},
config: config,
numRenegotiations: 2,
renegotiationExpectedToFail: 2,
checkRenegotiationError: func(renegotiationNum int, err error) error {
if renegotiationNum == 1 {
return err
}
if err == nil {
return errors.New("expected error from renegotiation but got nil")
}
if !strings.Contains(err.Error(), "no renegotiation") {
return fmt.Errorf("expected renegotiation to be rejected but got %q", err)
}
return nil
},
}
runClientTestTLS12(t, test)
}
func TestHandshakeClientExportKeyingMaterial(t *testing.T) {
test := &clientTest{
name: "ExportKeyingMaterial",
config: testConfig.Clone(),
validate: func(state ConnectionState) error {
if km, err := state.ExportKeyingMaterial("test", nil, 42); err != nil {
return fmt.Errorf("ExportKeyingMaterial failed: %v", err)
} else if len(km) != 42 {
return fmt.Errorf("Got %d bytes from ExportKeyingMaterial, wanted %d", len(km), 42)
}
return nil
},
}
runClientTestTLS10(t, test)
runClientTestTLS12(t, test)
runClientTestTLS13(t, test)
}
var hostnameInSNITests = []struct {
in, out string
}{
// Opaque string
{"", ""},
{"localhost", "localhost"},
{"foo, bar, baz and qux", "foo, bar, baz and qux"},
// DNS hostname
{"golang.org", "golang.org"},
{"golang.org.", "golang.org"},
// Literal IPv4 address
{"1.2.3.4", ""},
// Literal IPv6 address
{"::1", ""},
{"::1%lo0", ""}, // with zone identifier
{"[::1]", ""}, // as per RFC 5952 we allow the [] style as IPv6 literal
{"[::1%lo0]", ""},
}
func TestHostnameInSNI(t *testing.T) {
for _, tt := range hostnameInSNITests {
c, s := localPipe(t)
go func(host string) {
Client(c, &Config{ServerName: host, InsecureSkipVerify: true}).Handshake()
}(tt.in)
var header [5]byte
if _, err := io.ReadFull(s, header[:]); err != nil {
t.Fatal(err)
}
recordLen := int(header[3])<<8 | int(header[4])
record := make([]byte, recordLen)
if _, err := io.ReadFull(s, record[:]); err != nil {
t.Fatal(err)
}
c.Close()
s.Close()
var m clientHelloMsg
if !m.unmarshal(record) {
t.Errorf("unmarshaling ClientHello for %q failed", tt.in)
continue
}
if tt.in != tt.out && m.serverName == tt.in {
t.Errorf("prohibited %q found in ClientHello: %x", tt.in, record)
}
if m.serverName != tt.out {
t.Errorf("expected %q not found in ClientHello: %x", tt.out, record)
}
}
}
func TestServerSelectingUnconfiguredCipherSuite(t *testing.T) {
// This checks that the server can't select a cipher suite that the
// client didn't offer. See #13174.
c, s := localPipe(t)
errChan := make(chan error, 1)
go func() {
client := Client(c, &Config{
ServerName: "foo",
CipherSuites: []uint16{TLS_RSA_WITH_AES_128_GCM_SHA256},
})
errChan <- client.Handshake()
}()
var header [5]byte
if _, err := io.ReadFull(s, header[:]); err != nil {
t.Fatal(err)
}
recordLen := int(header[3])<<8 | int(header[4])
record := make([]byte, recordLen)
if _, err := io.ReadFull(s, record); err != nil {
t.Fatal(err)
}
// Create a ServerHello that selects a different cipher suite than the
// sole one that the client offered.
serverHello := &serverHelloMsg{
vers: VersionTLS12,
random: make([]byte, 32),
cipherSuite: TLS_RSA_WITH_AES_256_GCM_SHA384,
}
serverHelloBytes := serverHello.marshal()
s.Write([]byte{
byte(recordTypeHandshake),
byte(VersionTLS12 >> 8),
byte(VersionTLS12 & 0xff),
byte(len(serverHelloBytes) >> 8),
byte(len(serverHelloBytes)),
})
s.Write(serverHelloBytes)
s.Close()
if err := <-errChan; !strings.Contains(err.Error(), "unconfigured cipher") {
t.Fatalf("Expected error about unconfigured cipher suite but got %q", err)
}
}
func TestVerifyPeerCertificate(t *testing.T) {
t.Run("TLSv12", func(t *testing.T) { testVerifyPeerCertificate(t, VersionTLS12) })
t.Run("TLSv13", func(t *testing.T) { testVerifyPeerCertificate(t, VersionTLS13) })
}
func testVerifyPeerCertificate(t *testing.T, version uint16) {
issuer, err := x509.ParseCertificate(testRSACertificateIssuer)
if err != nil {
panic(err)
}
rootCAs := x509.NewCertPool()
rootCAs.AddCert(issuer)
now := func() time.Time { return time.Unix(1476984729, 0) }
sentinelErr := errors.New("TestVerifyPeerCertificate")
verifyCallback := func(called *bool, rawCerts [][]byte, validatedChains [][]*x509.Certificate) error {
if l := len(rawCerts); l != 1 {
return fmt.Errorf("got len(rawCerts) = %d, wanted 1", l)
}
if len(validatedChains) == 0 {
return errors.New("got len(validatedChains) = 0, wanted non-zero")
}
*called = true
return nil
}
tests := []struct {
configureServer func(*Config, *bool)
configureClient func(*Config, *bool)
validate func(t *testing.T, testNo int, clientCalled, serverCalled bool, clientErr, serverErr error)
}{
{
configureServer: func(config *Config, called *bool) {
config.InsecureSkipVerify = false
config.VerifyPeerCertificate = func(rawCerts [][]byte, validatedChains [][]*x509.Certificate) error {
return verifyCallback(called, rawCerts, validatedChains)
}
},
configureClient: func(config *Config, called *bool) {
config.InsecureSkipVerify = false
config.VerifyPeerCertificate = func(rawCerts [][]byte, validatedChains [][]*x509.Certificate) error {
return verifyCallback(called, rawCerts, validatedChains)
}
},
validate: func(t *testing.T, testNo int, clientCalled, serverCalled bool, clientErr, serverErr error) {
if clientErr != nil {
t.Errorf("test[%d]: client handshake failed: %v", testNo, clientErr)
}
if serverErr != nil {
t.Errorf("test[%d]: server handshake failed: %v", testNo, serverErr)
}
if !clientCalled {
t.Errorf("test[%d]: client did not call callback", testNo)
}
if !serverCalled {
t.Errorf("test[%d]: server did not call callback", testNo)
}
},
},
{
configureServer: func(config *Config, called *bool) {
config.InsecureSkipVerify = false
config.VerifyPeerCertificate = func(rawCerts [][]byte, validatedChains [][]*x509.Certificate) error {
return sentinelErr
}
},
configureClient: func(config *Config, called *bool) {
config.VerifyPeerCertificate = nil
},
validate: func(t *testing.T, testNo int, clientCalled, serverCalled bool, clientErr, serverErr error) {
if serverErr != sentinelErr {
t.Errorf("#%d: got server error %v, wanted sentinelErr", testNo, serverErr)
}
},
},
{
configureServer: func(config *Config, called *bool) {
config.InsecureSkipVerify = false
},
configureClient: func(config *Config, called *bool) {
config.VerifyPeerCertificate = func(rawCerts [][]byte, validatedChains [][]*x509.Certificate) error {
return sentinelErr
}
},
validate: func(t *testing.T, testNo int, clientCalled, serverCalled bool, clientErr, serverErr error) {
if clientErr != sentinelErr {
t.Errorf("#%d: got client error %v, wanted sentinelErr", testNo, clientErr)
}
},
},
{
configureServer: func(config *Config, called *bool) {
config.InsecureSkipVerify = false
},
configureClient: func(config *Config, called *bool) {
config.InsecureSkipVerify = true
config.VerifyPeerCertificate = func(rawCerts [][]byte, validatedChains [][]*x509.Certificate) error {
if l := len(rawCerts); l != 1 {
return fmt.Errorf("got len(rawCerts) = %d, wanted 1", l)
}
// With InsecureSkipVerify set, this
// callback should still be called but
// validatedChains must be empty.
if l := len(validatedChains); l != 0 {
return fmt.Errorf("got len(validatedChains) = %d, wanted zero", l)
}
*called = true
return nil
}
},
validate: func(t *testing.T, testNo int, clientCalled, serverCalled bool, clientErr, serverErr error) {
if clientErr != nil {
t.Errorf("test[%d]: client handshake failed: %v", testNo, clientErr)
}
if serverErr != nil {
t.Errorf("test[%d]: server handshake failed: %v", testNo, serverErr)
}
if !clientCalled {
t.Errorf("test[%d]: client did not call callback", testNo)
}
},
},
}
for i, test := range tests {
c, s := localPipe(t)
done := make(chan error)
var clientCalled, serverCalled bool
go func() {
config := testConfig.Clone()
config.ServerName = "example.golang"
config.ClientAuth = RequireAndVerifyClientCert
config.ClientCAs = rootCAs
config.Time = now
config.MaxVersion = version
test.configureServer(config, &serverCalled)
err = Server(s, config).Handshake()
s.Close()
done <- err
}()
config := testConfig.Clone()
config.ServerName = "example.golang"
config.RootCAs = rootCAs
config.Time = now
config.MaxVersion = version
test.configureClient(config, &clientCalled)
clientErr := Client(c, config).Handshake()
c.Close()
serverErr := <-done
test.validate(t, i, clientCalled, serverCalled, clientErr, serverErr)
}
}
// brokenConn wraps a net.Conn and causes all Writes after a certain number to
// fail with brokenConnErr.
type brokenConn struct {
net.Conn
// breakAfter is the number of successful writes that will be allowed
// before all subsequent writes fail.
breakAfter int
// numWrites is the number of writes that have been done.
numWrites int
}
// brokenConnErr is the error that brokenConn returns once exhausted.
var brokenConnErr = errors.New("too many writes to brokenConn")
func (b *brokenConn) Write(data []byte) (int, error) {
if b.numWrites >= b.breakAfter {
return 0, brokenConnErr
}
b.numWrites++
return b.Conn.Write(data)
}
func TestFailedWrite(t *testing.T) {
// Test that a write error during the handshake is returned.
for _, breakAfter := range []int{0, 1} {
c, s := localPipe(t)
done := make(chan bool)
go func() {
Server(s, testConfig).Handshake()
s.Close()
done <- true
}()
brokenC := &brokenConn{Conn: c, breakAfter: breakAfter}
err := Client(brokenC, testConfig).Handshake()
if err != brokenConnErr {
t.Errorf("#%d: expected error from brokenConn but got %q", breakAfter, err)
}
brokenC.Close()
<-done
}
}
// writeCountingConn wraps a net.Conn and counts the number of Write calls.
type writeCountingConn struct {
net.Conn
// numWrites is the number of writes that have been done.
numWrites int
}
func (wcc *writeCountingConn) Write(data []byte) (int, error) {
wcc.numWrites++
return wcc.Conn.Write(data)
}
func TestBuffering(t *testing.T) {
t.Run("TLSv12", func(t *testing.T) { testBuffering(t, VersionTLS12) })
t.Run("TLSv13", func(t *testing.T) { testBuffering(t, VersionTLS13) })
}
func testBuffering(t *testing.T, version uint16) {
c, s := localPipe(t)
done := make(chan bool)
clientWCC := &writeCountingConn{Conn: c}
serverWCC := &writeCountingConn{Conn: s}
go func() {
config := testConfig.Clone()
config.MaxVersion = version
Server(serverWCC, config).Handshake()
serverWCC.Close()
done <- true
}()
err := Client(clientWCC, testConfig).Handshake()
if err != nil {
t.Fatal(err)
}
clientWCC.Close()
<-done
var expectedClient, expectedServer int
if version == VersionTLS13 {
expectedClient = 2
expectedServer = 1
} else {
expectedClient = 2
expectedServer = 2
}
if n := clientWCC.numWrites; n != expectedClient {
t.Errorf("expected client handshake to complete with %d writes, but saw %d", expectedClient, n)
}
if n := serverWCC.numWrites; n != expectedServer {
t.Errorf("expected server handshake to complete with %d writes, but saw %d", expectedServer, n)
}
}
func TestAlertFlushing(t *testing.T) {
c, s := localPipe(t)
done := make(chan bool)
clientWCC := &writeCountingConn{Conn: c}
serverWCC := &writeCountingConn{Conn: s}
serverConfig := testConfig.Clone()
// Cause a signature-time error
brokenKey := rsa.PrivateKey{PublicKey: testRSAPrivateKey.PublicKey}
brokenKey.D = big.NewInt(42)
serverConfig.Certificates = []Certificate{{
Certificate: [][]byte{testRSACertificate},
PrivateKey: &brokenKey,
}}
go func() {
Server(serverWCC, serverConfig).Handshake()
serverWCC.Close()
done <- true
}()
err := Client(clientWCC, testConfig).Handshake()
if err == nil {
t.Fatal("client unexpectedly returned no error")
}
const expectedError = "remote error: tls: internal error"
if e := err.Error(); !strings.Contains(e, expectedError) {
t.Fatalf("expected to find %q in error but error was %q", expectedError, e)
}
clientWCC.Close()
<-done
if n := serverWCC.numWrites; n != 1 {
t.Errorf("expected server handshake to complete with one write, but saw %d", n)
}
}
func TestHandshakeRace(t *testing.T) {
t.Parallel()
// This test races a Read and Write to try and complete a handshake in
// order to provide some evidence that there are no races or deadlocks
// in the handshake locking.
for i := 0; i < 32; i++ {
c, s := localPipe(t)
go func() {
server := Server(s, testConfig)
if err := server.Handshake(); err != nil {
panic(err)
}
var request [1]byte
if n, err := server.Read(request[:]); err != nil || n != 1 {
panic(err)
}
server.Write(request[:])
server.Close()
}()
startWrite := make(chan struct{})
startRead := make(chan struct{})
readDone := make(chan struct{})
client := Client(c, testConfig)
go func() {
<-startWrite
var request [1]byte
client.Write(request[:])
}()
go func() {
<-startRead
var reply [1]byte
if _, err := io.ReadFull(client, reply[:]); err != nil {
panic(err)
}
c.Close()
readDone <- struct{}{}
}()
if i&1 == 1 {
startWrite <- struct{}{}
startRead <- struct{}{}
} else {
startRead <- struct{}{}
startWrite <- struct{}{}
}
<-readDone
}
}
var getClientCertificateTests = []struct {
setup func(*Config, *Config)
expectedClientError string
verify func(*testing.T, int, *ConnectionState)
}{
{
func(clientConfig, serverConfig *Config) {
// Returning a Certificate with no certificate data
// should result in an empty message being sent to the
// server.
serverConfig.ClientCAs = nil
clientConfig.GetClientCertificate = func(cri *CertificateRequestInfo) (*Certificate, error) {
if len(cri.SignatureSchemes) == 0 {
panic("empty SignatureSchemes")
}
if len(cri.AcceptableCAs) != 0 {
panic("AcceptableCAs should have been empty")
}
return new(Certificate), nil
}
},
"",
func(t *testing.T, testNum int, cs *ConnectionState) {
if l := len(cs.PeerCertificates); l != 0 {
t.Errorf("#%d: expected no certificates but got %d", testNum, l)
}
},
},
{
func(clientConfig, serverConfig *Config) {
// With TLS 1.1, the SignatureSchemes should be
// synthesised from the supported certificate types.
clientConfig.MaxVersion = VersionTLS11
clientConfig.GetClientCertificate = func(cri *CertificateRequestInfo) (*Certificate, error) {
if len(cri.SignatureSchemes) == 0 {
panic("empty SignatureSchemes")
}
return new(Certificate), nil
}
},
"",
func(t *testing.T, testNum int, cs *ConnectionState) {
if l := len(cs.PeerCertificates); l != 0 {
t.Errorf("#%d: expected no certificates but got %d", testNum, l)
}
},
},
{
func(clientConfig, serverConfig *Config) {
// Returning an error should abort the handshake with
// that error.
clientConfig.GetClientCertificate = func(cri *CertificateRequestInfo) (*Certificate, error) {
return nil, errors.New("GetClientCertificate")
}
},
"GetClientCertificate",
func(t *testing.T, testNum int, cs *ConnectionState) {
},
},
{
func(clientConfig, serverConfig *Config) {
clientConfig.GetClientCertificate = func(cri *CertificateRequestInfo) (*Certificate, error) {
if len(cri.AcceptableCAs) == 0 {
panic("empty AcceptableCAs")
}
cert := &Certificate{
Certificate: [][]byte{testRSACertificate},
PrivateKey: testRSAPrivateKey,
}
return cert, nil
}
},
"",
func(t *testing.T, testNum int, cs *ConnectionState) {
if len(cs.VerifiedChains) == 0 {
t.Errorf("#%d: expected some verified chains, but found none", testNum)
}
},
},
}
func TestGetClientCertificate(t *testing.T) {
t.Run("TLSv12", func(t *testing.T) { testGetClientCertificate(t, VersionTLS12) })
t.Run("TLSv13", func(t *testing.T) { testGetClientCertificate(t, VersionTLS13) })
}
func testGetClientCertificate(t *testing.T, version uint16) {
issuer, err := x509.ParseCertificate(testRSACertificateIssuer)
if err != nil {
panic(err)
}
for i, test := range getClientCertificateTests {
serverConfig := testConfig.Clone()
serverConfig.ClientAuth = VerifyClientCertIfGiven
serverConfig.RootCAs = x509.NewCertPool()
serverConfig.RootCAs.AddCert(issuer)
serverConfig.ClientCAs = serverConfig.RootCAs
serverConfig.Time = func() time.Time { return time.Unix(1476984729, 0) }
serverConfig.MaxVersion = version
clientConfig := testConfig.Clone()
clientConfig.MaxVersion = version
test.setup(clientConfig, serverConfig)
type serverResult struct {
cs ConnectionState
err error
}
c, s := localPipe(t)
done := make(chan serverResult)
go func() {
defer s.Close()
server := Server(s, serverConfig)
err := server.Handshake()
var cs ConnectionState
if err == nil {
cs = server.ConnectionState()
}
done <- serverResult{cs, err}
}()
clientErr := Client(c, clientConfig).Handshake()
c.Close()
result := <-done
if clientErr != nil {
if len(test.expectedClientError) == 0 {
t.Errorf("#%d: client error: %v", i, clientErr)
} else if got := clientErr.Error(); got != test.expectedClientError {
t.Errorf("#%d: expected client error %q, but got %q", i, test.expectedClientError, got)
} else {
test.verify(t, i, &result.cs)
}
} else if len(test.expectedClientError) > 0 {
t.Errorf("#%d: expected client error %q, but got no error", i, test.expectedClientError)
} else if err := result.err; err != nil {
t.Errorf("#%d: server error: %v", i, err)
} else {
test.verify(t, i, &result.cs)
}
}
}
func TestRSAPSSKeyError(t *testing.T) {
// crypto/tls does not support the rsa_pss_pss_* SignatureSchemes. If support for
// public keys with OID RSASSA-PSS is added to crypto/x509, they will be misused with
// the rsa_pss_rsae_* SignatureSchemes. Assert that RSASSA-PSS certificates don't
// parse, or that they don't carry *rsa.PublicKey keys.
b, _ := pem.Decode([]byte(`
-----BEGIN CERTIFICATE-----
MIIDZTCCAhygAwIBAgIUCF2x0FyTgZG0CC9QTDjGWkB5vgEwPgYJKoZIhvcNAQEK
MDGgDTALBglghkgBZQMEAgGhGjAYBgkqhkiG9w0BAQgwCwYJYIZIAWUDBAIBogQC
AgDeMBIxEDAOBgNVBAMMB1JTQS1QU1MwHhcNMTgwNjI3MjI0NDM2WhcNMTgwNzI3
MjI0NDM2WjASMRAwDgYDVQQDDAdSU0EtUFNTMIIBIDALBgkqhkiG9w0BAQoDggEP
ADCCAQoCggEBANxDm0f76JdI06YzsjB3AmmjIYkwUEGxePlafmIASFjDZl/elD0Z
/a7xLX468b0qGxLS5al7XCcEprSdsDR6DF5L520+pCbpfLyPOjuOvGmk9KzVX4x5
b05YXYuXdsQ0Kjxcx2i3jjCday6scIhMJVgBZxTEyMj1thPQM14SHzKCd/m6HmCL
QmswpH2yMAAcBRWzRpp/vdH5DeOJEB3aelq7094no731mrLUCHRiZ1htq8BDB3ou
czwqgwspbqZ4dnMXl2MvfySQ5wJUxQwILbiuAKO2lVVPUbFXHE9pgtznNoPvKwQT
JNcX8ee8WIZc2SEGzofjk3NpjR+2ADB2u3sCAwEAAaNTMFEwHQYDVR0OBBYEFNEz
AdyJ2f+fU+vSCS6QzohnOnprMB8GA1UdIwQYMBaAFNEzAdyJ2f+fU+vSCS6Qzohn
OnprMA8GA1UdEwEB/wQFMAMBAf8wPgYJKoZIhvcNAQEKMDGgDTALBglghkgBZQME
AgGhGjAYBgkqhkiG9w0BAQgwCwYJYIZIAWUDBAIBogQCAgDeA4IBAQCjEdrR5aab
sZmCwrMeKidXgfkmWvfuLDE+TCbaqDZp7BMWcMQXT9O0UoUT5kqgKj2ARm2pEW0Z
H3Z1vj3bbds72qcDIJXp+l0fekyLGeCrX/CbgnMZXEP7+/+P416p34ChR1Wz4dU1
KD3gdsUuTKKeMUog3plxlxQDhRQmiL25ygH1LmjLd6dtIt0GVRGr8lj3euVeprqZ
bZ3Uq5eLfsn8oPgfC57gpO6yiN+UURRTlK3bgYvLh4VWB3XXk9UaQZ7Mq1tpXjoD
HYFybkWzibkZp4WRo+Fa28rirH+/wHt0vfeN7UCceURZEx4JaxIIfe4ku7uDRhJi
RwBA9Xk1KBNF
-----END CERTIFICATE-----`))
if b == nil {
t.Fatal("Failed to decode certificate")
}
cert, err := x509.ParseCertificate(b.Bytes)
if err != nil {
return
}
if _, ok := cert.PublicKey.(*rsa.PublicKey); ok {
t.Error("A RSASSA-PSS certificate was parsed like a PKCS#1 v1.5 one, and it will be mistakenly used with rsa_pss_rsae_* signature algorithms")
}
}
func TestCloseClientConnectionOnIdleServer(t *testing.T) {
clientConn, serverConn := localPipe(t)
client := Client(clientConn, testConfig.Clone())
go func() {
var b [1]byte
serverConn.Read(b[:])
client.Close()
}()
client.SetWriteDeadline(time.Now().Add(time.Minute))
err := client.Handshake()
if err != nil {
if err, ok := err.(net.Error); ok && err.Timeout() {
t.Errorf("Expected a closed network connection error but got '%s'", err.Error())
}
} else {
t.Errorf("Error expected, but no error returned")
}
}