utls/handshake_client.go
Damien Neil 8b177082b2 crypto/tls: apply QUIC session event flag to QUICResumeSession events
Go 1.23 adds two new events to QUICConns: QUICStoreSessionEvent and
QUICResumeSessionEvent. We added a QUICConfig.EnableStoreSessionEvent
flag to control whether the store-session event is provided or not,
because receiving this event requires additional action from the caller:
the session must be explicitly stored with QUICConn.StoreSession.

We did not add a control for whether the resume-session event is
provided, because this event requires no action and the caller is
expected to ignore unknown events.

However, we never documented the expectation that callers ignore
unknown events, and quic-go produces an error when receiving an
unexpected event. So change the EnableStoreSessionEvent flag to
apply to both new events.

Fixes #68124
For #63691

Change-Id: I84af487e52b3815f7b648e09884608f8915cd645
Reviewed-on: https://go-review.googlesource.com/c/go/+/594475
Reviewed-by: Marten Seemann <martenseemann@gmail.com>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Roland Shoemaker <roland@golang.org>
2024-06-25 17:08:08 +00:00

1285 lines
39 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tls
import (
"bytes"
"context"
"crypto"
"crypto/ecdsa"
"crypto/ed25519"
"crypto/internal/hpke"
"crypto/internal/mlkem768"
"crypto/rsa"
"crypto/subtle"
"crypto/x509"
"errors"
"fmt"
"hash"
"internal/byteorder"
"internal/godebug"
"io"
"net"
"strconv"
"strings"
"time"
)
type clientHandshakeState struct {
c *Conn
ctx context.Context
serverHello *serverHelloMsg
hello *clientHelloMsg
suite *cipherSuite
finishedHash finishedHash
masterSecret []byte
session *SessionState // the session being resumed
ticket []byte // a fresh ticket received during this handshake
}
var testingOnlyForceClientHelloSignatureAlgorithms []SignatureScheme
func (c *Conn) makeClientHello() (*clientHelloMsg, *keySharePrivateKeys, *echContext, error) {
config := c.config
if len(config.ServerName) == 0 && !config.InsecureSkipVerify {
return nil, nil, nil, errors.New("tls: either ServerName or InsecureSkipVerify must be specified in the tls.Config")
}
nextProtosLength := 0
for _, proto := range config.NextProtos {
if l := len(proto); l == 0 || l > 255 {
return nil, nil, nil, errors.New("tls: invalid NextProtos value")
} else {
nextProtosLength += 1 + l
}
}
if nextProtosLength > 0xffff {
return nil, nil, nil, errors.New("tls: NextProtos values too large")
}
supportedVersions := config.supportedVersions(roleClient)
if len(supportedVersions) == 0 {
return nil, nil, nil, errors.New("tls: no supported versions satisfy MinVersion and MaxVersion")
}
maxVersion := config.maxSupportedVersion(roleClient)
hello := &clientHelloMsg{
vers: maxVersion,
compressionMethods: []uint8{compressionNone},
random: make([]byte, 32),
extendedMasterSecret: true,
ocspStapling: true,
scts: true,
serverName: hostnameInSNI(config.ServerName),
supportedCurves: config.curvePreferences(maxVersion),
supportedPoints: []uint8{pointFormatUncompressed},
secureRenegotiationSupported: true,
alpnProtocols: config.NextProtos,
supportedVersions: supportedVersions,
}
// The version at the beginning of the ClientHello was capped at TLS 1.2
// for compatibility reasons. The supported_versions extension is used
// to negotiate versions now. See RFC 8446, Section 4.2.1.
if hello.vers > VersionTLS12 {
hello.vers = VersionTLS12
}
if c.handshakes > 0 {
hello.secureRenegotiation = c.clientFinished[:]
}
preferenceOrder := cipherSuitesPreferenceOrder
if !hasAESGCMHardwareSupport {
preferenceOrder = cipherSuitesPreferenceOrderNoAES
}
configCipherSuites := config.cipherSuites()
hello.cipherSuites = make([]uint16, 0, len(configCipherSuites))
for _, suiteId := range preferenceOrder {
suite := mutualCipherSuite(configCipherSuites, suiteId)
if suite == nil {
continue
}
// Don't advertise TLS 1.2-only cipher suites unless
// we're attempting TLS 1.2.
if maxVersion < VersionTLS12 && suite.flags&suiteTLS12 != 0 {
continue
}
hello.cipherSuites = append(hello.cipherSuites, suiteId)
}
_, err := io.ReadFull(config.rand(), hello.random)
if err != nil {
return nil, nil, nil, errors.New("tls: short read from Rand: " + err.Error())
}
// A random session ID is used to detect when the server accepted a ticket
// and is resuming a session (see RFC 5077). In TLS 1.3, it's always set as
// a compatibility measure (see RFC 8446, Section 4.1.2).
//
// The session ID is not set for QUIC connections (see RFC 9001, Section 8.4).
if c.quic == nil {
hello.sessionId = make([]byte, 32)
if _, err := io.ReadFull(config.rand(), hello.sessionId); err != nil {
return nil, nil, nil, errors.New("tls: short read from Rand: " + err.Error())
}
}
if maxVersion >= VersionTLS12 {
hello.supportedSignatureAlgorithms = supportedSignatureAlgorithms()
}
if testingOnlyForceClientHelloSignatureAlgorithms != nil {
hello.supportedSignatureAlgorithms = testingOnlyForceClientHelloSignatureAlgorithms
}
var keyShareKeys *keySharePrivateKeys
if hello.supportedVersions[0] == VersionTLS13 {
// Reset the list of ciphers when the client only supports TLS 1.3.
if len(hello.supportedVersions) == 1 {
hello.cipherSuites = nil
}
if hasAESGCMHardwareSupport {
hello.cipherSuites = append(hello.cipherSuites, defaultCipherSuitesTLS13...)
} else {
hello.cipherSuites = append(hello.cipherSuites, defaultCipherSuitesTLS13NoAES...)
}
curveID := config.curvePreferences(maxVersion)[0]
keyShareKeys = &keySharePrivateKeys{curveID: curveID}
if curveID == x25519Kyber768Draft00 {
keyShareKeys.ecdhe, err = generateECDHEKey(config.rand(), X25519)
if err != nil {
return nil, nil, nil, err
}
seed := make([]byte, mlkem768.SeedSize)
if _, err := io.ReadFull(config.rand(), seed); err != nil {
return nil, nil, nil, err
}
keyShareKeys.kyber, err = mlkem768.NewKeyFromSeed(seed)
if err != nil {
return nil, nil, nil, err
}
// For draft-tls-westerbaan-xyber768d00-03, we send both a hybrid
// and a standard X25519 key share, since most servers will only
// support the latter. We reuse the same X25519 ephemeral key for
// both, as allowed by draft-ietf-tls-hybrid-design-09, Section 3.2.
hello.keyShares = []keyShare{
{group: x25519Kyber768Draft00, data: append(keyShareKeys.ecdhe.PublicKey().Bytes(),
keyShareKeys.kyber.EncapsulationKey()...)},
{group: X25519, data: keyShareKeys.ecdhe.PublicKey().Bytes()},
}
} else {
if _, ok := curveForCurveID(curveID); !ok {
return nil, nil, nil, errors.New("tls: CurvePreferences includes unsupported curve")
}
keyShareKeys.ecdhe, err = generateECDHEKey(config.rand(), curveID)
if err != nil {
return nil, nil, nil, err
}
hello.keyShares = []keyShare{{group: curveID, data: keyShareKeys.ecdhe.PublicKey().Bytes()}}
}
}
if c.quic != nil {
p, err := c.quicGetTransportParameters()
if err != nil {
return nil, nil, nil, err
}
if p == nil {
p = []byte{}
}
hello.quicTransportParameters = p
}
var ech *echContext
if c.config.EncryptedClientHelloConfigList != nil {
if c.config.MinVersion != 0 && c.config.MinVersion < VersionTLS13 {
return nil, nil, nil, errors.New("tls: MinVersion must be >= VersionTLS13 if EncryptedClientHelloConfigList is populated")
}
if c.config.MaxVersion != 0 && c.config.MaxVersion <= VersionTLS12 {
return nil, nil, nil, errors.New("tls: MaxVersion must be >= VersionTLS13 if EncryptedClientHelloConfigList is populated")
}
echConfigs, err := parseECHConfigList(c.config.EncryptedClientHelloConfigList)
if err != nil {
return nil, nil, nil, err
}
echConfig := pickECHConfig(echConfigs)
if echConfig == nil {
return nil, nil, nil, errors.New("tls: EncryptedClientHelloConfigList contains no valid configs")
}
ech = &echContext{config: echConfig}
hello.encryptedClientHello = []byte{1} // indicate inner hello
// We need to explicitly set these 1.2 fields to nil, as we do not
// marshal them when encoding the inner hello, otherwise transcripts
// will later mismatch.
hello.supportedPoints = nil
hello.ticketSupported = false
hello.secureRenegotiationSupported = false
hello.extendedMasterSecret = false
echPK, err := hpke.ParseHPKEPublicKey(ech.config.KemID, ech.config.PublicKey)
if err != nil {
return nil, nil, nil, err
}
suite, err := pickECHCipherSuite(ech.config.SymmetricCipherSuite)
if err != nil {
return nil, nil, nil, err
}
ech.kdfID, ech.aeadID = suite.KDFID, suite.AEADID
info := append([]byte("tls ech\x00"), ech.config.raw...)
ech.encapsulatedKey, ech.hpkeContext, err = hpke.SetupSender(ech.config.KemID, suite.KDFID, suite.AEADID, echPK, info)
if err != nil {
return nil, nil, nil, err
}
}
return hello, keyShareKeys, ech, nil
}
type echContext struct {
config *echConfig
hpkeContext *hpke.Sender
encapsulatedKey []byte
innerHello *clientHelloMsg
innerTranscript hash.Hash
kdfID uint16
aeadID uint16
echRejected bool
}
func (c *Conn) clientHandshake(ctx context.Context) (err error) {
if c.config == nil {
c.config = defaultConfig()
}
// This may be a renegotiation handshake, in which case some fields
// need to be reset.
c.didResume = false
hello, keyShareKeys, ech, err := c.makeClientHello()
if err != nil {
return err
}
session, earlySecret, binderKey, err := c.loadSession(hello)
if err != nil {
return err
}
if session != nil {
defer func() {
// If we got a handshake failure when resuming a session, throw away
// the session ticket. See RFC 5077, Section 3.2.
//
// RFC 8446 makes no mention of dropping tickets on failure, but it
// does require servers to abort on invalid binders, so we need to
// delete tickets to recover from a corrupted PSK.
if err != nil {
if cacheKey := c.clientSessionCacheKey(); cacheKey != "" {
c.config.ClientSessionCache.Put(cacheKey, nil)
}
}
}()
}
if ech != nil {
// Split hello into inner and outer
ech.innerHello = hello.clone()
// Overwrite the server name in the outer hello with the public facing
// name.
hello.serverName = string(ech.config.PublicName)
// Generate a new random for the outer hello.
hello.random = make([]byte, 32)
_, err = io.ReadFull(c.config.rand(), hello.random)
if err != nil {
return errors.New("tls: short read from Rand: " + err.Error())
}
// NOTE: we don't do PSK GREASE, in line with boringssl, it's meant to
// work around _possibly_ broken middleboxes, but there is little-to-no
// evidence that this is actually a problem.
if err := computeAndUpdateOuterECHExtension(hello, ech.innerHello, ech, true); err != nil {
return err
}
}
c.serverName = hello.serverName
if _, err := c.writeHandshakeRecord(hello, nil); err != nil {
return err
}
if hello.earlyData {
suite := cipherSuiteTLS13ByID(session.cipherSuite)
transcript := suite.hash.New()
if err := transcriptMsg(hello, transcript); err != nil {
return err
}
earlyTrafficSecret := suite.deriveSecret(earlySecret, clientEarlyTrafficLabel, transcript)
c.quicSetWriteSecret(QUICEncryptionLevelEarly, suite.id, earlyTrafficSecret)
}
// serverHelloMsg is not included in the transcript
msg, err := c.readHandshake(nil)
if err != nil {
return err
}
serverHello, ok := msg.(*serverHelloMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(serverHello, msg)
}
if err := c.pickTLSVersion(serverHello); err != nil {
return err
}
// If we are negotiating a protocol version that's lower than what we
// support, check for the server downgrade canaries.
// See RFC 8446, Section 4.1.3.
maxVers := c.config.maxSupportedVersion(roleClient)
tls12Downgrade := string(serverHello.random[24:]) == downgradeCanaryTLS12
tls11Downgrade := string(serverHello.random[24:]) == downgradeCanaryTLS11
if maxVers == VersionTLS13 && c.vers <= VersionTLS12 && (tls12Downgrade || tls11Downgrade) ||
maxVers == VersionTLS12 && c.vers <= VersionTLS11 && tls11Downgrade {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: downgrade attempt detected, possibly due to a MitM attack or a broken middlebox")
}
if c.vers == VersionTLS13 {
hs := &clientHandshakeStateTLS13{
c: c,
ctx: ctx,
serverHello: serverHello,
hello: hello,
keyShareKeys: keyShareKeys,
session: session,
earlySecret: earlySecret,
binderKey: binderKey,
echContext: ech,
}
return hs.handshake()
}
hs := &clientHandshakeState{
c: c,
ctx: ctx,
serverHello: serverHello,
hello: hello,
session: session,
}
return hs.handshake()
}
func (c *Conn) loadSession(hello *clientHelloMsg) (
session *SessionState, earlySecret, binderKey []byte, err error) {
if c.config.SessionTicketsDisabled || c.config.ClientSessionCache == nil {
return nil, nil, nil, nil
}
echInner := bytes.Equal(hello.encryptedClientHello, []byte{1})
// ticketSupported is a TLS 1.2 extension (as TLS 1.3 replaced tickets with PSK
// identities) and ECH requires and forces TLS 1.3.
hello.ticketSupported = true && !echInner
if hello.supportedVersions[0] == VersionTLS13 {
// Require DHE on resumption as it guarantees forward secrecy against
// compromise of the session ticket key. See RFC 8446, Section 4.2.9.
hello.pskModes = []uint8{pskModeDHE}
}
// Session resumption is not allowed if renegotiating because
// renegotiation is primarily used to allow a client to send a client
// certificate, which would be skipped if session resumption occurred.
if c.handshakes != 0 {
return nil, nil, nil, nil
}
// Try to resume a previously negotiated TLS session, if available.
cacheKey := c.clientSessionCacheKey()
if cacheKey == "" {
return nil, nil, nil, nil
}
cs, ok := c.config.ClientSessionCache.Get(cacheKey)
if !ok || cs == nil {
return nil, nil, nil, nil
}
session = cs.session
// Check that version used for the previous session is still valid.
versOk := false
for _, v := range hello.supportedVersions {
if v == session.version {
versOk = true
break
}
}
if !versOk {
return nil, nil, nil, nil
}
// Check that the cached server certificate is not expired, and that it's
// valid for the ServerName. This should be ensured by the cache key, but
// protect the application from a faulty ClientSessionCache implementation.
if c.config.time().After(session.peerCertificates[0].NotAfter) {
// Expired certificate, delete the entry.
c.config.ClientSessionCache.Put(cacheKey, nil)
return nil, nil, nil, nil
}
if !c.config.InsecureSkipVerify {
if len(session.verifiedChains) == 0 {
// The original connection had InsecureSkipVerify, while this doesn't.
return nil, nil, nil, nil
}
if err := session.peerCertificates[0].VerifyHostname(c.config.ServerName); err != nil {
return nil, nil, nil, nil
}
}
if session.version != VersionTLS13 {
// In TLS 1.2 the cipher suite must match the resumed session. Ensure we
// are still offering it.
if mutualCipherSuite(hello.cipherSuites, session.cipherSuite) == nil {
return nil, nil, nil, nil
}
hello.sessionTicket = session.ticket
return
}
// Check that the session ticket is not expired.
if c.config.time().After(time.Unix(int64(session.useBy), 0)) {
c.config.ClientSessionCache.Put(cacheKey, nil)
return nil, nil, nil, nil
}
// In TLS 1.3 the KDF hash must match the resumed session. Ensure we
// offer at least one cipher suite with that hash.
cipherSuite := cipherSuiteTLS13ByID(session.cipherSuite)
if cipherSuite == nil {
return nil, nil, nil, nil
}
cipherSuiteOk := false
for _, offeredID := range hello.cipherSuites {
offeredSuite := cipherSuiteTLS13ByID(offeredID)
if offeredSuite != nil && offeredSuite.hash == cipherSuite.hash {
cipherSuiteOk = true
break
}
}
if !cipherSuiteOk {
return nil, nil, nil, nil
}
if c.quic != nil {
if c.quic.enableSessionEvents {
c.quicResumeSession(session)
}
// For 0-RTT, the cipher suite has to match exactly, and we need to be
// offering the same ALPN.
if session.EarlyData && mutualCipherSuiteTLS13(hello.cipherSuites, session.cipherSuite) != nil {
for _, alpn := range hello.alpnProtocols {
if alpn == session.alpnProtocol {
hello.earlyData = true
break
}
}
}
}
// Set the pre_shared_key extension. See RFC 8446, Section 4.2.11.1.
ticketAge := c.config.time().Sub(time.Unix(int64(session.createdAt), 0))
identity := pskIdentity{
label: session.ticket,
obfuscatedTicketAge: uint32(ticketAge/time.Millisecond) + session.ageAdd,
}
hello.pskIdentities = []pskIdentity{identity}
hello.pskBinders = [][]byte{make([]byte, cipherSuite.hash.Size())}
// Compute the PSK binders. See RFC 8446, Section 4.2.11.2.
earlySecret = cipherSuite.extract(session.secret, nil)
binderKey = cipherSuite.deriveSecret(earlySecret, resumptionBinderLabel, nil)
transcript := cipherSuite.hash.New()
if err := computeAndUpdatePSK(hello, binderKey, transcript, cipherSuite.finishedHash); err != nil {
return nil, nil, nil, err
}
return
}
func (c *Conn) pickTLSVersion(serverHello *serverHelloMsg) error {
peerVersion := serverHello.vers
if serverHello.supportedVersion != 0 {
peerVersion = serverHello.supportedVersion
}
vers, ok := c.config.mutualVersion(roleClient, []uint16{peerVersion})
if !ok {
c.sendAlert(alertProtocolVersion)
return fmt.Errorf("tls: server selected unsupported protocol version %x", peerVersion)
}
c.vers = vers
c.haveVers = true
c.in.version = vers
c.out.version = vers
return nil
}
// Does the handshake, either a full one or resumes old session. Requires hs.c,
// hs.hello, hs.serverHello, and, optionally, hs.session to be set.
func (hs *clientHandshakeState) handshake() error {
c := hs.c
isResume, err := hs.processServerHello()
if err != nil {
return err
}
hs.finishedHash = newFinishedHash(c.vers, hs.suite)
// No signatures of the handshake are needed in a resumption.
// Otherwise, in a full handshake, if we don't have any certificates
// configured then we will never send a CertificateVerify message and
// thus no signatures are needed in that case either.
if isResume || (len(c.config.Certificates) == 0 && c.config.GetClientCertificate == nil) {
hs.finishedHash.discardHandshakeBuffer()
}
if err := transcriptMsg(hs.hello, &hs.finishedHash); err != nil {
return err
}
if err := transcriptMsg(hs.serverHello, &hs.finishedHash); err != nil {
return err
}
c.buffering = true
c.didResume = isResume
if isResume {
if err := hs.establishKeys(); err != nil {
return err
}
if err := hs.readSessionTicket(); err != nil {
return err
}
if err := hs.readFinished(c.serverFinished[:]); err != nil {
return err
}
c.clientFinishedIsFirst = false
// Make sure the connection is still being verified whether or not this
// is a resumption. Resumptions currently don't reverify certificates so
// they don't call verifyServerCertificate. See Issue 31641.
if c.config.VerifyConnection != nil {
if err := c.config.VerifyConnection(c.connectionStateLocked()); err != nil {
c.sendAlert(alertBadCertificate)
return err
}
}
if err := hs.sendFinished(c.clientFinished[:]); err != nil {
return err
}
if _, err := c.flush(); err != nil {
return err
}
} else {
if err := hs.doFullHandshake(); err != nil {
return err
}
if err := hs.establishKeys(); err != nil {
return err
}
if err := hs.sendFinished(c.clientFinished[:]); err != nil {
return err
}
if _, err := c.flush(); err != nil {
return err
}
c.clientFinishedIsFirst = true
if err := hs.readSessionTicket(); err != nil {
return err
}
if err := hs.readFinished(c.serverFinished[:]); err != nil {
return err
}
}
if err := hs.saveSessionTicket(); err != nil {
return err
}
c.ekm = ekmFromMasterSecret(c.vers, hs.suite, hs.masterSecret, hs.hello.random, hs.serverHello.random)
c.isHandshakeComplete.Store(true)
return nil
}
func (hs *clientHandshakeState) pickCipherSuite() error {
if hs.suite = mutualCipherSuite(hs.hello.cipherSuites, hs.serverHello.cipherSuite); hs.suite == nil {
hs.c.sendAlert(alertHandshakeFailure)
return errors.New("tls: server chose an unconfigured cipher suite")
}
if hs.c.config.CipherSuites == nil && !needFIPS() && rsaKexCiphers[hs.suite.id] {
tlsrsakex.Value() // ensure godebug is initialized
tlsrsakex.IncNonDefault()
}
if hs.c.config.CipherSuites == nil && !needFIPS() && tdesCiphers[hs.suite.id] {
tls3des.Value() // ensure godebug is initialized
tls3des.IncNonDefault()
}
hs.c.cipherSuite = hs.suite.id
return nil
}
func (hs *clientHandshakeState) doFullHandshake() error {
c := hs.c
msg, err := c.readHandshake(&hs.finishedHash)
if err != nil {
return err
}
certMsg, ok := msg.(*certificateMsg)
if !ok || len(certMsg.certificates) == 0 {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(certMsg, msg)
}
msg, err = c.readHandshake(&hs.finishedHash)
if err != nil {
return err
}
cs, ok := msg.(*certificateStatusMsg)
if ok {
// RFC4366 on Certificate Status Request:
// The server MAY return a "certificate_status" message.
if !hs.serverHello.ocspStapling {
// If a server returns a "CertificateStatus" message, then the
// server MUST have included an extension of type "status_request"
// with empty "extension_data" in the extended server hello.
c.sendAlert(alertUnexpectedMessage)
return errors.New("tls: received unexpected CertificateStatus message")
}
c.ocspResponse = cs.response
msg, err = c.readHandshake(&hs.finishedHash)
if err != nil {
return err
}
}
if c.handshakes == 0 {
// If this is the first handshake on a connection, process and
// (optionally) verify the server's certificates.
if err := c.verifyServerCertificate(certMsg.certificates); err != nil {
return err
}
} else {
// This is a renegotiation handshake. We require that the
// server's identity (i.e. leaf certificate) is unchanged and
// thus any previous trust decision is still valid.
//
// See https://mitls.org/pages/attacks/3SHAKE for the
// motivation behind this requirement.
if !bytes.Equal(c.peerCertificates[0].Raw, certMsg.certificates[0]) {
c.sendAlert(alertBadCertificate)
return errors.New("tls: server's identity changed during renegotiation")
}
}
keyAgreement := hs.suite.ka(c.vers)
skx, ok := msg.(*serverKeyExchangeMsg)
if ok {
err = keyAgreement.processServerKeyExchange(c.config, hs.hello, hs.serverHello, c.peerCertificates[0], skx)
if err != nil {
c.sendAlert(alertUnexpectedMessage)
return err
}
if len(skx.key) >= 3 && skx.key[0] == 3 /* named curve */ {
c.curveID = CurveID(byteorder.BeUint16(skx.key[1:]))
}
msg, err = c.readHandshake(&hs.finishedHash)
if err != nil {
return err
}
}
var chainToSend *Certificate
var certRequested bool
certReq, ok := msg.(*certificateRequestMsg)
if ok {
certRequested = true
cri := certificateRequestInfoFromMsg(hs.ctx, c.vers, certReq)
if chainToSend, err = c.getClientCertificate(cri); err != nil {
c.sendAlert(alertInternalError)
return err
}
msg, err = c.readHandshake(&hs.finishedHash)
if err != nil {
return err
}
}
shd, ok := msg.(*serverHelloDoneMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(shd, msg)
}
// If the server requested a certificate then we have to send a
// Certificate message, even if it's empty because we don't have a
// certificate to send.
if certRequested {
certMsg = new(certificateMsg)
certMsg.certificates = chainToSend.Certificate
if _, err := hs.c.writeHandshakeRecord(certMsg, &hs.finishedHash); err != nil {
return err
}
}
preMasterSecret, ckx, err := keyAgreement.generateClientKeyExchange(c.config, hs.hello, c.peerCertificates[0])
if err != nil {
c.sendAlert(alertInternalError)
return err
}
if ckx != nil {
if _, err := hs.c.writeHandshakeRecord(ckx, &hs.finishedHash); err != nil {
return err
}
}
if hs.serverHello.extendedMasterSecret {
c.extMasterSecret = true
hs.masterSecret = extMasterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret,
hs.finishedHash.Sum())
} else {
hs.masterSecret = masterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret,
hs.hello.random, hs.serverHello.random)
}
if err := c.config.writeKeyLog(keyLogLabelTLS12, hs.hello.random, hs.masterSecret); err != nil {
c.sendAlert(alertInternalError)
return errors.New("tls: failed to write to key log: " + err.Error())
}
if chainToSend != nil && len(chainToSend.Certificate) > 0 {
certVerify := &certificateVerifyMsg{}
key, ok := chainToSend.PrivateKey.(crypto.Signer)
if !ok {
c.sendAlert(alertInternalError)
return fmt.Errorf("tls: client certificate private key of type %T does not implement crypto.Signer", chainToSend.PrivateKey)
}
var sigType uint8
var sigHash crypto.Hash
if c.vers >= VersionTLS12 {
signatureAlgorithm, err := selectSignatureScheme(c.vers, chainToSend, certReq.supportedSignatureAlgorithms)
if err != nil {
c.sendAlert(alertIllegalParameter)
return err
}
sigType, sigHash, err = typeAndHashFromSignatureScheme(signatureAlgorithm)
if err != nil {
return c.sendAlert(alertInternalError)
}
certVerify.hasSignatureAlgorithm = true
certVerify.signatureAlgorithm = signatureAlgorithm
} else {
sigType, sigHash, err = legacyTypeAndHashFromPublicKey(key.Public())
if err != nil {
c.sendAlert(alertIllegalParameter)
return err
}
}
signed := hs.finishedHash.hashForClientCertificate(sigType, sigHash)
signOpts := crypto.SignerOpts(sigHash)
if sigType == signatureRSAPSS {
signOpts = &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash, Hash: sigHash}
}
certVerify.signature, err = key.Sign(c.config.rand(), signed, signOpts)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
if _, err := hs.c.writeHandshakeRecord(certVerify, &hs.finishedHash); err != nil {
return err
}
}
hs.finishedHash.discardHandshakeBuffer()
return nil
}
func (hs *clientHandshakeState) establishKeys() error {
c := hs.c
clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV :=
keysFromMasterSecret(c.vers, hs.suite, hs.masterSecret, hs.hello.random, hs.serverHello.random, hs.suite.macLen, hs.suite.keyLen, hs.suite.ivLen)
var clientCipher, serverCipher any
var clientHash, serverHash hash.Hash
if hs.suite.cipher != nil {
clientCipher = hs.suite.cipher(clientKey, clientIV, false /* not for reading */)
clientHash = hs.suite.mac(clientMAC)
serverCipher = hs.suite.cipher(serverKey, serverIV, true /* for reading */)
serverHash = hs.suite.mac(serverMAC)
} else {
clientCipher = hs.suite.aead(clientKey, clientIV)
serverCipher = hs.suite.aead(serverKey, serverIV)
}
c.in.prepareCipherSpec(c.vers, serverCipher, serverHash)
c.out.prepareCipherSpec(c.vers, clientCipher, clientHash)
return nil
}
func (hs *clientHandshakeState) serverResumedSession() bool {
// If the server responded with the same sessionId then it means the
// sessionTicket is being used to resume a TLS session.
return hs.session != nil && hs.hello.sessionId != nil &&
bytes.Equal(hs.serverHello.sessionId, hs.hello.sessionId)
}
func (hs *clientHandshakeState) processServerHello() (bool, error) {
c := hs.c
if err := hs.pickCipherSuite(); err != nil {
return false, err
}
if hs.serverHello.compressionMethod != compressionNone {
c.sendAlert(alertUnexpectedMessage)
return false, errors.New("tls: server selected unsupported compression format")
}
if c.handshakes == 0 && hs.serverHello.secureRenegotiationSupported {
c.secureRenegotiation = true
if len(hs.serverHello.secureRenegotiation) != 0 {
c.sendAlert(alertHandshakeFailure)
return false, errors.New("tls: initial handshake had non-empty renegotiation extension")
}
}
if c.handshakes > 0 && c.secureRenegotiation {
var expectedSecureRenegotiation [24]byte
copy(expectedSecureRenegotiation[:], c.clientFinished[:])
copy(expectedSecureRenegotiation[12:], c.serverFinished[:])
if !bytes.Equal(hs.serverHello.secureRenegotiation, expectedSecureRenegotiation[:]) {
c.sendAlert(alertHandshakeFailure)
return false, errors.New("tls: incorrect renegotiation extension contents")
}
}
if err := checkALPN(hs.hello.alpnProtocols, hs.serverHello.alpnProtocol, false); err != nil {
c.sendAlert(alertUnsupportedExtension)
return false, err
}
c.clientProtocol = hs.serverHello.alpnProtocol
c.scts = hs.serverHello.scts
if !hs.serverResumedSession() {
return false, nil
}
if hs.session.version != c.vers {
c.sendAlert(alertHandshakeFailure)
return false, errors.New("tls: server resumed a session with a different version")
}
if hs.session.cipherSuite != hs.suite.id {
c.sendAlert(alertHandshakeFailure)
return false, errors.New("tls: server resumed a session with a different cipher suite")
}
// RFC 7627, Section 5.3
if hs.session.extMasterSecret != hs.serverHello.extendedMasterSecret {
c.sendAlert(alertHandshakeFailure)
return false, errors.New("tls: server resumed a session with a different EMS extension")
}
// Restore master secret and certificates from previous state
hs.masterSecret = hs.session.secret
c.extMasterSecret = hs.session.extMasterSecret
c.peerCertificates = hs.session.peerCertificates
c.activeCertHandles = hs.c.activeCertHandles
c.verifiedChains = hs.session.verifiedChains
c.ocspResponse = hs.session.ocspResponse
// Let the ServerHello SCTs override the session SCTs from the original
// connection, if any are provided
if len(c.scts) == 0 && len(hs.session.scts) != 0 {
c.scts = hs.session.scts
}
return true, nil
}
// checkALPN ensure that the server's choice of ALPN protocol is compatible with
// the protocols that we advertised in the Client Hello.
func checkALPN(clientProtos []string, serverProto string, quic bool) error {
if serverProto == "" {
if quic && len(clientProtos) > 0 {
// RFC 9001, Section 8.1
return errors.New("tls: server did not select an ALPN protocol")
}
return nil
}
if len(clientProtos) == 0 {
return errors.New("tls: server advertised unrequested ALPN extension")
}
for _, proto := range clientProtos {
if proto == serverProto {
return nil
}
}
return errors.New("tls: server selected unadvertised ALPN protocol")
}
func (hs *clientHandshakeState) readFinished(out []byte) error {
c := hs.c
if err := c.readChangeCipherSpec(); err != nil {
return err
}
// finishedMsg is included in the transcript, but not until after we
// check the client version, since the state before this message was
// sent is used during verification.
msg, err := c.readHandshake(nil)
if err != nil {
return err
}
serverFinished, ok := msg.(*finishedMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(serverFinished, msg)
}
verify := hs.finishedHash.serverSum(hs.masterSecret)
if len(verify) != len(serverFinished.verifyData) ||
subtle.ConstantTimeCompare(verify, serverFinished.verifyData) != 1 {
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: server's Finished message was incorrect")
}
if err := transcriptMsg(serverFinished, &hs.finishedHash); err != nil {
return err
}
copy(out, verify)
return nil
}
func (hs *clientHandshakeState) readSessionTicket() error {
if !hs.serverHello.ticketSupported {
return nil
}
c := hs.c
if !hs.hello.ticketSupported {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: server sent unrequested session ticket")
}
msg, err := c.readHandshake(&hs.finishedHash)
if err != nil {
return err
}
sessionTicketMsg, ok := msg.(*newSessionTicketMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(sessionTicketMsg, msg)
}
hs.ticket = sessionTicketMsg.ticket
return nil
}
func (hs *clientHandshakeState) saveSessionTicket() error {
if hs.ticket == nil {
return nil
}
c := hs.c
cacheKey := c.clientSessionCacheKey()
if cacheKey == "" {
return nil
}
session := c.sessionState()
session.secret = hs.masterSecret
session.ticket = hs.ticket
cs := &ClientSessionState{session: session}
c.config.ClientSessionCache.Put(cacheKey, cs)
return nil
}
func (hs *clientHandshakeState) sendFinished(out []byte) error {
c := hs.c
if err := c.writeChangeCipherRecord(); err != nil {
return err
}
finished := new(finishedMsg)
finished.verifyData = hs.finishedHash.clientSum(hs.masterSecret)
if _, err := hs.c.writeHandshakeRecord(finished, &hs.finishedHash); err != nil {
return err
}
copy(out, finished.verifyData)
return nil
}
// defaultMaxRSAKeySize is the maximum RSA key size in bits that we are willing
// to verify the signatures of during a TLS handshake.
const defaultMaxRSAKeySize = 8192
var tlsmaxrsasize = godebug.New("tlsmaxrsasize")
func checkKeySize(n int) (max int, ok bool) {
if v := tlsmaxrsasize.Value(); v != "" {
if max, err := strconv.Atoi(v); err == nil {
if (n <= max) != (n <= defaultMaxRSAKeySize) {
tlsmaxrsasize.IncNonDefault()
}
return max, n <= max
}
}
return defaultMaxRSAKeySize, n <= defaultMaxRSAKeySize
}
// verifyServerCertificate parses and verifies the provided chain, setting
// c.verifiedChains and c.peerCertificates or sending the appropriate alert.
func (c *Conn) verifyServerCertificate(certificates [][]byte) error {
activeHandles := make([]*activeCert, len(certificates))
certs := make([]*x509.Certificate, len(certificates))
for i, asn1Data := range certificates {
cert, err := globalCertCache.newCert(asn1Data)
if err != nil {
c.sendAlert(alertBadCertificate)
return errors.New("tls: failed to parse certificate from server: " + err.Error())
}
if cert.cert.PublicKeyAlgorithm == x509.RSA {
n := cert.cert.PublicKey.(*rsa.PublicKey).N.BitLen()
if max, ok := checkKeySize(n); !ok {
c.sendAlert(alertBadCertificate)
return fmt.Errorf("tls: server sent certificate containing RSA key larger than %d bits", max)
}
}
activeHandles[i] = cert
certs[i] = cert.cert
}
echRejected := c.config.EncryptedClientHelloConfigList != nil && !c.echAccepted
if echRejected {
if c.config.EncryptedClientHelloRejectionVerify != nil {
if err := c.config.EncryptedClientHelloRejectionVerify(c.connectionStateLocked()); err != nil {
c.sendAlert(alertBadCertificate)
return err
}
} else {
opts := x509.VerifyOptions{
Roots: c.config.RootCAs,
CurrentTime: c.config.time(),
DNSName: c.serverName,
Intermediates: x509.NewCertPool(),
}
for _, cert := range certs[1:] {
opts.Intermediates.AddCert(cert)
}
var err error
c.verifiedChains, err = certs[0].Verify(opts)
if err != nil {
c.sendAlert(alertBadCertificate)
return &CertificateVerificationError{UnverifiedCertificates: certs, Err: err}
}
}
} else if !c.config.InsecureSkipVerify {
opts := x509.VerifyOptions{
Roots: c.config.RootCAs,
CurrentTime: c.config.time(),
DNSName: c.config.ServerName,
Intermediates: x509.NewCertPool(),
}
for _, cert := range certs[1:] {
opts.Intermediates.AddCert(cert)
}
var err error
c.verifiedChains, err = certs[0].Verify(opts)
if err != nil {
c.sendAlert(alertBadCertificate)
return &CertificateVerificationError{UnverifiedCertificates: certs, Err: err}
}
}
switch certs[0].PublicKey.(type) {
case *rsa.PublicKey, *ecdsa.PublicKey, ed25519.PublicKey:
break
default:
c.sendAlert(alertUnsupportedCertificate)
return fmt.Errorf("tls: server's certificate contains an unsupported type of public key: %T", certs[0].PublicKey)
}
c.activeCertHandles = activeHandles
c.peerCertificates = certs
if c.config.VerifyPeerCertificate != nil && !echRejected {
if err := c.config.VerifyPeerCertificate(certificates, c.verifiedChains); err != nil {
c.sendAlert(alertBadCertificate)
return err
}
}
if c.config.VerifyConnection != nil && !echRejected {
if err := c.config.VerifyConnection(c.connectionStateLocked()); err != nil {
c.sendAlert(alertBadCertificate)
return err
}
}
return nil
}
// certificateRequestInfoFromMsg generates a CertificateRequestInfo from a TLS
// <= 1.2 CertificateRequest, making an effort to fill in missing information.
func certificateRequestInfoFromMsg(ctx context.Context, vers uint16, certReq *certificateRequestMsg) *CertificateRequestInfo {
cri := &CertificateRequestInfo{
AcceptableCAs: certReq.certificateAuthorities,
Version: vers,
ctx: ctx,
}
var rsaAvail, ecAvail bool
for _, certType := range certReq.certificateTypes {
switch certType {
case certTypeRSASign:
rsaAvail = true
case certTypeECDSASign:
ecAvail = true
}
}
if !certReq.hasSignatureAlgorithm {
// Prior to TLS 1.2, signature schemes did not exist. In this case we
// make up a list based on the acceptable certificate types, to help
// GetClientCertificate and SupportsCertificate select the right certificate.
// The hash part of the SignatureScheme is a lie here, because
// TLS 1.0 and 1.1 always use MD5+SHA1 for RSA and SHA1 for ECDSA.
switch {
case rsaAvail && ecAvail:
cri.SignatureSchemes = []SignatureScheme{
ECDSAWithP256AndSHA256, ECDSAWithP384AndSHA384, ECDSAWithP521AndSHA512,
PKCS1WithSHA256, PKCS1WithSHA384, PKCS1WithSHA512, PKCS1WithSHA1,
}
case rsaAvail:
cri.SignatureSchemes = []SignatureScheme{
PKCS1WithSHA256, PKCS1WithSHA384, PKCS1WithSHA512, PKCS1WithSHA1,
}
case ecAvail:
cri.SignatureSchemes = []SignatureScheme{
ECDSAWithP256AndSHA256, ECDSAWithP384AndSHA384, ECDSAWithP521AndSHA512,
}
}
return cri
}
// Filter the signature schemes based on the certificate types.
// See RFC 5246, Section 7.4.4 (where it calls this "somewhat complicated").
cri.SignatureSchemes = make([]SignatureScheme, 0, len(certReq.supportedSignatureAlgorithms))
for _, sigScheme := range certReq.supportedSignatureAlgorithms {
sigType, _, err := typeAndHashFromSignatureScheme(sigScheme)
if err != nil {
continue
}
switch sigType {
case signatureECDSA, signatureEd25519:
if ecAvail {
cri.SignatureSchemes = append(cri.SignatureSchemes, sigScheme)
}
case signatureRSAPSS, signaturePKCS1v15:
if rsaAvail {
cri.SignatureSchemes = append(cri.SignatureSchemes, sigScheme)
}
}
}
return cri
}
func (c *Conn) getClientCertificate(cri *CertificateRequestInfo) (*Certificate, error) {
if c.config.GetClientCertificate != nil {
return c.config.GetClientCertificate(cri)
}
for _, chain := range c.config.Certificates {
if err := cri.SupportsCertificate(&chain); err != nil {
continue
}
return &chain, nil
}
// No acceptable certificate found. Don't send a certificate.
return new(Certificate), nil
}
// clientSessionCacheKey returns a key used to cache sessionTickets that could
// be used to resume previously negotiated TLS sessions with a server.
func (c *Conn) clientSessionCacheKey() string {
if len(c.config.ServerName) > 0 {
return c.config.ServerName
}
if c.conn != nil {
return c.conn.RemoteAddr().String()
}
return ""
}
// hostnameInSNI converts name into an appropriate hostname for SNI.
// Literal IP addresses and absolute FQDNs are not permitted as SNI values.
// See RFC 6066, Section 3.
func hostnameInSNI(name string) string {
host := name
if len(host) > 0 && host[0] == '[' && host[len(host)-1] == ']' {
host = host[1 : len(host)-1]
}
if i := strings.LastIndex(host, "%"); i > 0 {
host = host[:i]
}
if net.ParseIP(host) != nil {
return ""
}
for len(name) > 0 && name[len(name)-1] == '.' {
name = name[:len(name)-1]
}
return name
}
func computeAndUpdatePSK(m *clientHelloMsg, binderKey []byte, transcript hash.Hash, finishedHash func([]byte, hash.Hash) []byte) error {
helloBytes, err := m.marshalWithoutBinders()
if err != nil {
return err
}
transcript.Write(helloBytes)
pskBinders := [][]byte{finishedHash(binderKey, transcript)}
return m.updateBinders(pskBinders)
}