utls/auth.go
Filippo Valsorda 9a45e56dc1 crypto/tls: disable RSA-PSS in TLS 1.2 again
Signing with RSA-PSS can uncover faulty crypto.Signer implementations,
and it can fail for (broken) small keys. We'll have to take that
breakage eventually, but it would be nice for it to be opt-out at first.

TLS 1.3 requires RSA-PSS and is opt-out in Go 1.13. Instead of making a
TLS 1.3 opt-out influence a TLS 1.2 behavior, let's wait to add RSA-PSS
to TLS 1.2 until TLS 1.3 is on without opt-out.

Note that since the Client Hello is sent before a protocol version is
selected, we have to advertise RSA-PSS there to support TLS 1.3.
That means that we still support RSA-PSS on the client in TLS 1.2 for
verifying server certificates, which is fine, as all issues arise on the
signing side. We have to be careful not to pick (or consider available)
RSA-PSS on the client for client certificates, though.

We'd expect tests to change only in TLS 1.2:

    * the server won't pick PSS to sign the key exchange
      (Server-TLSv12-* w/ RSA, TestHandshakeServerRSAPSS);
    * the server won't advertise PSS in CertificateRequest
      (Server-TLSv12-ClientAuthRequested*, TestClientAuth);
    * and the client won't pick PSS for its CertificateVerify
      (Client-TLSv12-ClientCert-RSA-*, TestHandshakeClientCertRSAPSS,
      Client-TLSv12-Renegotiate* because "R" requests a client cert).

Client-TLSv13-ClientCert-RSA-RSAPSS was updated because of a fix in the test.

This effectively reverts 88343530720a52c96b21f2bd5488c8fb607605d7.

Testing was made more complex by the undocumented semantics of OpenSSL's
-[client_]sigalgs (see openssl/openssl#9172).

Updates #32425

Change-Id: Iaddeb2df1f5c75cd090cc8321df2ac8e8e7db349
Reviewed-on: https://go-review.googlesource.com/c/go/+/182339
Reviewed-by: Adam Langley <agl@golang.org>
2019-06-19 19:59:14 +00:00

256 lines
8.2 KiB
Go

// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tls
import (
"bytes"
"crypto"
"crypto/ecdsa"
"crypto/ed25519"
"crypto/elliptic"
"crypto/rsa"
"encoding/asn1"
"errors"
"fmt"
"hash"
"io"
)
// pickSignatureAlgorithm selects a signature algorithm that is compatible with
// the given public key and the list of algorithms from the peer and this side.
// The lists of signature algorithms (peerSigAlgs and ourSigAlgs) are ignored
// for tlsVersion < VersionTLS12.
//
// The returned SignatureScheme codepoint is only meaningful for TLS 1.2,
// previous TLS versions have a fixed hash function.
func pickSignatureAlgorithm(pubkey crypto.PublicKey, peerSigAlgs, ourSigAlgs []SignatureScheme, tlsVersion uint16) (sigAlg SignatureScheme, sigType uint8, hashFunc crypto.Hash, err error) {
if tlsVersion < VersionTLS12 || len(peerSigAlgs) == 0 {
// For TLS 1.1 and before, the signature algorithm could not be
// negotiated and the hash is fixed based on the signature type. For TLS
// 1.2, if the client didn't send signature_algorithms extension then we
// can assume that it supports SHA1. See RFC 5246, Section 7.4.1.4.1.
switch pubkey.(type) {
case *rsa.PublicKey:
if tlsVersion < VersionTLS12 {
return 0, signaturePKCS1v15, crypto.MD5SHA1, nil
} else {
return PKCS1WithSHA1, signaturePKCS1v15, crypto.SHA1, nil
}
case *ecdsa.PublicKey:
return ECDSAWithSHA1, signatureECDSA, crypto.SHA1, nil
case ed25519.PublicKey:
if tlsVersion < VersionTLS12 {
// RFC 8422 specifies support for Ed25519 in TLS 1.0 and 1.1,
// but it requires holding on to a handshake transcript to do a
// full signature, and not even OpenSSL bothers with the
// complexity, so we can't even test it properly.
return 0, 0, 0, fmt.Errorf("tls: Ed25519 public keys are not supported before TLS 1.2")
}
return Ed25519, signatureEd25519, directSigning, nil
default:
return 0, 0, 0, fmt.Errorf("tls: unsupported public key: %T", pubkey)
}
}
for _, sigAlg := range peerSigAlgs {
if !isSupportedSignatureAlgorithm(sigAlg, ourSigAlgs) {
continue
}
hashAlg, err := hashFromSignatureScheme(sigAlg)
if err != nil {
panic("tls: supported signature algorithm has an unknown hash function")
}
sigType := signatureFromSignatureScheme(sigAlg)
switch pubkey.(type) {
case *rsa.PublicKey:
if sigType == signaturePKCS1v15 || sigType == signatureRSAPSS {
return sigAlg, sigType, hashAlg, nil
}
case *ecdsa.PublicKey:
if sigType == signatureECDSA {
return sigAlg, sigType, hashAlg, nil
}
case ed25519.PublicKey:
if sigType == signatureEd25519 {
return sigAlg, sigType, hashAlg, nil
}
default:
return 0, 0, 0, fmt.Errorf("tls: unsupported public key: %T", pubkey)
}
}
return 0, 0, 0, errors.New("tls: peer doesn't support any common signature algorithms")
}
// verifyHandshakeSignature verifies a signature against pre-hashed
// (if required) handshake contents.
func verifyHandshakeSignature(sigType uint8, pubkey crypto.PublicKey, hashFunc crypto.Hash, signed, sig []byte) error {
switch sigType {
case signatureECDSA:
pubKey, ok := pubkey.(*ecdsa.PublicKey)
if !ok {
return errors.New("tls: ECDSA signing requires a ECDSA public key")
}
ecdsaSig := new(ecdsaSignature)
if _, err := asn1.Unmarshal(sig, ecdsaSig); err != nil {
return err
}
if ecdsaSig.R.Sign() <= 0 || ecdsaSig.S.Sign() <= 0 {
return errors.New("tls: ECDSA signature contained zero or negative values")
}
if !ecdsa.Verify(pubKey, signed, ecdsaSig.R, ecdsaSig.S) {
return errors.New("tls: ECDSA verification failure")
}
case signatureEd25519:
pubKey, ok := pubkey.(ed25519.PublicKey)
if !ok {
return errors.New("tls: Ed25519 signing requires a Ed25519 public key")
}
if !ed25519.Verify(pubKey, signed, sig) {
return errors.New("tls: Ed25519 verification failure")
}
case signaturePKCS1v15:
pubKey, ok := pubkey.(*rsa.PublicKey)
if !ok {
return errors.New("tls: RSA signing requires a RSA public key")
}
if err := rsa.VerifyPKCS1v15(pubKey, hashFunc, signed, sig); err != nil {
return err
}
case signatureRSAPSS:
pubKey, ok := pubkey.(*rsa.PublicKey)
if !ok {
return errors.New("tls: RSA signing requires a RSA public key")
}
signOpts := &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash}
if err := rsa.VerifyPSS(pubKey, hashFunc, signed, sig, signOpts); err != nil {
return err
}
default:
return errors.New("tls: unknown signature algorithm")
}
return nil
}
const (
serverSignatureContext = "TLS 1.3, server CertificateVerify\x00"
clientSignatureContext = "TLS 1.3, client CertificateVerify\x00"
)
var signaturePadding = []byte{
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
}
// signedMessage returns the pre-hashed (if necessary) message to be signed by
// certificate keys in TLS 1.3. See RFC 8446, Section 4.4.3.
func signedMessage(sigHash crypto.Hash, context string, transcript hash.Hash) []byte {
if sigHash == directSigning {
b := &bytes.Buffer{}
b.Write(signaturePadding)
io.WriteString(b, context)
b.Write(transcript.Sum(nil))
return b.Bytes()
}
h := sigHash.New()
h.Write(signaturePadding)
io.WriteString(h, context)
h.Write(transcript.Sum(nil))
return h.Sum(nil)
}
// signatureSchemesForCertificate returns the list of supported SignatureSchemes
// for a given certificate, based on the public key and the protocol version.
//
// It does not support the crypto.Decrypter interface, so shouldn't be used for
// server certificates in TLS 1.2 and earlier, and it must be kept in sync with
// supportedSignatureAlgorithms.
func signatureSchemesForCertificate(version uint16, cert *Certificate) []SignatureScheme {
priv, ok := cert.PrivateKey.(crypto.Signer)
if !ok {
return nil
}
switch pub := priv.Public().(type) {
case *ecdsa.PublicKey:
if version != VersionTLS13 {
// In TLS 1.2 and earlier, ECDSA algorithms are not
// constrained to a single curve.
return []SignatureScheme{
ECDSAWithP256AndSHA256,
ECDSAWithP384AndSHA384,
ECDSAWithP521AndSHA512,
ECDSAWithSHA1,
}
}
switch pub.Curve {
case elliptic.P256():
return []SignatureScheme{ECDSAWithP256AndSHA256}
case elliptic.P384():
return []SignatureScheme{ECDSAWithP384AndSHA384}
case elliptic.P521():
return []SignatureScheme{ECDSAWithP521AndSHA512}
default:
return nil
}
case *rsa.PublicKey:
if version != VersionTLS13 {
return []SignatureScheme{
PKCS1WithSHA256,
PKCS1WithSHA384,
PKCS1WithSHA512,
PKCS1WithSHA1,
}
}
return []SignatureScheme{
PSSWithSHA256,
PSSWithSHA384,
PSSWithSHA512,
}
case ed25519.PublicKey:
return []SignatureScheme{Ed25519}
default:
return nil
}
}
// unsupportedCertificateError returns a helpful error for certificates with
// an unsupported private key.
func unsupportedCertificateError(cert *Certificate) error {
switch cert.PrivateKey.(type) {
case rsa.PrivateKey, ecdsa.PrivateKey:
return fmt.Errorf("tls: unsupported certificate: private key is %T, expected *%T",
cert.PrivateKey, cert.PrivateKey)
case *ed25519.PrivateKey:
return fmt.Errorf("tls: unsupported certificate: private key is *ed25519.PrivateKey, expected ed25519.PrivateKey")
}
signer, ok := cert.PrivateKey.(crypto.Signer)
if !ok {
return fmt.Errorf("tls: certificate private key (%T) does not implement crypto.Signer",
cert.PrivateKey)
}
switch pub := signer.Public().(type) {
case *ecdsa.PublicKey:
switch pub.Curve {
case elliptic.P256():
case elliptic.P384():
case elliptic.P521():
default:
return fmt.Errorf("tls: unsupported certificate curve (%s)", pub.Curve.Params().Name)
}
case *rsa.PublicKey:
case ed25519.PublicKey:
default:
return fmt.Errorf("tls: unsupported certificate key (%T)", pub)
}
return fmt.Errorf("tls: internal error: unsupported key (%T)", cert.PrivateKey)
}